Araştırma Makalesi
BibTex RIS Kaynak Göster

İç Nokta Optimizasyon Yöntemiyle Optimum Güç Akışı

Yıl 2022, Cilt: 02 Sayı: 02, 131 - 138, 31.12.2022

Öz

The electric power industry is mainly responsible to ensure the high-quality, reliable, and economical operation of power systems by defining the limits and constraints of power system equipment. This paper uses the interior-point method to solve the nonlinear OPF problem. This method adjusts optimum values of OPF control variables, including the generator's active and reactive power output, with the objective function of minimizing total system losses. The interior-point method has been analyzed on a standard IEEE-14 bus test system using optimum power flow/unit commitment tools of DIgSILENT/Powerfactory. The analyses are conducted for alternating current (AC) power flow analysis and optimum power flow analysis, which represent Case 1 and Case 2, respectively. The results indicate that the total losses of the power system are reduced from 13.39 MW to 2.31 MW with the proposed algorithm.

Destekleyen Kurum

Tübitak

Proje Numarası

BIDEB-2214-A

Kaynakça

  • [1] Malik, I. M., Srinivasan, D., 2010. Optimum power flow using flexible genetic algorithm model in practical power systems. In 2010 Conference Proceedings IPEC, Singapore, 1146-1151.
  • [2] Singh, R. P., Mukherjee, V., Ghoshal, S. P., 2015. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Applied Soft Computing, 29, 298-309.
  • [3] P. S. Planning, 1972. Optimal Power-Flow Solutions, 6,1, 64–70.
  • [4] J Momoh, J. A., Adapa, R., El-Hawary, M. E., 1999. A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE transactions on power systems, 14(1), 96-104.
  • [5] Momoh, J. A., Adapa, R., El-Hawary, M. E., 1999. A review of selected optimal power flow literature to 1993 part ii: newton, linear programming and Interior Point Methods ,IEEE Trans. Power System, 14(1),105–111.
  • [6] Capitanescu, F., Glavic, M., Ernst, D., Wehenkel, L., 2007. Interior-point based algorithms for the solution of optimal power flow problems. Electric Power systems research, 77(5-6), 508-517.
  • [7] Capitanescu, F., Glavic, M., Wehenkel, L., 2005. An interior point method based optimal power flow, Proc. ACOMEN Conference, Ghent, Belgium,1–18.
  • [8] Mohan, T. M., Nireekshana, T., 2019. A genetic algorithm for solving optimal power flow problem, 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India 1438–1440.
  • [9] Wang, X., Yang, K., 2019. Economic load dispatch of renewable energy-based power systems with high penetration of large-scale hydropower station based on multi-agent glowworm swarm optimization, Energy Strategy Reviews, 26,100425.
  • [10] J Giraldo, J. A., Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Holguín, M., 2019. Optimal power flow solution in direct current grids using Sine-Cosine algorithm. In Journal of Physics: Conference Series,1403(1),012009).
  • [11] Attia, A. F., El Sehiemy, R. A., Hasanien, H. M., 2018. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331-343.
  • [12] C Sumpavakup, C., Srikun, I., Chusanapiputt, S., 2010. A solution to the optimal power flow using artificial bee colony algorithm, International Conference on Power System Technology, Zhejiang, China 1–5.
  • [13] Le Dinh, L., Vo Ngoc, D., Vasant, P., 2013. Artificial bee colony algorithm for solving optimal power flow problem, the scientific world journal, 2013
  • [14] Abaci, K., Yamacli, V., AKDAĞLI, A. 2016., Optimal power flow with SVC devices by using the artificial bee colony algorithm, Turkish Journal of Electrical Engineering & Computer Sciences, 24(1), 341-353.
  • [15] Roy, R., & Jadhav, H. T., 2015. Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm, International Journal of Electrical Power & Energy Systems, 64, 562-578.
  • [16] Zakian, P., Kaveh, A., 2018. Economic dispatch of power systems using an adaptive charged system search algorithm, Applied Soft Computing, 73, 607-622.
  • [17] He S., Wen J. Y., Prempain E., Wu Q. H., Fitch J., Mann S., 2004. An improved particle swarm optimization for optimal power flow, International Conference on Power System Technology, Singapore, 1633–1637.
  • [18] A Khan, A., Hizam, H., bin Abdul Wahab, N. I., Lutfi Othman, M., 2020. Optimal power flow using hybrid firefly and particle swarm optimization algorithm, Plos one, 15(8), 1–21.
  • [19] Singh, R. P., Mukherjee, V., Ghoshal, S. P., 2015. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers, Applied Soft Computing, 29, 298-309.
  • [20] Patil, M., Vyas, D., Lehru, K., Jain, R., Mahajan, V., 2019. Optimal Power Flow Problem Using Particle Swarm Optimization Algorithm. IEEE 5th International Conference for Convergence in Technology, Bombay, India 11–15.
  • [21] Federico M.,2011, Power System Modelling and Scripting.
  • [22] DIgSILENT,2020. PowerFactory 2020 User Manual, 1–1253.

Optimum Power Flow by Using Interior Point Optimization Method

Yıl 2022, Cilt: 02 Sayı: 02, 131 - 138, 31.12.2022

Öz

The electric power industry is mainly responsible to ensure the high-quality, reliable, and economical operation of power systems by defining the limits and constraints of power system equipment. An optimization method named optimum power flow (OPF) can be used to determine the power system equipment limits and constraints. This paper uses the interior-point method to solve the nonlinear OPF problem. This method adjusts optimum values of OPF control variables, including the generator's active and reactive power output, with the objective function of minimizing total system losses. The interior-point method has been analyzed on a standard IEEE-14 bus test system using the optimum power flow/unit commitment tools of DIgSILENT/Powerfactory. The analyses are conducted for alternating current (AC) power flow analysis and optimum power flow analysis, which represent Case 1 and Case 2, respectively. The results indicate that the total losses of the power system are reduced from 13.39 MW to 2.31 MW with the proposed algorithm.

Proje Numarası

BIDEB-2214-A

Kaynakça

  • [1] Malik, I. M., Srinivasan, D., 2010. Optimum power flow using flexible genetic algorithm model in practical power systems. In 2010 Conference Proceedings IPEC, Singapore, 1146-1151.
  • [2] Singh, R. P., Mukherjee, V., Ghoshal, S. P., 2015. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers. Applied Soft Computing, 29, 298-309.
  • [3] P. S. Planning, 1972. Optimal Power-Flow Solutions, 6,1, 64–70.
  • [4] J Momoh, J. A., Adapa, R., El-Hawary, M. E., 1999. A review of selected optimal power flow literature to 1993. I. Nonlinear and quadratic programming approaches. IEEE transactions on power systems, 14(1), 96-104.
  • [5] Momoh, J. A., Adapa, R., El-Hawary, M. E., 1999. A review of selected optimal power flow literature to 1993 part ii: newton, linear programming and Interior Point Methods ,IEEE Trans. Power System, 14(1),105–111.
  • [6] Capitanescu, F., Glavic, M., Ernst, D., Wehenkel, L., 2007. Interior-point based algorithms for the solution of optimal power flow problems. Electric Power systems research, 77(5-6), 508-517.
  • [7] Capitanescu, F., Glavic, M., Wehenkel, L., 2005. An interior point method based optimal power flow, Proc. ACOMEN Conference, Ghent, Belgium,1–18.
  • [8] Mohan, T. M., Nireekshana, T., 2019. A genetic algorithm for solving optimal power flow problem, 3rd International conference on Electronics, Communication and Aerospace Technology (ICECA), Coimbatore, India 1438–1440.
  • [9] Wang, X., Yang, K., 2019. Economic load dispatch of renewable energy-based power systems with high penetration of large-scale hydropower station based on multi-agent glowworm swarm optimization, Energy Strategy Reviews, 26,100425.
  • [10] J Giraldo, J. A., Montoya, O. D., Grisales-Noreña, L. F., Gil-González, W., Holguín, M., 2019. Optimal power flow solution in direct current grids using Sine-Cosine algorithm. In Journal of Physics: Conference Series,1403(1),012009).
  • [11] Attia, A. F., El Sehiemy, R. A., Hasanien, H. M., 2018. Optimal power flow solution in power systems using a novel Sine-Cosine algorithm. International Journal of Electrical Power & Energy Systems, 99, 331-343.
  • [12] C Sumpavakup, C., Srikun, I., Chusanapiputt, S., 2010. A solution to the optimal power flow using artificial bee colony algorithm, International Conference on Power System Technology, Zhejiang, China 1–5.
  • [13] Le Dinh, L., Vo Ngoc, D., Vasant, P., 2013. Artificial bee colony algorithm for solving optimal power flow problem, the scientific world journal, 2013
  • [14] Abaci, K., Yamacli, V., AKDAĞLI, A. 2016., Optimal power flow with SVC devices by using the artificial bee colony algorithm, Turkish Journal of Electrical Engineering & Computer Sciences, 24(1), 341-353.
  • [15] Roy, R., & Jadhav, H. T., 2015. Optimal power flow solution of power system incorporating stochastic wind power using Gbest guided artificial bee colony algorithm, International Journal of Electrical Power & Energy Systems, 64, 562-578.
  • [16] Zakian, P., Kaveh, A., 2018. Economic dispatch of power systems using an adaptive charged system search algorithm, Applied Soft Computing, 73, 607-622.
  • [17] He S., Wen J. Y., Prempain E., Wu Q. H., Fitch J., Mann S., 2004. An improved particle swarm optimization for optimal power flow, International Conference on Power System Technology, Singapore, 1633–1637.
  • [18] A Khan, A., Hizam, H., bin Abdul Wahab, N. I., Lutfi Othman, M., 2020. Optimal power flow using hybrid firefly and particle swarm optimization algorithm, Plos one, 15(8), 1–21.
  • [19] Singh, R. P., Mukherjee, V., Ghoshal, S. P., 2015. Optimal reactive power dispatch by particle swarm optimization with an aging leader and challengers, Applied Soft Computing, 29, 298-309.
  • [20] Patil, M., Vyas, D., Lehru, K., Jain, R., Mahajan, V., 2019. Optimal Power Flow Problem Using Particle Swarm Optimization Algorithm. IEEE 5th International Conference for Convergence in Technology, Bombay, India 11–15.
  • [21] Federico M.,2011, Power System Modelling and Scripting.
  • [22] DIgSILENT,2020. PowerFactory 2020 User Manual, 1–1253.
Toplam 22 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Elektrik Mühendisliği
Bölüm Araştırma Makalesi
Yazarlar

Yunus Yalman 0000-0003-1032-9814

Özgür Çelik 0000-0002-7683-2415

Adnan Tan 0000-0002-5227-2556

Kamil Çağatay Bayındır 0000-0002-9413-5162

Proje Numarası BIDEB-2214-A
Yayımlanma Tarihi 31 Aralık 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 02 Sayı: 02

Kaynak Göster

IEEE Y. Yalman, Ö. Çelik, A. Tan, ve K. Ç. Bayındır, “Optimum Power Flow by Using Interior Point Optimization Method”, Researcher, c. 02, sy. 02, ss. 131–138, 2022, doi: 10.55185/researcher.1222156.
  • Yayın hayatına 2013 yılında başlamış olan "Researcher: Social Sciences Studies" (RSSS) dergisi, 2020 Ağustos ayı itibariyle "Researcher" ismiyle Ankara Bilim Üniversitesi bünyesinde faaliyetlerini sürdürmektedir.
  • 2021 yılı ve sonrasında Mühendislik ve Fen Bilimleri alanlarında katkıda bulunmayı hedefleyen özgün araştırma makalelerinin yayımlandığı uluslararası indeksli, ulusal hakemli, bilimsel ve elektronik bir dergidir.
  • Dergi özel sayılar dışında yılda iki kez yayımlanmaktadır. Amaçları doğrultusunda dergimizin yayın odağında; Endüstri Mühendisliği, Yazılım Mühendisliği, Bilgisayar Mühendisliği ve Elektrik Elektronik Mühendisliği alanları bulunmaktadır.
  • Dergide yayımlanmak üzere gönderilen aday makaleler Türkçe ve İngilizce dillerinde yazılabilir. Dergiye gönderilen makalelerin daha önce başka bir dergide yayımlanmamış veya yayımlanmak üzere başka bir dergiye gönderilmemiş olması gerekmektedir.