Araştırma Makalesi
BibTex RIS Kaynak Göster

Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet

Yıl 2024, Cilt: 27 Sayı: 6, 2279 - 2288
https://doi.org/10.2339/politeknik.1325468

Öz

Topology optimization is known as one of the basic categories of structural optimization. Topology optimization is received increasing attention in many engineering disciplines. Topology optimization contributes to minimizing emissions and environmental effects by increasing material utilization efficiency and manufacturing sustainability. The mechanical parking brake is still used in many vehicles. This study aims to contribute to the reduction in vehicle weight by applying topology optimization. In addition, it also purposes to promote sustainability in manufacturing by reducing material usage and energy consumption. A CAD model was created by considering the existing mechanism element dimensions. The parking brake lever mechanism component was evaluated using topology optimization and finite element analysis methods. Static analyses were performed using a finite element analysis program. The results of this analysis were used as input data for topology optimization. In the topology optimization, the response constraint mass was increased by 5 increments from 50% to 95%. As a result, the maximum equivalent (von Mises) stress for the parking brake lever is 230,29 MPa, and for the ratchet is 11,559 MPa. The maximum total deformation value for the brake lever is 0,95853 mm and for the ratchet is 0,0079482 mm. The parking brake lever mass decreased by 18,48% from 0.27751 kg to 0.22622 kg. The ratchet mass decreased from 0.095042 kg to 0.061911 kg by 34.85%.

Proje Numarası

yok

Kaynakça

  • [1] Azad, M. M., Kim, D., Khalid, S., and Kim, H. S., “Topology optimization and fatigue life estimation of sustainable medical waste shredder blade”, Mathematics, 10(11): 1863, (2022).
  • [2] Rosen, M. A., and Kishawy, H. A., “Sustainable manufacturing and design: concepts, practices and needs”, Sustainability, 4(2): 154-174, (2012).
  • [3] Saberi, B., “The role of the automobile industry in the economy of developed countries”, International Robotics & Automation Journal, 4(3): (2018).
  • [4] Vlah, D., Žavbi, R., and Vukašinović, N., “Evaluation of topology optimization and generative design tools as support for conceptual design”, Proceedings of the Design Society: Design Conference, 1: 451-460, (2020).
  • [5] Barbieri, L., and Muzzupappa, M., “Performance-driven engineering design approaches based on generative design and topology optimization tools: A comparative study”, Applied Sciences, 12(4): 1-17, (2022).
  • [6] Lunia, P., Prajapati, M., Jayashankar, V., Parakh, V., and Rawte, S., “Systematic approach to design hand-controlled parking brake system for passenger car, (No:2015-26-0078)”, SAE Technical Paper, (2015).
  • [7] McKinlay, A. J., “The phenomenon of vehicle park brake rollaway [Unpublished doctoral dissertation]”, School of Mechanical Engineering, University of Leeds, (2007).
  • [8] Toyota, “Toyota brake systems course 552, Section 6: Parking Brake”, Retrieved (01.02.2023) from https://www.scribd.com/ document/422540456/Brake-Systems-Course- 552. (n.d.).
  • [9] Hıdıroğlu, M., Koşucu, Ş., Sönmez, E., and Genç, T., “El fren teli bağlantı ve gerginlik ayar mekanizması tasarımı”, 8. Otomotiv Teknolojileri Kongresi (OTEKON’16), 23-25 Mayıs 2016, Bursa, (2016).
  • [10] Hague, R., Tuck, C., and Raymond, G., “Rapid manufacturing's role in design optimisation and customization”, Retrieved (01.02.2023) from https:// www.researchgate.net/publication/267553219 (n.d.).
  • [11] Yuksel, O., “An overview on topology optimization methods employed in structural engineering”, Kırklareli University Journal of Engineering and Science, 5(2): 159-175, (2019).
  • [12] Karaçam, F., and Arda, Ö. C., “Topology optimization of the load-carrying element under a concentrated load”, Trakya University Journal of Engineering Sciences, 22(2): 57-64, (2021).
  • [13] Matsimbi, M., Nziu, P.K., Masu, L.M., and Maringa, M., “Topology optimization of automotive body structures: A review”, International Journal of Engineering Research and Technology, 13(12): 4282-4296, (2021).
  • [14] Kahraman, F., and Küçük, M., “A Research on weight reduction application with topology optimization in the automotive industry”, European Journal of Science and Technology, 20: 623-631, (2020).
  • [15] Koçak, M. R., and Korkut, İ., “İnsansız hava aracı burun iniş takımı çatalı için topoloji optimizasyonu uygulaması”, Politeknik Dergisi, 26(4): 1393-1403, (2023).
  • [16] Kara, R., Taşkın V., and Demirhan, P.A., “Static analysis and topology optimization of the steering knuckle part”, Trakya University Journal of Engineering Sciences, 23(2): 109-119, (2022).
  • [17] Demir, N., Sucuoğlu, H. S., Böğrekci, İ., and Demircioğlu, P., “Topology optimization of mobile transportation robot”, International Journal of 3D Printing Technologies and Digital Industry, 5(2): 210-219, (2021).
  • [18] Dalfidan, S., and Erol, H., “Fatigue behavior for design optimization of parking brake bracket connections”, International Journal of Automotive Engineering and Technologies, 9(3): 161-170, (2020).
  • [19] Deshpande, C. P., Badadhe, A., and Khan, S., “Design, analysis and optimization of hand brake lever”, International Journal of Engineering Sciences, 14(1): 34-40, (2021).
  • [20] Işıtan, A., Eroğlu, S. B., and Binici, M. R., “Topology optimization of an automobile handbrake parts”. In Mehmet Dalkılıç (Eds.), Recent Advances in Science and Technology, (pp. 61-72) Chapter 4., Gece Publishing. (2020).
  • [21] Sasane, S. D., and Burande, D. H., “Optimization of hand brake lever using FEA & experimental stress analysis technique”, International Journal of Engineering Research & Technology, 08(09): 431-433. (2019).
  • [22] Top, N., Gökçe, H., and Şahin, İ., “Topology optmization for additive manufacturing: an application on handbrake mechanism”, Selcuk University Journal of Engineering Sciences, 18(1): 1-13. (2019).
  • [23] Top, N., Şahin, İ., and Gökçe, H., “Topology optimization for additive manufacturing in the aviation and automotive industry”, In Adnan Hayaloğlu (Eds.) Theory and Research in Engineering, (207-226), Gece Publishing. (2020).
  • [24] Patel, M. V., Sarawade, S. S., and Gawande, S. H., “Topology optimization and stress validation of the hand brake lever”, International Review of Mechanical Engineering, 11(7): 442-447, (2017).
  • [25] Patel, M.V., and Sarawade, S.S., “Design and weight optimization of parking brake lever”, International Journal of Advance Research in Science and Engineering, 6(7): 1146-1153, (2017).
  • [26] Maske, A. B., Tuljapure, S. B., and Satav, P., “Design & analysis of parking brake system of car”, International Journal of Innovative Research in Science, 5(7): 12578-12590, (2016).
  • [27] Mansor, M. R., Sapuan, S. M., Zainudin, E. S., Nuraini, A. A., and Hambali, A., “Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ-Morphological Chart-Analytic Hierarchy Process method”, Materials & Design, (1980-2015), 54: 473-482, (2014).
  • [28] Yıldız, B. S., Yıldız, A. R., Pholdee, N., Bureerat, S., Sait, S. M., and Patel, V., “The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components”, Materials Testing, 62(3): 261-264, (2020).
  • [29] Doğan, O., Kalay, O., Kartal, E., and Karpat, F., “Optimum design of brake pedal for trucks using structural optimization and design of experiment techniques”, International Journal of Automotive Science and Technology, 4(4): 272-280, (2020).
  • [30] Akçay, Ö., and İlkılıç, C., “Structural optimization of the brake pedal using artificial intelligence”, International Journal of Automotive Science and Technology, 7(3): 187-195, (2023).
  • [31] Savran, E., Vargelci, S., Catenaro, L., and Karpat, F., “Bir otomobil braket tasariminin analizi ve değerlendirmesi”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2): 493-506, (2023).
  • [32] Altinel, K., Yildiz, A., & Yuce, C., “Ağır ticari araç süspansiyon sistemleri için modüler taşıyıcı kol mekanizmasının tasarımı ve analizi”, Gazi University Journal of Science Part C: Design and Technology, 11(3): 794-803, (2023).
  • [33] Zhong, Y., Jiang, X., Yang, Y., Xu, B., Zhu, Q., Wang, L., & Dong, X., “Visualization analysis of research hotspots on structural topology optimization based on CiteSpace”, Scientific Reports, 13(1): (2023).
  • [34] Anonymous, “Preliminary structural analysis of a center lever light passenger vehicle parking brake component AISI-1000 series low carbon steel using finite element analysis”, BMCG 3333: Mechanical Design Chapter 2 FEA Case Study Sample Report, Retrieved (01.02.2023) from https ://www.academia. edu/35617250/ (n.d.).
  • [35] U.S. Department of Transportation, “Light vehicle brake systems laboratory test procedure for FMVSS 135”, U.S. Department of Transportation, National Highway Traffic Safety Administration, Retrieved (01.02.2023) from https:// www.nhtsa.gov/sites/nhtsa.gov/files/ documents/tp-135-01_tag.pdf (2005).
  • [36] Noble, V., Frampton, R., and Richardson, J., “Ergonomics of parking brake application – Factors to fail?”, Contemporary Ergonomics and Human Factors 2014, 481-488, (2014).

Park Freni Kolunun ve Cırcırının Sonlu Elemanlar Analizi ve Topoloji Optimizasyonu

Yıl 2024, Cilt: 27 Sayı: 6, 2279 - 2288
https://doi.org/10.2339/politeknik.1325468

Öz

Topoloji optimizasyonu, yapısal optimizasyonun temel kategorilerinden biri olarak bilinir. Topoloji optimizasyonuna birçok mühendislik disiplininde ilgi artmaktadır. Topoloji optimizasyonu, malzeme kullanım verimliliğini ve üretim sürdürülebilirliğini artırarak, emisyonların ve çevresel etkilerin azaltılmasına katkı sağlamaktadır. Mekanik park freni hâlâ birçok taşıtta kullanılmaktadır. Bu çalışmada, topoloji optimizasyonu yardımıyla araç ağırlığının azaltılmasına katkı sağlamak da amaçlamaktadır. Ayrıca malzeme kullanımını ve enerji tüketimini azaltarak imalat alanında sürdürülebilirliği katkı sağlanmak da istenmektedir. Mevcut park freni dikkate alınarak CAD model oluşturulmuştur. Park freni kolunun elemanları sonlu eleman analizi yöntemleri ile analiz edilmiş ve topoloji optimizasyonu gerçekleştirilmiştir. Statik analizler için sonlu elemanlar analiz programı kullanılmıştır. Statik analizin sonuçları, topoloji optimizasyonu için girdi verileri olarak kullanılmıştır. Topoloji optimizasyonunda, kütle yanıt kısıtı 5 artımla %50'den %95'e kadar artırılmıştır. Sonuç olarak, park freni kolu için maksimum eşdeğer (von Mises) gerilme 230,29 MPa ve park fren cırcırı için 11,559 MPa'dır. Fren kolu için maksimum toplam deformasyon değeri 0,95853 mm ve park fren cırcırı için 0,0079482 mm'dir. Park freni kolu kütlesi %18,48 oranında azalarak 0,27751 kg'dan 0,22622 kg'a düşmüştür. Park fren cırcırının kütlesi %34,85 oranında azalarak 0,095042 kg'dan 0,061911 kg'a düşmüştür.

Destekleyen Kurum

yok

Proje Numarası

yok

Kaynakça

  • [1] Azad, M. M., Kim, D., Khalid, S., and Kim, H. S., “Topology optimization and fatigue life estimation of sustainable medical waste shredder blade”, Mathematics, 10(11): 1863, (2022).
  • [2] Rosen, M. A., and Kishawy, H. A., “Sustainable manufacturing and design: concepts, practices and needs”, Sustainability, 4(2): 154-174, (2012).
  • [3] Saberi, B., “The role of the automobile industry in the economy of developed countries”, International Robotics & Automation Journal, 4(3): (2018).
  • [4] Vlah, D., Žavbi, R., and Vukašinović, N., “Evaluation of topology optimization and generative design tools as support for conceptual design”, Proceedings of the Design Society: Design Conference, 1: 451-460, (2020).
  • [5] Barbieri, L., and Muzzupappa, M., “Performance-driven engineering design approaches based on generative design and topology optimization tools: A comparative study”, Applied Sciences, 12(4): 1-17, (2022).
  • [6] Lunia, P., Prajapati, M., Jayashankar, V., Parakh, V., and Rawte, S., “Systematic approach to design hand-controlled parking brake system for passenger car, (No:2015-26-0078)”, SAE Technical Paper, (2015).
  • [7] McKinlay, A. J., “The phenomenon of vehicle park brake rollaway [Unpublished doctoral dissertation]”, School of Mechanical Engineering, University of Leeds, (2007).
  • [8] Toyota, “Toyota brake systems course 552, Section 6: Parking Brake”, Retrieved (01.02.2023) from https://www.scribd.com/ document/422540456/Brake-Systems-Course- 552. (n.d.).
  • [9] Hıdıroğlu, M., Koşucu, Ş., Sönmez, E., and Genç, T., “El fren teli bağlantı ve gerginlik ayar mekanizması tasarımı”, 8. Otomotiv Teknolojileri Kongresi (OTEKON’16), 23-25 Mayıs 2016, Bursa, (2016).
  • [10] Hague, R., Tuck, C., and Raymond, G., “Rapid manufacturing's role in design optimisation and customization”, Retrieved (01.02.2023) from https:// www.researchgate.net/publication/267553219 (n.d.).
  • [11] Yuksel, O., “An overview on topology optimization methods employed in structural engineering”, Kırklareli University Journal of Engineering and Science, 5(2): 159-175, (2019).
  • [12] Karaçam, F., and Arda, Ö. C., “Topology optimization of the load-carrying element under a concentrated load”, Trakya University Journal of Engineering Sciences, 22(2): 57-64, (2021).
  • [13] Matsimbi, M., Nziu, P.K., Masu, L.M., and Maringa, M., “Topology optimization of automotive body structures: A review”, International Journal of Engineering Research and Technology, 13(12): 4282-4296, (2021).
  • [14] Kahraman, F., and Küçük, M., “A Research on weight reduction application with topology optimization in the automotive industry”, European Journal of Science and Technology, 20: 623-631, (2020).
  • [15] Koçak, M. R., and Korkut, İ., “İnsansız hava aracı burun iniş takımı çatalı için topoloji optimizasyonu uygulaması”, Politeknik Dergisi, 26(4): 1393-1403, (2023).
  • [16] Kara, R., Taşkın V., and Demirhan, P.A., “Static analysis and topology optimization of the steering knuckle part”, Trakya University Journal of Engineering Sciences, 23(2): 109-119, (2022).
  • [17] Demir, N., Sucuoğlu, H. S., Böğrekci, İ., and Demircioğlu, P., “Topology optimization of mobile transportation robot”, International Journal of 3D Printing Technologies and Digital Industry, 5(2): 210-219, (2021).
  • [18] Dalfidan, S., and Erol, H., “Fatigue behavior for design optimization of parking brake bracket connections”, International Journal of Automotive Engineering and Technologies, 9(3): 161-170, (2020).
  • [19] Deshpande, C. P., Badadhe, A., and Khan, S., “Design, analysis and optimization of hand brake lever”, International Journal of Engineering Sciences, 14(1): 34-40, (2021).
  • [20] Işıtan, A., Eroğlu, S. B., and Binici, M. R., “Topology optimization of an automobile handbrake parts”. In Mehmet Dalkılıç (Eds.), Recent Advances in Science and Technology, (pp. 61-72) Chapter 4., Gece Publishing. (2020).
  • [21] Sasane, S. D., and Burande, D. H., “Optimization of hand brake lever using FEA & experimental stress analysis technique”, International Journal of Engineering Research & Technology, 08(09): 431-433. (2019).
  • [22] Top, N., Gökçe, H., and Şahin, İ., “Topology optmization for additive manufacturing: an application on handbrake mechanism”, Selcuk University Journal of Engineering Sciences, 18(1): 1-13. (2019).
  • [23] Top, N., Şahin, İ., and Gökçe, H., “Topology optimization for additive manufacturing in the aviation and automotive industry”, In Adnan Hayaloğlu (Eds.) Theory and Research in Engineering, (207-226), Gece Publishing. (2020).
  • [24] Patel, M. V., Sarawade, S. S., and Gawande, S. H., “Topology optimization and stress validation of the hand brake lever”, International Review of Mechanical Engineering, 11(7): 442-447, (2017).
  • [25] Patel, M.V., and Sarawade, S.S., “Design and weight optimization of parking brake lever”, International Journal of Advance Research in Science and Engineering, 6(7): 1146-1153, (2017).
  • [26] Maske, A. B., Tuljapure, S. B., and Satav, P., “Design & analysis of parking brake system of car”, International Journal of Innovative Research in Science, 5(7): 12578-12590, (2016).
  • [27] Mansor, M. R., Sapuan, S. M., Zainudin, E. S., Nuraini, A. A., and Hambali, A., “Conceptual design of kenaf fiber polymer composite automotive parking brake lever using integrated TRIZ-Morphological Chart-Analytic Hierarchy Process method”, Materials & Design, (1980-2015), 54: 473-482, (2014).
  • [28] Yıldız, B. S., Yıldız, A. R., Pholdee, N., Bureerat, S., Sait, S. M., and Patel, V., “The Henry gas solubility optimization algorithm for optimum structural design of automobile brake components”, Materials Testing, 62(3): 261-264, (2020).
  • [29] Doğan, O., Kalay, O., Kartal, E., and Karpat, F., “Optimum design of brake pedal for trucks using structural optimization and design of experiment techniques”, International Journal of Automotive Science and Technology, 4(4): 272-280, (2020).
  • [30] Akçay, Ö., and İlkılıç, C., “Structural optimization of the brake pedal using artificial intelligence”, International Journal of Automotive Science and Technology, 7(3): 187-195, (2023).
  • [31] Savran, E., Vargelci, S., Catenaro, L., and Karpat, F., “Bir otomobil braket tasariminin analizi ve değerlendirmesi”, Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 28(2): 493-506, (2023).
  • [32] Altinel, K., Yildiz, A., & Yuce, C., “Ağır ticari araç süspansiyon sistemleri için modüler taşıyıcı kol mekanizmasının tasarımı ve analizi”, Gazi University Journal of Science Part C: Design and Technology, 11(3): 794-803, (2023).
  • [33] Zhong, Y., Jiang, X., Yang, Y., Xu, B., Zhu, Q., Wang, L., & Dong, X., “Visualization analysis of research hotspots on structural topology optimization based on CiteSpace”, Scientific Reports, 13(1): (2023).
  • [34] Anonymous, “Preliminary structural analysis of a center lever light passenger vehicle parking brake component AISI-1000 series low carbon steel using finite element analysis”, BMCG 3333: Mechanical Design Chapter 2 FEA Case Study Sample Report, Retrieved (01.02.2023) from https ://www.academia. edu/35617250/ (n.d.).
  • [35] U.S. Department of Transportation, “Light vehicle brake systems laboratory test procedure for FMVSS 135”, U.S. Department of Transportation, National Highway Traffic Safety Administration, Retrieved (01.02.2023) from https:// www.nhtsa.gov/sites/nhtsa.gov/files/ documents/tp-135-01_tag.pdf (2005).
  • [36] Noble, V., Frampton, R., and Richardson, J., “Ergonomics of parking brake application – Factors to fail?”, Contemporary Ergonomics and Human Factors 2014, 481-488, (2014).
Toplam 36 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Makine Mühendisliğinde Optimizasyon Teknikleri
Bölüm Araştırma Makalesi
Yazarlar

Funda Kahraman 0000-0002-1661-3376

Mehmet Küçük 0000-0001-9196-0784

Proje Numarası yok
Erken Görünüm Tarihi 25 Mart 2024
Yayımlanma Tarihi
Gönderilme Tarihi 10 Temmuz 2023
Yayımlandığı Sayı Yıl 2024 Cilt: 27 Sayı: 6

Kaynak Göster

APA Kahraman, F., & Küçük, M. (t.y.). Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet. Politeknik Dergisi, 27(6), 2279-2288. https://doi.org/10.2339/politeknik.1325468
AMA Kahraman F, Küçük M. Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet. Politeknik Dergisi. 27(6):2279-2288. doi:10.2339/politeknik.1325468
Chicago Kahraman, Funda, ve Mehmet Küçük. “Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet”. Politeknik Dergisi 27, sy. 6 t.y.: 2279-88. https://doi.org/10.2339/politeknik.1325468.
EndNote Kahraman F, Küçük M Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet. Politeknik Dergisi 27 6 2279–2288.
IEEE F. Kahraman ve M. Küçük, “Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet”, Politeknik Dergisi, c. 27, sy. 6, ss. 2279–2288, doi: 10.2339/politeknik.1325468.
ISNAD Kahraman, Funda - Küçük, Mehmet. “Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet”. Politeknik Dergisi 27/6 (t.y.), 2279-2288. https://doi.org/10.2339/politeknik.1325468.
JAMA Kahraman F, Küçük M. Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet. Politeknik Dergisi.;27:2279–2288.
MLA Kahraman, Funda ve Mehmet Küçük. “Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet”. Politeknik Dergisi, c. 27, sy. 6, ss. 2279-88, doi:10.2339/politeknik.1325468.
Vancouver Kahraman F, Küçük M. Finite Elements Analysis and Topology Optimization of Parking Brake Lever and Ratchet. Politeknik Dergisi. 27(6):2279-88.
 
TARANDIĞIMIZ DİZİNLER (ABSTRACTING / INDEXING)
181341319013191 13189 13187 13188 18016 

download Bu eser Creative Commons Atıf-AynıLisanslaPaylaş 4.0 Uluslararası ile lisanslanmıştır.