Derleme
BibTex RIS Kaynak Göster

Postbiotics and Their Antimicrobial Activity: A mini-review

Yıl 2026, Sayı: 2026-1, - , 19.01.2026

Öz

Postbiotics are defined as inanimate metabolites, or compounds of probiotic microorganisms that provide health benefits to the consumer. They are produced through fermentation by probiotic microorganisms and can be in various biochemical structures such as short chain fatty acids (SCFAs), bacteriocins, peptides, organic acids, amino acids and vitamins. Postbiotics have antimicrobial, anticarcinogenic, anti-inflammatory, antioxidant, anti-obesogenic, and other beneficial health effects. Postbiotics exert their antimicrobial effects by producing antimicrobial compounds, competition for nutrients and other chemicals, preventing adhesion and modulating the immune system. In the food industry they are mainly used as food additives and preservatives. Even though probiotics are currently widely used in both the food industry and medical field, they have some disadvantages, which have led to the search for alternatives. Postbiotics have the potential to replace probiotics in the future as they provide the same benefits without the negative side effects. They can also be an alternative for food additives for their organic structures rather than artificial compounds. However, more precise studies are needed for the safe consumption and accurate dosage of postbiotics. In this review, the properties and potential uses of postbiotics are discussed.

Kaynakça

  • [1] Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
  • [2] Scott, E., De Paepe, K., & Van de Wiele, T. (2022). Postbiotics and Their Health Modulatory Biomolecules. Biomolecules, 12(11), 1640. https://doi.org/10.3390/biom12111640
  • [3] Thu, T. V., Loh, T. C., Foo, H. L., Yaakub, H., & Bejo, M. H. (2011). Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Tropical animal health and production, 43(1), 69–75. https://doi.org/10.1007/s11250-010-9655-6
  • [4] Devirgiliis, C., Zinno, P., & Perozzi, G. (2013). Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Frontiers in microbiology, 4, 301. https://doi.org/10.3389/fmicb.2013.00301
  • [5] Kothari, D., Patel, S., & Kim, S. K. (2019). Probiotic supplements might not be universally-effective and safe: A review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 111, 537–547. https://doi.org/10.1016/j.biopha.2018.12.104
  • [6] Tewari, S., Pramanik, P. & Chakravarti, A. (2023). Anti-microbial and Anticarcinogenic Activity of Postbiotics: A Review. I. 28-33.
  • [7] Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., & Valtonen, V. (2003). Safety of Probiotics That Contain Lactobacilli or Bifidobacteria. Clinical Infectious Diseases, 36(6), 775–780. doi:10.1086/368080
  • [8] Fijan, S., Kocbek, P., Steyer, A., Vodičar, P. M., & Strauss, M. (2022). The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms, 10(12), 2518. https://doi.org/10.3390/microorganisms10122518
  • [9] Shafipour Yordshahi, A., Moradi, M., Tajik, H., & Molaei, R. (2020). Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. International journal of food microbiology, 321, 108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561
  • [10] Sabahi, S., Homayouni Rad, A., Aghebati-Maleki, L., Sangtarash, N., Ozma, M. A., Karimi, A., Hosseini, H., & Abbasi, A. (2023). Postbiotics as the new frontier in food and pharmaceutical research. Critical reviews in food science and nutrition, 63(26), 8375–8402. https://doi.org/10.1080/10408398.2022.2056727
  • [11] Peluzio, M. D. C. G., Martinez, J. A., & Milagro, F. I. (2021). Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends in Food Science & Technology, 108, 11–26. https://doi.org/10.1016/j.tifs.2020.12.004
  • [12] Leo, A., De Caro, C., Mainardi, P., Tallarico, M., Nesci, V., Marascio, N., Striano, P., Russo, E., Constanti, A., De Sarro, G., & Citraro, R. (2021). Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression. Neuropharmacology, 198, 108782. https://doi.org/10.1016/j.neuropharm.2021.108782 [13] Mantziari, A., Salminen, S., Szajewska, H., & Malagón-Rojas, J. N. (2020). Postbiotics against Pathogens Commonly Involved in Pediatric Infectious Diseases. Microorganisms, 8(10), 1510. https://doi.org/10.3390/microorganisms8101510
  • [14] Kommineni, S., Bretl, D. J., Lam, V., Chakraborty, R., Hayward, M., Simpson, P., Cao, Y., Bousounis, P., Kristich, C. J., & Salzman, N. H. (2015). Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 526(7575), 719–722. https://doi.org/10.1038/nature15524
  • [15] Abdelhamid, A. G., Esaam, A., & Hazaa, M. M. (2018). Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 26(5), 603–607. https://doi.org/10.1016/j.jsps.2018.03.004
  • [16] Liang, B., & Xing, D. (2023). The Current and Future Perspectives of Postbiotics. Probiotics and antimicrobial proteins, 15(6), 1626–1643. https://doi.org/10.1007/s12602-023-10045-x
  • [17] Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375–384. https://doi.org/10.1016/j.tifs.2021.02.014
  • [18] Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature reviews. Gastroenterology & hepatology, 18(9), 649–667. https://doi.org/10.1038/s41575-021-00440-6
  • [19] Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189
  • [20] Homayouni Rad, A., Aghebati Maleki, L., Samadi Kafil, H., Fathi Zavoshti, H., & Abbasi, A. (2020). Postbiotics as novel health-promoting ingredients in functional foods. Health promotion perspectives, 10(1), 3–4. https://doi.org/10.15171/hpp.2020.02
  • [21] Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods (Basel, Switzerland), 11(19), 3094. https://doi.org/10.3390/foods11193094
  • [22] Donohoe, D. R., Garge, N., Zhang, X., Sun, W., O'Connell, T. M., Bunger, M. K., & Bultman, S. J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell metabolism, 13(5), 517–526. https://doi.org/10.1016/j.cmet.2011.02.018
  • [23] Elango, A., Nesam, V. D., Sukumar, P., Lawrence, I., & Radhakrishnan, A. (2024). Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Archives of microbiology, 206(4), 156. https://doi.org/10.1007/s00203-024-03914-8
  • [24] Golpour, F., Abbasi-Alaei, M., Babaei, F., Mirzababaei, M., Parvardeh, S., Mohammadi, G., & Nassiri-Asl, M. (2023). Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 163, 114763. https://doi.org/10.1016/j.biopha.2023.114763
  • [25] Cruz, B. C. S., Sarandy, M. M., Messias, A. C., Gonçalves, R. V., Ferreira, C. L. L. F., & Peluzio, M. C. G. (2020). Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: a systematic review. Nutrition reviews, 78(8), 667–687. https://doi.org/10.1093/nutrit/nuz087
  • [26] Sun, M., Wu, W., Liu, Z., & Cong, Y. (2017). Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of gastroenterology, 52(1), 1–8. https://doi.org/10.1007/s00535-016-1242-9
  • [27] Kim, K., Kwon, O., Ryu, T. Y., Jung, C. R., Kim, J., Min, J. K., Kim, D. S., Son, M. Y., & Cho, H. S. (2019). Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Molecular medicine reports, 20(2), 1569–1574. https://doi.org/10.3892/mmr.2019.10431
  • [28] Chaisuwan, W., Jantanasakulwong, K., Wangtueai, S., Phimolsiripol, Y., Chaiyaso, T., Techapun, C., Phongthai, S., You, S., Regenstein, J. M., & Seesuriyachan, P. (2020). Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, 35, 100564. https://doi.org/10.1016/j.fbio.2020.100564
  • [29] Yegorenkova, I. V., Fomina, A. A., Tregubova, K. V., Konnova, S. A., & Ignatov, V. V. (2018). Immunomodulatory activity of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465. Archives of microbiology, 200(10), 1471–1480. https://doi.org/10.1007/s00203-018-1564-5
  • [30] Chen, Y. C., Wu, Y. J., & Hu, C. Y. (2019). Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides. International journal of biological macromolecules, 133, 575–582. https://doi.org/10.1016/j.ijbiomac.2019.04.109
  • [31] Khalil, E. S., Abd Manap, M. Y., Mustafa, S., Alhelli, A. M., & Shokryazdan, P. (2018). Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak. Molecules (Basel, Switzerland), 23(2), 398. https://doi.org/10.3390/molecules23020398
  • [32] Li, W., Xia, X., Tang, W., Ji, J., Rui, X., Chen, X., Jiang, M., Zhou, J., Zhang, Q., & Dong, M. (2015). Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. Journal of agricultural and food chemistry, 63(13), 3454–3463. https://doi.org/10.1021/acs.jafc.5b01086
  • [33] Ruiz-Ruiz, C., Srivastava, G. K., Carranza, D., Mata, J. A., Llamas, I., Santamaría, M., Quesada, E., & Molina, I. J. (2011). An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Applied microbiology and biotechnology, 89(2), 345–355. https://doi.org/10.1007/s00253-010-2886-7
  • [34] Dilna, S. V., Surya, H., Aswathy, R. G., Varsha, K. K., Sakthikumar, D. N., Pandey, A., & Nampoothiri, K. M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT, 64(2), 1179–1186. https://doi.org/10.1016/j.lwt.2015.07.040
  • [35] Aghebati-Maleki, L., Hasannezhad, P., Abbasi, A., & Khani, N. (2021). Antibacterial, Antiviral, Antioxidant, and Anticancer Activities of Postbiotics: A review of Mechanisms and Therapeutic Perspectives. Biointerface Research in Applied Chemistry, 12(2), 2629–2645. https://doi.org/10.33263/briac122.26292645
  • [36] Korotkyi, O., Dvorshchenko, K., Vovk, A., Dranitsina, A., Tymoshenko, M., Kot, L., & Ostapchenko, L. (2019). Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthriti. The Ukrainian Biochemical Journal, 91(6), 49–58. https://doi.org/10.15407/ubj91.06.049
  • [37] Capcarova, M., Weiss, J., Hrncar, C., Kolesarova, A., & Pal, G. (2010). Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. Journal of animal physiology and animal nutrition, 94(5), e215–e224. https://doi.org/10.1111/j.1439-0396.2010.01010.x
  • [38] Kim, H. S., Chae, H. S., Jeong, S. G., Ham, J. S., Im, S. K., Ahn, C. N., & Lee, J. M. (2005). In vitro Antioxidative Properties of Lactobacilli. Asian-Australasian Journal of Animal Sciences, 19(2), 262–265. https://doi.org/10.5713/ajas.2006.262
  • [39] Saeui, C. T., Urias, E., Liu, L., Mathew, M. P., & Yarema, K. J. (2015). Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconjugate journal, 32(7), 425–441. https://doi.org/10.1007/s10719-015-9583-9
  • [40] Kuru-Yaşar, R., & Üstün-Aytekin, Ö. (2024). The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Current nutrition reports, 13(2), 126–151. https://doi.org/10.1007/s13668-024-00525-z
  • [41] Assandri, M. H., Malamud, M., Trejo, F. M., & Serradell, M. L. A. (2023). S-layer proteins as immune players: Tales from pathogenic and non-pathogenic bacteria. Current research in microbial sciences, 4, 100187. https://doi.org/10.1016/j.crmicr.2023.100187
  • [42] Zhang, T., Pan, D., Yang, Y., Jiang, X., Zhang, J., Zeng, X., Wu, Z., Sun, Y., & Guo, Y. (2020). Effect of Lactobacillus acidophilus CICC 6074 S-Layer Protein on Colon Cancer HT-29 Cell Proliferation and Apoptosis. Journal of agricultural and food chemistry, 68(9), 2639–2647. https://doi.org/10.1021/acs.jafc.9b06909
  • [43] Moradi, M., Mardani, K., & Tajik, H. (2019). Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 111, 457–464. https://doi.org/10.1016/j.lwt.2019.05.072.
  • [44] Kaewchomphunuch, T., Charoenpichitnunt, T., Thongbaiyai, V., Ngamwongsatit, N., & Kaeoket, K. (2022). Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC veterinary research, 18(1), 60. https://doi.org/10.1186/s12917-022-03140-8
  • [45] Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H., & Peschel, A. (2021). The microbiome-shaping roles of bacteriocins. Nature reviews. Microbiology, 19(11), 726–739. https://doi.org/10.1038/s41579-021-00569-w
  • [46] Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial pathogenesis, 128, 171–177. https://doi.org/10.1016/j.micpath.2019.01.002
  • [47] Luo, S. C., Wei, S. M., Luo, X. T., Yang, Q. Q., Wong, K. H., Cheung, P. C. K., & Zhang, B. B. (2024). How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ biofilms and microbiomes, 10(1), 14. https://doi.org/10.1038/s41522-024-00488-7
  • [48] Hernández-Granados, M. J., & Franco-Robles, E. (2020). Postbiotics in human health: Possible new functional ingredients?. Food research international (Ottawa, Ont.), 137, 109660. https://doi.org/10.1016/j.foodres.2020.109660
  • [49] Levy, M., Thaiss, C. A., & Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & development, 30(14), 1589–1597. https://doi.org/10.1101/gad.284091.116 [50] von Essen, M. R., Kongsbak, M., Schjerling, P., Olgaard, K., Odum, N., & Geisler, C. (2010). Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature immunology, 11(4), 344–349. https://doi.org/10.1038/ni.1851
  • [51] Sun J. (2010). Vitamin D and mucosal immune function. Current opinion in gastroenterology, 26(6), 591–595. https://doi.org/10.1097/MOG.0b013e32833d4b9f
  • [52] Shapiro, H., Thaiss, C. A., Levy, M., & Elinav, E. (2014). The cross talk between microbiota and the immune system: metabolites take center stage. Current opinion in immunology, 30, 54–62. https://doi.org/10.1016/j.coi.2014.07.003
  • [53] Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., Sigl, V., Hanada, T., Hanada, R., Lipinski, S., Wild, B., Camargo, S. M. R., Singer, D., Richter, A., Kuba, K., Fukamizu, A., Schreiber, S., Clevers, H., Verrey, F., . . . Penninger, J. M. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477–481. https://doi.org/10.1038/nature11228
  • [54]Aguilar-Toalá, J., Garcia-Varela, R., Garcia, H., Mata-Haro, V., González-Córdova, A., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
  • [55] Escamilla, J., Lane, M. A., & Maitin, V. (2012). Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutrition and cancer, 64(6), 871–878. https://doi.org/10.1080/01635581.2012.700758
  • [56] Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., & Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International journal of biological macromolecules, 63, 133–139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
  • [57] Schwartz, D. J., Rebeck, O. N., & Dantas, G. (2019). Complex interactions between the microbiome and cancer immune therapy. Critical reviews in clinical laboratory sciences, 56(8), 567–585. https://doi.org/10.1080/10408363.2019.1660303
  • [58] Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J., & Martinez-Medina, M. (2017). Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME journal, 11(4), 841–852. https://doi.org/10.1038/ismej.2016.176
  • [59] Belizário, J. E., Faintuch, J., & Garay-Malpartida, M. (2018). Gut microbiome Dysbiosis and Immunometabolism: new frontiers for treatment of metabolic diseases. Mediators of Inflammation, 2018, 1–12. https://doi.org/10.1155/2018/2037838
  • [60] Ying, Z. H., Mao, C. L., Xie, W., & Yu, C. H. (2023). Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Frontiers in microbiology, 14, 1290015. https://doi.org/10.3389/fmicb.2023.1290015
  • [61] Balasundaram, D., Veerasamy, V., Sylvia Singarayar, M., Neethirajan, V., Ananth Devanesan, A., & Thilagar, S. (2024). Therapeutic potential of probiotics in gut microbial homeostasis and Rheumatoid arthritis. International immunopharmacology, 137, 112501. https://doi.org/10.1016/j.intimp.2024.112501
  • [62] Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2020). Dietary Postbiotic Lactobacillus plantarum Improves Serum and Ruminal Antioxidant Activity and Upregulates Hepatic Antioxidant Enzymes and Ruminal Barrier Function in Post-Weaning Lambs. Antioxidants (Basel, Switzerland), 9(3), 250. https://doi.org/10.3390/antiox9030250
  • [63] Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y. Q., & Chen, W. (2015). Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PloS one, 10(3), e0119058. https://doi.org/10.1371/journal.pone.0119058
  • [64] Sanmiguel, C., Gupta, A., & Mayer, E. A. (2015). Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current obesity reports, 4(2), 250–261. https://doi.org/10.1007/s13679-015-0152-0
  • [65] You, H., Tan, Y., Yu, D., Qiu, S., Bai, Y., He, J., Cao, H., Che, Q., Guo, J., & Su, Z. (2022). The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Frontiers in nutrition, 9, 886902. https://doi.org/10.3389/fnut.2022.886902
  • [66] Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1). https://doi.org/10.1186/s12934-020-01426-w
  • [67] Corr, S. C., Li, Y., Riedel, C. U., O’Toole, P. W., Hill, C., & Gahan, C. G. M. (2007). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences, 104(18), 7617–7621. https://doi.org/10.1073/pnas.0700440104
  • [68] Koohestani, M., Moradi, M., Tajik, H., & Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Veterinary research forum : an international quarterly journal, 9(4), 301–306. https://doi.org/10.30466/vrf.2018.33086 [69] Bajpai, V. K., Han, J. H., Rather, I. A., Park, C., Lim, J., Paek, W. K., Lee, J. S., Yoon, J. I., & Park, Y. H. (2016). Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus pentosaceus 4I1 Isolated from Freshwater Fish Zacco koreanus. Frontiers in microbiology, 7, 2037. https://doi.org/10.3389/fmicb.2016.02037
  • [70] Lin, T. H., & Pan, T. M. (2019). Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 52(3), 409–417. https://doi.org/10.1016/j.jmii.2017.08.003
  • [71] Lee, D. K., Jang, S., Baek, E. H., Kim, M. J., Lee, K. S., Shin, H. S., Chung, M. J., Kim, J. E., Lee, K. O., & Ha, N. J. (2009). Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids in health and disease, 8, 21. https://doi.org/10.1186/1476-511X-8-21
  • [72] Shin, H. S., Park, S. Y., Lee, D. K., Kim, S. A., An, H. M., Kim, J. R., Kim, M. J., Cha, M. G., Lee, S. W., Kim, K. J., Lee, K. O., & Ha, N. J. (2010). Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Archives of pharmacal research, 33(9), 1425–1431. https://doi.org/10.1007/s12272-010-0917-7
  • [73] Segawa, S., Wakita, Y., Hirata, H., & Watari, J. (2008). Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. International journal of food microbiology, 128(2), 371–377. https://doi.org/10.1016/j.ijfoodmicro.2008.09.023
  • [74]Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241
  • [75] Ghimpețeanu, O. M., Pogurschi, E. N., Popa, D. C., Dragomir, N., Drăgotoiu, T., Mihai, O. D., & Petcu, C. D. (2022). Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods (Basel, Switzerland), 11(10), 1430. https://doi.org/10.3390/foods11101430
  • [76] Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Frontiers in microbiology, 10, 57. https://doi.org/10.3389/fmicb.2019.00057
  • [77] Abid, Y., Azabou, S., Blecker, C., Gharsallaoui, A., Corsaro, M. M., Besbes, S., & Attia, H. (2021). Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate polymers, 256, 117523. https://doi.org/10.1016/j.carbpol.2020.117523 [78] Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., & Fiocco, D. (2016). Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Frontiers in microbiology, 7, 464. https://doi.org/10.3389/fmicb.2016.00464
  • [79] Mani-López, E., García, H., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713–721. https://doi.org/10.1016/j.foodres.2011.04.043
  • [80] Alvarez-Ordóñez, A., Fernández, A., Bernardo, A., & López, M. (2010). Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food microbiology, 27(1), 44–49. https://doi.org/10.1016/j.fm.2009.07.015
  • [81] Ahmad Rather, I., Seo, B. J., Rejish Kumar, V. J., Choi, U. H., Choi, K. H., Lim, J. H., & Park, Y. H. (2013). Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Letters in applied microbiology, 57(1), 69–76. https://doi.org/10.1111/lam.12077
  • [82] Naghmouchi, K., Belguesmia, Y., Baah, J., Teather, R., & Drider, D. (2011). Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Research in microbiology, 162(2), 99–107. https://doi.org/10.1016/j.resmic.2010.09.014
  • [83] Servin A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS microbiology reviews, 28(4), 405–440. https://doi.org/10.1016/j.femsre.2004.01.003
  • [84] Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in applied microbiology, 50(4), 419–424. https://doi.org/10.1111/j.1472-765X.2010.02818.x
  • [85] Kumar, A., Saha, M. K., Kumar, V., Bhattacharya, A., Barge, S., Mukherjee, A. K., Kalita, M. C., & Khan, M. R. (2024). Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immunity & ageing : I & A, 21(1), 52. https://doi.org/10.1186/s12979-024-00457-w
  • [86] Guo, N., & Lv, L. L. (2023). Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immunity, inflammation and disease, 11(10), e1045. https://doi.org/10.1002/iid3.1045
  • [87] Aly, S., Cheik, O., & Alfred, T. S. (2006). Bacteriocins and lactic acid bacteria - a minireview. AFRICAN JOURNAL OF BIOTECHNOLOGY, 5(9), 678–683. https://doi.org/10.4314/ajb.v5i9.42771
  • [88] Chen, C. C., Lai, C. C., Huang, H. L., Huang, W. Y., Toh, H. S., Weng, T. C., Chuang, Y. C., Lu, Y. C., & Tang, H. J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789
  • [89] Fooks, L. J., & Gibson, G. R. (2002). In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS microbiology ecology, 39(1), 67–75. https://doi.org/10.1111/j.1574-6941.2002.tb00907.x
  • [90] Kareem, K. Y., Hooi Ling, F., Teck Chwen, L., May Foong, O., & Anjas Asmara, S. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut pathogens, 6, 23. https://doi.org/10.1186/1757-4749-6-23
  • [91] Homayouni, A., Hosseini, S., & Pourjafar, H. (2021). Postbiotics as dynamic Biological Molecules for Antimicrobial activity: A Mini-Review. Biointerface Research in Applied Chemistry, 12(5), 6543–6556. https://doi.org/10.33263/briac125.65436556
  • [92] Higashi, B., Mariano, T. B., de Abreu Filho, B. A., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2020). Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohydrate polymers, 248, 116832. https://doi.org/10.1016/j.carbpol.2020.116832
  • [93] Banakar, M., Pourhajibagher, M., Etemad-Moghadam, S., Mehran, M., Yazdi, M. H., Haghgoo, R., Alaeddini, M., & Frankenberger, R. (2023). Antimicrobial Effects of Postbiotic Mediators Derived from Lactobacillus rhamnosus GG and Lactobacillus reuteri on Streptococcus mutans. Frontiers in bioscience (Landmark edition), 28(5), 88. https://doi.org/10.31083/j.fbl2805088
  • [94] Liang, B., & Xing, D. (2023). The Current and Future Perspectives of Postbiotics. Probiotics and antimicrobial proteins, 15(6), 1626–1643. https://doi.org/10.1007/s12602-023-10045-x
  • [95] Mosca, A., Abreu Y Abreu, A. T., Gwee, K. A., Ianiro, G., Tack, J., Nguyen, T. V. H., & Hill, C. (2022). The clinical evidence for postbiotics as microbial therapeutics. Gut microbes, 14(1), 2117508. https://doi.org/10.1080/19490976.2022.2117508
  • [96] Zang, T., Han, L., Lu, Z., Tan, L., Liang, D., Shen, X., Liao, X., Liu, Y., Ren, H., & Sun, J. (2024). The History and Prediction of Prebiotics and Postbiotics: A Patent Analysis. Nutrients, 16(3), 380. https://doi.org/10.3390/nu16030380

Postbiyotikler ve Antimikrobiyal Aktiviteleri: Mini derleme

Yıl 2026, Sayı: 2026-1, - , 19.01.2026

Öz

PPostbiyotikler, probiyotik mikroorganizmaların tüketiciye sağlık faydaları sağlayan, cansız metabolitleri veya bileşikleri olarak tanımlanmaktadır. Probiyotik mikroorganizmalar tarafından fermantasyon yoluyla üretilirler ve kısa zincirli yağ asitleri (SCFA'lar), bakteriyosinler, peptitler, organik asitler, amino asitler ve vitaminler gibi çeşitli biyokimyasal yapılarda olabilirler. Antimikrobiyal, antikarsinojenik, antiinflamatuar, antioksidan, anti-obezojenik ve diğer faydalı sağlık etkilerine sahiptirler. Postbiyotikler antimikrobiyal etkilerini antimikrobiyal bileşikler üreterek, besinler ve diğer kimyasallar için rekabet ederek, yapışmayı önleyerek ve bağışıklık sistemini modüle ederek gösterirler. Gıda endüstrisinde çoğunlukla gıda katkı maddesi ve koruyucu olarak kullanılırlar. Probiyotikler şu anda hem gıda endüstrisinde hem de tıp alanında yaygın olarak kullanılsa da alternatif arayışlara yol açan bazı dezavantajları vardır. Postbiyotikler, olumsuz yan etkileri olmadan aynı faydaları sağladıkları için gelecekte probiyotiklerin yerini alma potansiyeline sahiptir. Yapay bileşikler yerine organik yapıları nedeniyle gıda katkı maddeleri için de bir alternatif olabilirler. Bununla birlikte, postbiyotiklerin güvenli tüketimi ve doğru dozajı için daha kesin çalışmalara ihtiyaç vardır. Bu derlemede, postbiyotiklerin özellikleri ve potansiyel kullanımları tartışılmaktadır.

Kaynakça

  • [1] Hill, C., Guarner, F., Reid, G., Gibson, G. R., Merenstein, D. J., Pot, B., Morelli, L., Canani, R. B., Flint, H. J., Salminen, S., Calder, P. C., & Sanders, M. E. (2014). The International Scientific Association for Probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nature Reviews Gastroenterology & Hepatology, 11(8), 506–514. https://doi.org/10.1038/nrgastro.2014.66
  • [2] Scott, E., De Paepe, K., & Van de Wiele, T. (2022). Postbiotics and Their Health Modulatory Biomolecules. Biomolecules, 12(11), 1640. https://doi.org/10.3390/biom12111640
  • [3] Thu, T. V., Loh, T. C., Foo, H. L., Yaakub, H., & Bejo, M. H. (2011). Effects of liquid metabolite combinations produced by Lactobacillus plantarum on growth performance, faeces characteristics, intestinal morphology and diarrhoea incidence in postweaning piglets. Tropical animal health and production, 43(1), 69–75. https://doi.org/10.1007/s11250-010-9655-6
  • [4] Devirgiliis, C., Zinno, P., & Perozzi, G. (2013). Update on antibiotic resistance in foodborne Lactobacillus and Lactococcus species. Frontiers in microbiology, 4, 301. https://doi.org/10.3389/fmicb.2013.00301
  • [5] Kothari, D., Patel, S., & Kim, S. K. (2019). Probiotic supplements might not be universally-effective and safe: A review. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 111, 537–547. https://doi.org/10.1016/j.biopha.2018.12.104
  • [6] Tewari, S., Pramanik, P. & Chakravarti, A. (2023). Anti-microbial and Anticarcinogenic Activity of Postbiotics: A Review. I. 28-33.
  • [7] Borriello, S. P., Hammes, W. P., Holzapfel, W., Marteau, P., Schrezenmeir, J., Vaara, M., & Valtonen, V. (2003). Safety of Probiotics That Contain Lactobacilli or Bifidobacteria. Clinical Infectious Diseases, 36(6), 775–780. doi:10.1086/368080
  • [8] Fijan, S., Kocbek, P., Steyer, A., Vodičar, P. M., & Strauss, M. (2022). The Antimicrobial Effect of Various Single-Strain and Multi-Strain Probiotics, Dietary Supplements or Other Beneficial Microbes against Common Clinical Wound Pathogens. Microorganisms, 10(12), 2518. https://doi.org/10.3390/microorganisms10122518
  • [9] Shafipour Yordshahi, A., Moradi, M., Tajik, H., & Molaei, R. (2020). Design and preparation of antimicrobial meat wrapping nanopaper with bacterial cellulose and postbiotics of lactic acid bacteria. International journal of food microbiology, 321, 108561. https://doi.org/10.1016/j.ijfoodmicro.2020.108561
  • [10] Sabahi, S., Homayouni Rad, A., Aghebati-Maleki, L., Sangtarash, N., Ozma, M. A., Karimi, A., Hosseini, H., & Abbasi, A. (2023). Postbiotics as the new frontier in food and pharmaceutical research. Critical reviews in food science and nutrition, 63(26), 8375–8402. https://doi.org/10.1080/10408398.2022.2056727
  • [11] Peluzio, M. D. C. G., Martinez, J. A., & Milagro, F. I. (2021). Postbiotics: Metabolites and mechanisms involved in microbiota-host interactions. Trends in Food Science & Technology, 108, 11–26. https://doi.org/10.1016/j.tifs.2020.12.004
  • [12] Leo, A., De Caro, C., Mainardi, P., Tallarico, M., Nesci, V., Marascio, N., Striano, P., Russo, E., Constanti, A., De Sarro, G., & Citraro, R. (2021). Increased efficacy of combining prebiotic and postbiotic in mouse models relevant to autism and depression. Neuropharmacology, 198, 108782. https://doi.org/10.1016/j.neuropharm.2021.108782 [13] Mantziari, A., Salminen, S., Szajewska, H., & Malagón-Rojas, J. N. (2020). Postbiotics against Pathogens Commonly Involved in Pediatric Infectious Diseases. Microorganisms, 8(10), 1510. https://doi.org/10.3390/microorganisms8101510
  • [14] Kommineni, S., Bretl, D. J., Lam, V., Chakraborty, R., Hayward, M., Simpson, P., Cao, Y., Bousounis, P., Kristich, C. J., & Salzman, N. H. (2015). Bacteriocin production augments niche competition by enterococci in the mammalian gastrointestinal tract. Nature, 526(7575), 719–722. https://doi.org/10.1038/nature15524
  • [15] Abdelhamid, A. G., Esaam, A., & Hazaa, M. M. (2018). Cell free preparations of probiotics exerted antibacterial and antibiofilm activities against multidrug resistant E. coli. Saudi pharmaceutical journal : SPJ : the official publication of the Saudi Pharmaceutical Society, 26(5), 603–607. https://doi.org/10.1016/j.jsps.2018.03.004
  • [16] Liang, B., & Xing, D. (2023). The Current and Future Perspectives of Postbiotics. Probiotics and antimicrobial proteins, 15(6), 1626–1643. https://doi.org/10.1007/s12602-023-10045-x
  • [17] Korcz, E., & Varga, L. (2021). Exopolysaccharides from lactic acid bacteria: Techno-functional application in the food industry. Trends in Food Science & Technology, 110, 375–384. https://doi.org/10.1016/j.tifs.2021.02.014
  • [18] Salminen, S., Collado, M. C., Endo, A., Hill, C., Lebeer, S., Quigley, E. M. M., Sanders, M. E., Shamir, R., Swann, J. R., Szajewska, H., & Vinderola, G. (2021). The International Scientific Association of Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of postbiotics. Nature reviews. Gastroenterology & hepatology, 18(9), 649–667. https://doi.org/10.1038/s41575-021-00440-6
  • [19] Żółkiewicz, J., Marzec, A., Ruszczyński, M., & Feleszko, W. (2020). Postbiotics-A Step Beyond Pre- and Probiotics. Nutrients, 12(8), 2189. https://doi.org/10.3390/nu12082189
  • [20] Homayouni Rad, A., Aghebati Maleki, L., Samadi Kafil, H., Fathi Zavoshti, H., & Abbasi, A. (2020). Postbiotics as novel health-promoting ingredients in functional foods. Health promotion perspectives, 10(1), 3–4. https://doi.org/10.15171/hpp.2020.02
  • [21] Thorakkattu, P., Khanashyam, A. C., Shah, K., Babu, K. S., Mundanat, A. S., Deliephan, A., Deokar, G. S., Santivarangkna, C., & Nirmal, N. P. (2022). Postbiotics: Current Trends in Food and Pharmaceutical Industry. Foods (Basel, Switzerland), 11(19), 3094. https://doi.org/10.3390/foods11193094
  • [22] Donohoe, D. R., Garge, N., Zhang, X., Sun, W., O'Connell, T. M., Bunger, M. K., & Bultman, S. J. (2011). The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell metabolism, 13(5), 517–526. https://doi.org/10.1016/j.cmet.2011.02.018
  • [23] Elango, A., Nesam, V. D., Sukumar, P., Lawrence, I., & Radhakrishnan, A. (2024). Postbiotic butyrate: role and its effects for being a potential drug and biomarker to pancreatic cancer. Archives of microbiology, 206(4), 156. https://doi.org/10.1007/s00203-024-03914-8
  • [24] Golpour, F., Abbasi-Alaei, M., Babaei, F., Mirzababaei, M., Parvardeh, S., Mohammadi, G., & Nassiri-Asl, M. (2023). Short chain fatty acids, a possible treatment option for autoimmune diseases. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie, 163, 114763. https://doi.org/10.1016/j.biopha.2023.114763
  • [25] Cruz, B. C. S., Sarandy, M. M., Messias, A. C., Gonçalves, R. V., Ferreira, C. L. L. F., & Peluzio, M. C. G. (2020). Preclinical and clinical relevance of probiotics and synbiotics in colorectal carcinogenesis: a systematic review. Nutrition reviews, 78(8), 667–687. https://doi.org/10.1093/nutrit/nuz087
  • [26] Sun, M., Wu, W., Liu, Z., & Cong, Y. (2017). Microbiota metabolite short chain fatty acids, GPCR, and inflammatory bowel diseases. Journal of gastroenterology, 52(1), 1–8. https://doi.org/10.1007/s00535-016-1242-9
  • [27] Kim, K., Kwon, O., Ryu, T. Y., Jung, C. R., Kim, J., Min, J. K., Kim, D. S., Son, M. Y., & Cho, H. S. (2019). Propionate of a microbiota metabolite induces cell apoptosis and cell cycle arrest in lung cancer. Molecular medicine reports, 20(2), 1569–1574. https://doi.org/10.3892/mmr.2019.10431
  • [28] Chaisuwan, W., Jantanasakulwong, K., Wangtueai, S., Phimolsiripol, Y., Chaiyaso, T., Techapun, C., Phongthai, S., You, S., Regenstein, J. M., & Seesuriyachan, P. (2020). Microbial exopolysaccharides for immune enhancement: Fermentation, modifications and bioactivities. Food Bioscience, 35, 100564. https://doi.org/10.1016/j.fbio.2020.100564
  • [29] Yegorenkova, I. V., Fomina, A. A., Tregubova, K. V., Konnova, S. A., & Ignatov, V. V. (2018). Immunomodulatory activity of exopolysaccharide from the rhizobacterium Paenibacillus polymyxa CCM 1465. Archives of microbiology, 200(10), 1471–1480. https://doi.org/10.1007/s00203-018-1564-5
  • [30] Chen, Y. C., Wu, Y. J., & Hu, C. Y. (2019). Monosaccharide composition influence and immunomodulatory effects of probiotic exopolysaccharides. International journal of biological macromolecules, 133, 575–582. https://doi.org/10.1016/j.ijbiomac.2019.04.109
  • [31] Khalil, E. S., Abd Manap, M. Y., Mustafa, S., Alhelli, A. M., & Shokryazdan, P. (2018). Probiotic Properties of Exopolysaccharide-Producing Lactobacillus Strains Isolated from Tempoyak. Molecules (Basel, Switzerland), 23(2), 398. https://doi.org/10.3390/molecules23020398
  • [32] Li, W., Xia, X., Tang, W., Ji, J., Rui, X., Chen, X., Jiang, M., Zhou, J., Zhang, Q., & Dong, M. (2015). Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1. Journal of agricultural and food chemistry, 63(13), 3454–3463. https://doi.org/10.1021/acs.jafc.5b01086
  • [33] Ruiz-Ruiz, C., Srivastava, G. K., Carranza, D., Mata, J. A., Llamas, I., Santamaría, M., Quesada, E., & Molina, I. J. (2011). An exopolysaccharide produced by the novel halophilic bacterium Halomonas stenophila strain B100 selectively induces apoptosis in human T leukaemia cells. Applied microbiology and biotechnology, 89(2), 345–355. https://doi.org/10.1007/s00253-010-2886-7
  • [34] Dilna, S. V., Surya, H., Aswathy, R. G., Varsha, K. K., Sakthikumar, D. N., Pandey, A., & Nampoothiri, K. M. (2015). Characterization of an exopolysaccharide with potential health-benefit properties from a probiotic Lactobacillus plantarum RJF4. LWT, 64(2), 1179–1186. https://doi.org/10.1016/j.lwt.2015.07.040
  • [35] Aghebati-Maleki, L., Hasannezhad, P., Abbasi, A., & Khani, N. (2021). Antibacterial, Antiviral, Antioxidant, and Anticancer Activities of Postbiotics: A review of Mechanisms and Therapeutic Perspectives. Biointerface Research in Applied Chemistry, 12(2), 2629–2645. https://doi.org/10.33263/briac122.26292645
  • [36] Korotkyi, O., Dvorshchenko, K., Vovk, A., Dranitsina, A., Tymoshenko, M., Kot, L., & Ostapchenko, L. (2019). Effect of probiotic composition on oxidative/antioxidant balance in blood of rats under experimental osteoarthriti. The Ukrainian Biochemical Journal, 91(6), 49–58. https://doi.org/10.15407/ubj91.06.049
  • [37] Capcarova, M., Weiss, J., Hrncar, C., Kolesarova, A., & Pal, G. (2010). Effect of Lactobacillus fermentum and Enterococcus faecium strains on internal milieu, antioxidant status and body weight of broiler chickens. Journal of animal physiology and animal nutrition, 94(5), e215–e224. https://doi.org/10.1111/j.1439-0396.2010.01010.x
  • [38] Kim, H. S., Chae, H. S., Jeong, S. G., Ham, J. S., Im, S. K., Ahn, C. N., & Lee, J. M. (2005). In vitro Antioxidative Properties of Lactobacilli. Asian-Australasian Journal of Animal Sciences, 19(2), 262–265. https://doi.org/10.5713/ajas.2006.262
  • [39] Saeui, C. T., Urias, E., Liu, L., Mathew, M. P., & Yarema, K. J. (2015). Metabolic glycoengineering bacteria for therapeutic, recombinant protein, and metabolite production applications. Glycoconjugate journal, 32(7), 425–441. https://doi.org/10.1007/s10719-015-9583-9
  • [40] Kuru-Yaşar, R., & Üstün-Aytekin, Ö. (2024). The Crucial Roles of Diet, Microbiota, and Postbiotics in Colorectal Cancer. Current nutrition reports, 13(2), 126–151. https://doi.org/10.1007/s13668-024-00525-z
  • [41] Assandri, M. H., Malamud, M., Trejo, F. M., & Serradell, M. L. A. (2023). S-layer proteins as immune players: Tales from pathogenic and non-pathogenic bacteria. Current research in microbial sciences, 4, 100187. https://doi.org/10.1016/j.crmicr.2023.100187
  • [42] Zhang, T., Pan, D., Yang, Y., Jiang, X., Zhang, J., Zeng, X., Wu, Z., Sun, Y., & Guo, Y. (2020). Effect of Lactobacillus acidophilus CICC 6074 S-Layer Protein on Colon Cancer HT-29 Cell Proliferation and Apoptosis. Journal of agricultural and food chemistry, 68(9), 2639–2647. https://doi.org/10.1021/acs.jafc.9b06909
  • [43] Moradi, M., Mardani, K., & Tajik, H. (2019). Characterization and application of postbiotics of Lactobacillus spp. on Listeria monocytogenes in vitro and in food models. LWT, 111, 457–464. https://doi.org/10.1016/j.lwt.2019.05.072.
  • [44] Kaewchomphunuch, T., Charoenpichitnunt, T., Thongbaiyai, V., Ngamwongsatit, N., & Kaeoket, K. (2022). Cell-free culture supernatants of Lactobacillus spp. and Pediococcus spp. inhibit growth of pathogenic Escherichia coli isolated from pigs in Thailand. BMC veterinary research, 18(1), 60. https://doi.org/10.1186/s12917-022-03140-8
  • [45] Heilbronner, S., Krismer, B., Brötz-Oesterhelt, H., & Peschel, A. (2021). The microbiome-shaping roles of bacteriocins. Nature reviews. Microbiology, 19(11), 726–739. https://doi.org/10.1038/s41579-021-00569-w
  • [46] Kumariya, R., Garsa, A. K., Rajput, Y. S., Sood, S. K., Akhtar, N., & Patel, S. (2019). Bacteriocins: Classification, synthesis, mechanism of action and resistance development in food spoilage causing bacteria. Microbial pathogenesis, 128, 171–177. https://doi.org/10.1016/j.micpath.2019.01.002
  • [47] Luo, S. C., Wei, S. M., Luo, X. T., Yang, Q. Q., Wong, K. H., Cheung, P. C. K., & Zhang, B. B. (2024). How probiotics, prebiotics, synbiotics, and postbiotics prevent dental caries: an oral microbiota perspective. NPJ biofilms and microbiomes, 10(1), 14. https://doi.org/10.1038/s41522-024-00488-7
  • [48] Hernández-Granados, M. J., & Franco-Robles, E. (2020). Postbiotics in human health: Possible new functional ingredients?. Food research international (Ottawa, Ont.), 137, 109660. https://doi.org/10.1016/j.foodres.2020.109660
  • [49] Levy, M., Thaiss, C. A., & Elinav, E. (2016). Metabolites: messengers between the microbiota and the immune system. Genes & development, 30(14), 1589–1597. https://doi.org/10.1101/gad.284091.116 [50] von Essen, M. R., Kongsbak, M., Schjerling, P., Olgaard, K., Odum, N., & Geisler, C. (2010). Vitamin D controls T cell antigen receptor signaling and activation of human T cells. Nature immunology, 11(4), 344–349. https://doi.org/10.1038/ni.1851
  • [51] Sun J. (2010). Vitamin D and mucosal immune function. Current opinion in gastroenterology, 26(6), 591–595. https://doi.org/10.1097/MOG.0b013e32833d4b9f
  • [52] Shapiro, H., Thaiss, C. A., Levy, M., & Elinav, E. (2014). The cross talk between microbiota and the immune system: metabolites take center stage. Current opinion in immunology, 30, 54–62. https://doi.org/10.1016/j.coi.2014.07.003
  • [53] Hashimoto, T., Perlot, T., Rehman, A., Trichereau, J., Ishiguro, H., Paolino, M., Sigl, V., Hanada, T., Hanada, R., Lipinski, S., Wild, B., Camargo, S. M. R., Singer, D., Richter, A., Kuba, K., Fukamizu, A., Schreiber, S., Clevers, H., Verrey, F., . . . Penninger, J. M. (2012). ACE2 links amino acid malnutrition to microbial ecology and intestinal inflammation. Nature, 487(7408), 477–481. https://doi.org/10.1038/nature11228
  • [54]Aguilar-Toalá, J., Garcia-Varela, R., Garcia, H., Mata-Haro, V., González-Córdova, A., Vallejo-Cordoba, B., & Hernández-Mendoza, A. (2018). Postbiotics: An evolving term within the functional foods field. Trends in Food Science & Technology, 75, 105–114. https://doi.org/10.1016/j.tifs.2018.03.009
  • [55] Escamilla, J., Lane, M. A., & Maitin, V. (2012). Cell-free supernatants from probiotic Lactobacillus casei and Lactobacillus rhamnosus GG decrease colon cancer cell invasion in vitro. Nutrition and cancer, 64(6), 871–878. https://doi.org/10.1080/01635581.2012.700758
  • [56] Wang, K., Li, W., Rui, X., Chen, X., Jiang, M., & Dong, M. (2014). Characterization of a novel exopolysaccharide with antitumor activity from Lactobacillus plantarum 70810. International journal of biological macromolecules, 63, 133–139. https://doi.org/10.1016/j.ijbiomac.2013.10.036
  • [57] Schwartz, D. J., Rebeck, O. N., & Dantas, G. (2019). Complex interactions between the microbiome and cancer immune therapy. Critical reviews in clinical laboratory sciences, 56(8), 567–585. https://doi.org/10.1080/10408363.2019.1660303
  • [58] Lopez-Siles, M., Duncan, S. H., Garcia-Gil, L. J., & Martinez-Medina, M. (2017). Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. The ISME journal, 11(4), 841–852. https://doi.org/10.1038/ismej.2016.176
  • [59] Belizário, J. E., Faintuch, J., & Garay-Malpartida, M. (2018). Gut microbiome Dysbiosis and Immunometabolism: new frontiers for treatment of metabolic diseases. Mediators of Inflammation, 2018, 1–12. https://doi.org/10.1155/2018/2037838
  • [60] Ying, Z. H., Mao, C. L., Xie, W., & Yu, C. H. (2023). Postbiotics in rheumatoid arthritis: emerging mechanisms and intervention perspectives. Frontiers in microbiology, 14, 1290015. https://doi.org/10.3389/fmicb.2023.1290015
  • [61] Balasundaram, D., Veerasamy, V., Sylvia Singarayar, M., Neethirajan, V., Ananth Devanesan, A., & Thilagar, S. (2024). Therapeutic potential of probiotics in gut microbial homeostasis and Rheumatoid arthritis. International immunopharmacology, 137, 112501. https://doi.org/10.1016/j.intimp.2024.112501
  • [62] Izuddin, W. I., Humam, A. M., Loh, T. C., Foo, H. L., & Samsudin, A. A. (2020). Dietary Postbiotic Lactobacillus plantarum Improves Serum and Ruminal Antioxidant Activity and Upregulates Hepatic Antioxidant Enzymes and Ruminal Barrier Function in Post-Weaning Lambs. Antioxidants (Basel, Switzerland), 9(3), 250. https://doi.org/10.3390/antiox9030250
  • [63] Xing, J., Wang, G., Zhang, Q., Liu, X., Gu, Z., Zhang, H., Chen, Y. Q., & Chen, W. (2015). Determining antioxidant activities of lactobacilli cell-free supernatants by cellular antioxidant assay: a comparison with traditional methods. PloS one, 10(3), e0119058. https://doi.org/10.1371/journal.pone.0119058
  • [64] Sanmiguel, C., Gupta, A., & Mayer, E. A. (2015). Gut Microbiome and Obesity: A Plausible Explanation for Obesity. Current obesity reports, 4(2), 250–261. https://doi.org/10.1007/s13679-015-0152-0
  • [65] You, H., Tan, Y., Yu, D., Qiu, S., Bai, Y., He, J., Cao, H., Che, Q., Guo, J., & Su, Z. (2022). The Therapeutic Effect of SCFA-Mediated Regulation of the Intestinal Environment on Obesity. Frontiers in nutrition, 9, 886902. https://doi.org/10.3389/fnut.2022.886902
  • [66] Nataraj, B. H., Ali, S. A., Behare, P. V., & Yadav, H. (2020). Postbiotics-parabiotics: the new horizons in microbial biotherapy and functional foods. Microbial Cell Factories, 19(1). https://doi.org/10.1186/s12934-020-01426-w
  • [67] Corr, S. C., Li, Y., Riedel, C. U., O’Toole, P. W., Hill, C., & Gahan, C. G. M. (2007). Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proceedings of the National Academy of Sciences, 104(18), 7617–7621. https://doi.org/10.1073/pnas.0700440104
  • [68] Koohestani, M., Moradi, M., Tajik, H., & Badali, A. (2018). Effects of cell-free supernatant of Lactobacillus acidophilus LA5 and Lactobacillus casei 431 against planktonic form and biofilm of Staphylococcus aureus. Veterinary research forum : an international quarterly journal, 9(4), 301–306. https://doi.org/10.30466/vrf.2018.33086 [69] Bajpai, V. K., Han, J. H., Rather, I. A., Park, C., Lim, J., Paek, W. K., Lee, J. S., Yoon, J. I., & Park, Y. H. (2016). Characterization and Antibacterial Potential of Lactic Acid Bacterium Pediococcus pentosaceus 4I1 Isolated from Freshwater Fish Zacco koreanus. Frontiers in microbiology, 7, 2037. https://doi.org/10.3389/fmicb.2016.02037
  • [70] Lin, T. H., & Pan, T. M. (2019). Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102. Journal of microbiology, immunology, and infection = Wei mian yu gan ran za zhi, 52(3), 409–417. https://doi.org/10.1016/j.jmii.2017.08.003
  • [71] Lee, D. K., Jang, S., Baek, E. H., Kim, M. J., Lee, K. S., Shin, H. S., Chung, M. J., Kim, J. E., Lee, K. O., & Ha, N. J. (2009). Lactic acid bacteria affect serum cholesterol levels, harmful fecal enzyme activity, and fecal water content. Lipids in health and disease, 8, 21. https://doi.org/10.1186/1476-511X-8-21
  • [72] Shin, H. S., Park, S. Y., Lee, D. K., Kim, S. A., An, H. M., Kim, J. R., Kim, M. J., Cha, M. G., Lee, S. W., Kim, K. J., Lee, K. O., & Ha, N. J. (2010). Hypocholesterolemic effect of sonication-killed Bifidobacterium longum isolated from healthy adult Koreans in high cholesterol fed rats. Archives of pharmacal research, 33(9), 1425–1431. https://doi.org/10.1007/s12272-010-0917-7
  • [73] Segawa, S., Wakita, Y., Hirata, H., & Watari, J. (2008). Oral administration of heat-killed Lactobacillus brevis SBC8803 ameliorates alcoholic liver disease in ethanol-containing diet-fed C57BL/6N mice. International journal of food microbiology, 128(2), 371–377. https://doi.org/10.1016/j.ijfoodmicro.2008.09.023
  • [74]Yang, S. C., Lin, C. H., Sung, C. T., & Fang, J. Y. (2014). Antibacterial activities of bacteriocins: application in foods and pharmaceuticals. Frontiers in microbiology, 5, 241. https://doi.org/10.3389/fmicb.2014.00241
  • [75] Ghimpețeanu, O. M., Pogurschi, E. N., Popa, D. C., Dragomir, N., Drăgotoiu, T., Mihai, O. D., & Petcu, C. D. (2022). Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods (Basel, Switzerland), 11(10), 1430. https://doi.org/10.3390/foods11101430
  • [76] Vieco-Saiz, N., Belguesmia, Y., Raspoet, R., Auclair, E., Gancel, F., Kempf, I., & Drider, D. (2019). Benefits and Inputs From Lactic Acid Bacteria and Their Bacteriocins as Alternatives to Antibiotic Growth Promoters During Food-Animal Production. Frontiers in microbiology, 10, 57. https://doi.org/10.3389/fmicb.2019.00057
  • [77] Abid, Y., Azabou, S., Blecker, C., Gharsallaoui, A., Corsaro, M. M., Besbes, S., & Attia, H. (2021). Rheological and emulsifying properties of an exopolysaccharide produced by potential probiotic Leuconostoc citreum-BMS strain. Carbohydrate polymers, 256, 117523. https://doi.org/10.1016/j.carbpol.2020.117523 [78] Arena, M. P., Silvain, A., Normanno, G., Grieco, F., Drider, D., Spano, G., & Fiocco, D. (2016). Use of Lactobacillus plantarum Strains as a Bio-Control Strategy against Food-Borne Pathogenic Microorganisms. Frontiers in microbiology, 7, 464. https://doi.org/10.3389/fmicb.2016.00464
  • [79] Mani-López, E., García, H., & López-Malo, A. (2012). Organic acids as antimicrobials to control Salmonella in meat and poultry products. Food Research International, 45(2), 713–721. https://doi.org/10.1016/j.foodres.2011.04.043
  • [80] Alvarez-Ordóñez, A., Fernández, A., Bernardo, A., & López, M. (2010). Acid tolerance in Salmonella typhimurium induced by culturing in the presence of organic acids at different growth temperatures. Food microbiology, 27(1), 44–49. https://doi.org/10.1016/j.fm.2009.07.015
  • [81] Ahmad Rather, I., Seo, B. J., Rejish Kumar, V. J., Choi, U. H., Choi, K. H., Lim, J. H., & Park, Y. H. (2013). Isolation and characterization of a proteinaceous antifungal compound from Lactobacillus plantarum YML007 and its application as a food preservative. Letters in applied microbiology, 57(1), 69–76. https://doi.org/10.1111/lam.12077
  • [82] Naghmouchi, K., Belguesmia, Y., Baah, J., Teather, R., & Drider, D. (2011). Antibacterial activity of class I and IIa bacteriocins combined with polymyxin E against resistant variants of Listeria monocytogenes and Escherichia coli. Research in microbiology, 162(2), 99–107. https://doi.org/10.1016/j.resmic.2010.09.014
  • [83] Servin A. L. (2004). Antagonistic activities of lactobacilli and bifidobacteria against microbial pathogens. FEMS microbiology reviews, 28(4), 405–440. https://doi.org/10.1016/j.femsre.2004.01.003
  • [84] Gudiña, E. J., Rocha, V., Teixeira, J. A., & Rodrigues, L. R. (2010). Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Letters in applied microbiology, 50(4), 419–424. https://doi.org/10.1111/j.1472-765X.2010.02818.x
  • [85] Kumar, A., Saha, M. K., Kumar, V., Bhattacharya, A., Barge, S., Mukherjee, A. K., Kalita, M. C., & Khan, M. R. (2024). Heat-killed probiotic Levilactobacillus brevis MKAK9 and its exopolysaccharide promote longevity by modulating aging hallmarks and enhancing immune responses in Caenorhabditis elegans. Immunity & ageing : I & A, 21(1), 52. https://doi.org/10.1186/s12979-024-00457-w
  • [86] Guo, N., & Lv, L. L. (2023). Mechanistic insights into the role of probiotics in modulating immune cells in ulcerative colitis. Immunity, inflammation and disease, 11(10), e1045. https://doi.org/10.1002/iid3.1045
  • [87] Aly, S., Cheik, O., & Alfred, T. S. (2006). Bacteriocins and lactic acid bacteria - a minireview. AFRICAN JOURNAL OF BIOTECHNOLOGY, 5(9), 678–683. https://doi.org/10.4314/ajb.v5i9.42771
  • [88] Chen, C. C., Lai, C. C., Huang, H. L., Huang, W. Y., Toh, H. S., Weng, T. C., Chuang, Y. C., Lu, Y. C., & Tang, H. J. (2019). Antimicrobial Activity of Lactobacillus Species Against Carbapenem-Resistant Enterobacteriaceae. Frontiers in microbiology, 10, 789. https://doi.org/10.3389/fmicb.2019.00789
  • [89] Fooks, L. J., & Gibson, G. R. (2002). In vitro investigations of the effect of probiotics and prebiotics on selected human intestinal pathogens. FEMS microbiology ecology, 39(1), 67–75. https://doi.org/10.1111/j.1574-6941.2002.tb00907.x
  • [90] Kareem, K. Y., Hooi Ling, F., Teck Chwen, L., May Foong, O., & Anjas Asmara, S. (2014). Inhibitory activity of postbiotic produced by strains of Lactobacillus plantarum using reconstituted media supplemented with inulin. Gut pathogens, 6, 23. https://doi.org/10.1186/1757-4749-6-23
  • [91] Homayouni, A., Hosseini, S., & Pourjafar, H. (2021). Postbiotics as dynamic Biological Molecules for Antimicrobial activity: A Mini-Review. Biointerface Research in Applied Chemistry, 12(5), 6543–6556. https://doi.org/10.33263/briac125.65436556
  • [92] Higashi, B., Mariano, T. B., de Abreu Filho, B. A., Gonçalves, R. A. C., & de Oliveira, A. J. B. (2020). Effects of fructans and probiotics on the inhibition of Klebsiella oxytoca and the production of short-chain fatty acids assessed by NMR spectroscopy. Carbohydrate polymers, 248, 116832. https://doi.org/10.1016/j.carbpol.2020.116832
  • [93] Banakar, M., Pourhajibagher, M., Etemad-Moghadam, S., Mehran, M., Yazdi, M. H., Haghgoo, R., Alaeddini, M., & Frankenberger, R. (2023). Antimicrobial Effects of Postbiotic Mediators Derived from Lactobacillus rhamnosus GG and Lactobacillus reuteri on Streptococcus mutans. Frontiers in bioscience (Landmark edition), 28(5), 88. https://doi.org/10.31083/j.fbl2805088
  • [94] Liang, B., & Xing, D. (2023). The Current and Future Perspectives of Postbiotics. Probiotics and antimicrobial proteins, 15(6), 1626–1643. https://doi.org/10.1007/s12602-023-10045-x
  • [95] Mosca, A., Abreu Y Abreu, A. T., Gwee, K. A., Ianiro, G., Tack, J., Nguyen, T. V. H., & Hill, C. (2022). The clinical evidence for postbiotics as microbial therapeutics. Gut microbes, 14(1), 2117508. https://doi.org/10.1080/19490976.2022.2117508
  • [96] Zang, T., Han, L., Lu, Z., Tan, L., Liang, D., Shen, X., Liao, X., Liu, Y., Ren, H., & Sun, J. (2024). The History and Prediction of Prebiotics and Postbiotics: A Patent Analysis. Nutrients, 16(3), 380. https://doi.org/10.3390/nu16030380
Toplam 92 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tıbbi Mikrobiyoloji (Diğer)
Bölüm Derleme
Yazarlar

Elif Merve Şahin 0000-0003-3882-960X

Beren Başaran Kahraman 0000-0002-1736-093X

Gönderilme Tarihi 9 Eylül 2024
Kabul Tarihi 22 Aralık 2024
Yayımlanma Tarihi 19 Ocak 2026
Yayımlandığı Sayı Yıl 2026 Sayı: 2026-1

Kaynak Göster

APA Şahin, E. M., & Başaran Kahraman, B. (2026). Postbiotics and Their Antimicrobial Activity: A mini-review. Research Journal of Biomedical and Biotechnology(2026-1).
AMA Şahin EM, Başaran Kahraman B. Postbiotics and Their Antimicrobial Activity: A mini-review. RJBB. Ocak 2026;(2026-1).
Chicago Şahin, Elif Merve, ve Beren Başaran Kahraman. “Postbiotics and Their Antimicrobial Activity: A mini-review”. Research Journal of Biomedical and Biotechnology, sy. 2026-1 (Ocak 2026).
EndNote Şahin EM, Başaran Kahraman B (01 Ocak 2026) Postbiotics and Their Antimicrobial Activity: A mini-review. Research Journal of Biomedical and Biotechnology 2026-1
IEEE E. M. Şahin ve B. Başaran Kahraman, “Postbiotics and Their Antimicrobial Activity: A mini-review”, RJBB, sy. 2026-1, Ocak2026.
ISNAD Şahin, Elif Merve - Başaran Kahraman, Beren. “Postbiotics and Their Antimicrobial Activity: A mini-review”. Research Journal of Biomedical and Biotechnology 2026-1 (Ocak2026).
JAMA Şahin EM, Başaran Kahraman B. Postbiotics and Their Antimicrobial Activity: A mini-review. RJBB. 2026.
MLA Şahin, Elif Merve ve Beren Başaran Kahraman. “Postbiotics and Their Antimicrobial Activity: A mini-review”. Research Journal of Biomedical and Biotechnology, sy. 2026-1, 2026.
Vancouver Şahin EM, Başaran Kahraman B. Postbiotics and Their Antimicrobial Activity: A mini-review. RJBB. 2026(2026-1).

Amaç ve Kapsam

Biyomedikal ve Biyoteknoloji alanlarında yapılan, klinik ,deneysel, teorik ve hesaplamalı çalışmaları, özgün araştırma makaleleri, derlemeler, olgu sunumları, kısa rapor ve editöre mektup türünden yazılar olarak yayınlamak, bu alanlardaki güncel  araştırmaları okuyucularına sunabilmek, bu alanlarda çalışanlar arasına bağ oluşturabilmek ve bilimsel gelişime katkıda bulunmaktır

Biyomalzeme, sinyal ve görüntü işleme, biyomedikal cihaz teknolojisi, biyomekanik, biyoistatistik, biyomedikal optik, doku mühendisliği ve genetik, klinik mühendisliği, nükleer tıp çalışmaları, klinikte, tarım, gıda ve sanayi alanında yararlanmak amacıyla, biyolojik süreçlerin, hücrelerin, organizmaların kullanılması ve yeni teknolojilerin geliştirilmesi üzerine yapılan çalışmalar

Örnek dosyayı indirebilirsiniz Makale hazırlama örnek dosya

·         Makale metinleri Microsoft Word belgesi içerisinde çift kolonlu biçimde Türkçe veya İngilizce olarak yazılmalıdır.

·         Makale başlığı net ve bilgilendirici olmalı kısaltma içermemelidir. Türkçe ve İngilizce olarak yazılmalıdır.

·         Yazarların adları  çalıştıkları kurumların isimleri, bölümleri, e-mail adresleri ve orcid id'leri başlıktan hemen sonra verilmelidir. Sorumlu yazarın e-posta adresi ayrıca belirtilmelidir.

·         


Son Gönderi Formatı

Makale Kabul edildikten sonar yazarlar makalenin son versiyonunu verilecek makale taslağına uygun olarak hazırlayıp sisteme yüklemelidirler.

Research Journal of Biomedical and Biotechnology dergisine gönderilen makaleler çift veya daha fazla taraflı kör hakemlik süreciyle değerlendirilmekte ve ücretsiz erişimle elektronik olarak yayımlanmaktadır. Aşağıda yazarların, dergi editörünün, hakemlerin ve yayıncının etik sorumlulukları, rolleri ve görevleri yer almaktadır. Aşağıda yer alan etik ilkeler ve kurallar ‘Yayın Etiği Komitesi’nin (Committe on Publication Ethics - COPE (https://publicationethics.org/)) yönergesine göre hazırlanmıştır. Ayrıca RJBB tarafından intihal ve etik dışı davranışlar olarak kabul edilen durumlara ilişkin bilgi verilmiştir.

İnsan araştırmasında, “Materyaller ve Yöntemler” bölümünde çalışmaya katılanların aydınlatılmış olmalarının ifadesine ihtiyaç vardır.Tüm çalışmalar, en son revizyon tarihini kapsayan Dünya Tıp Birliği Helsinki Bildirgesi'ne (http://www.wma.net/en/30publications/10policies/b3/) uygun olarak yapılmalıdır. Hasta gizliliği, evrensel olarak kabul edilen kurallara  göre korunmalıdır. Gönüllüler veya hastalar için uygulanacak prosedürler söz konusu olduğunda, çalışma nesneleri bilgilendirilmeli ve çalışma başlamadan önce onayları verilmelidir. Yazarların yerel bir etik komitesi yoksa, “Helsinki Deklarasyonu” nda belirtilen ilkelere uyulmalıdır. Yazarlar, mevzuat ve diğer ilgili yönetmelikler sorulduğunda uluslararası kabul görmüş en son yönergelere uyduklarını beyan etmeli ve “Etik Komite Onayı” göndermelidir.

Hayvanlar üzerinde yapılan deneysel çalışmaların sonuçlarını bildiren yazılar, çalışma protokolünün kurumun hayvan etiği komitesi tarafından onaylandığını ve çalışmanın Avrupa Hayvan Hakları Evrensel Beyannamesi de dahil olmak üzere uluslararası kabul görmüş yönergelere uygun olarak yürütüldüğünü bildirmelidir (Deneysel ve Diğer Bilimsel Amaçlarla Kullanılan Omurgalı Hayvanların Korunması Sözleşmesi, Laboratuvar Hayvanları Biliminin Prensipleri ve Laboratuvar Hayvanlarının Bakımı ve Kullanımı El Kitabı). Yazarlardan makale ile etik komitenin onayının bir kaydını göndermeleri önemle rica olunur. 

YAZAR(LAR)

  • RJBB dergisne gönderilen makaleleirn özgün çalışmalar olması gerekmektedir.
  • Makalelerde yararlanılan tüm kaynaklar için doğru ve uygun bir şekilde kaynak gösterilmelidir.
  • Dergiye gönderilen makalelerin başka bir dergiye gönderilmediği belirtilmeli ve Telif Hakkı Devir Formu doldurulmalıdır.
  • Makaleye katkıda bulunmayan kişiler yazar olarak belirtilmemelidir.
  • Gönderilen makaleye ilişkin çıkar çatışmaları belirtilmeli ve nedeni açıklanmalıdır.
  • Yazarlar çalışmalarında bir hata tespit ettiklerinde editörü ve editörler kurulunu bilgilendirmeli, düzeltme ya da geri çekme süreci için işbirliği kurmalıdırlar

HAKEMLER

RJJB degisinde tüm makaleler çift veya daha fazla taraflı kör hakemlik süreci ile değerlendirilmektedir. Kör hakemlik, yansız, nesnel ve bağımsız bir değerlendirme sürecinin sağlanabilmesi için yazarların hakemlerden, hakemlerin de yazarlardan gizli tutulması anlamına gelmektedir. Hakemlere makaleler değerlendirilmek üzere dergi yönetim sisteminden iletilmektedir. Hakemlerin, değerlendirdikleri makalenin özgünlüğü ve makalenin yayımlanabilir olup olmadığına ilişkin kararları ve bu kararlarına ilişkin gerekçelerini içeren bir form doldurmaları gerekmektedir. 

  • Hakemlerin yalnızca uzmanlık alanlarına ilişkin makalelere hakemlik yapmaları gerekmektedir.
  • Hakemlerden çıkar çatışmaları bulunmayan makalelere hakemlik yapmayı kabul etmeleri beklenmektedir. Hakemler herhangi bir çıkar çatışması fark ettiklerinde editörü bilgilendirmeli ve ilgili makalenin hakemliğini yapmayı reddetmelidirler.
  • Hakemler makaleleri yansız ve nesnel olarak değerlendirmelidirler.
  • Hakemlerin değerlendirdikleri makalelere ilişkin Hakem Değerlendirme Formu’nu doldurmaları gerekmekte,  kör hakemlik sürecine zarar vermemek için formlarda isimlerini belirtmemeleri beklenmektedir. Hakemlerin değerlendirdikleri makalenin yayımlanabilir olup olmadığına ilişkin kararları ile kararlarına ilişkin gerekçelerini de bu formda belirtmeleri gerekmektedir.
  • Hakemlerin önerilerinde kullandıkları üslubun kibar, saygılı ve bilimsel olması gerekmektedir. Hakemler saldırgan, saygısız ve öznel kişisel yorumlardan kaçınmalıdırlar. Hakemlerin bu tür bilimsel olmayan yorumlarda bulundukları tespit edildiğinde yorumlarını yeniden gözden geçirmeleri ve düzeltmeleri için editör ya da editörler kurulu tarafından kendileriyle iletişime geçilebilmektedir.
  • Hakemlerin kendilerine verilen süre içerisinde değerlendirmelerini tamamlamaları gerekmekte ve burada belirtilen etik sorumluluklara uymaları beklenmektedir

EDİTÖR

Editörün ‘Yayın Etiği Komitesi’nin (Committe on PublicationEthics - COPE (https://publicationethics.org/)) yayınlamış olduğu ‘COPE Dergi Editörleri için Etik Davranışlar ve En İyi Uygulamalar Kılavuzu’ (COPE Code of Conduct and Best Practice Guidelines for Journal Editors (https://publicationethics.org/files/Code_of_conduct_for_journal_editors_Mar11.pdf)) ve ‘COPE Dergi Editörleri için En İyi Uygulamalar Kılavuzu’nda (COPE Best Practice Guidelines for Journal Editors (https://publicationethics.org/files/u2/Best_Practice.pdf)) yer alan ve aşağıda listelenen etik sorumluluklara uyması gerekmektedir.

  • Editör, yazarlara kendilerinden ne beklendiğine ilişkin yayım ve yazım kuralları ile örnek şablonu sürekli güncellemelidir.
  • Editör dergiye gönderilen makaleleri dergi yazım kuralları, çalışmanın önemi, özgünlüğü açısından değerlendirmeli ve makaleyi ilk gönderim sürecinde reddetme kararı alırsa, yazarlara bunun nedenini açık ve yansız bir şekilde iletmelidir. Bu süreçte, makalenin dilbilgisi, noktalama ve/veya yazım kuralları (kenar boşlukları, uygun şekilde referans gösterme, vb.) açısından tekrar gözden geçirilmesi gerektiğine karar verilirse, yazarlar bu konuda bilgilendirilmeli ve gerekli düzeltmeleri yapabilmeleri için kendilerine zaman tanınmalıdır.
  • Makalelerde gönderim ve yayıma kabul tarihleri yer almalıdır.
  • Yazarların makalelerinin durumuna ilişkin bilgi talebi olduğunda  kör hakemlik sürecini bozmayacak şekilde yazarlara makalelerinin durumuna ilişkin bilgi verilmelidir.
  • Editör, hakemlerin bilgi ve uzmanlıklarına uygun makaleleri değerlendirmelerini istemelidir. Böylece makalelerin alanında uzman kişilerce uygun bir şekilde değerlendirilmesi sağlanmalıdır.
  • Editör, hakemlerin bir makaleyi değerlendirmeden önce makaleye ilişkin çıkar çatışmaları bulunmadığını belirtmelerini talep etmekle yükümlüdür.
  • Editörün hakem değerlendirme sürecine ilişkin gerekli tüm bilgileri ve hakemlerden yapması beklenenleri hakemlere iletmesi gerekmektedir.
  • Editör, hakem değerlendirme sürecinin  kör hakemlik ile sürdürüldüğünden emin olmalı ve yazarlara hakemleri, hakemlere de yazarları ifşa etmemelidir.
  • Editör, hakemleri zamanlama ve performanslarına göre değerlendirmelidir.
  • Editör, hakemlere ilişkin bir veri tabanı oluşturmalı ve hakemlerin performansına göre veri tabanını güncellemelidir.
  • Editör, kaba ve niteliksiz yorumlarda bulunan ya da geç dönen hakemleri hakem listesinden çıkarmalıdır.
  • Editör, hakem listesini hakemlerin uzmanlık alanlarına göre sürekli yenilemeli ve genişletmelidir.
  • Editör, yeni editörler kurulu üyelerine yayım ve yazım kurallarını iletmeli ve kendilerinden beklenenleri açıklamalıdır.
  • Editör, editörler kurulu üyelerini değerlendirmeli ve derginin gelişimine aktif olarak katılım gösterecek üyeleri editörler kuruluna seçmelidir.
  • Editör, editörler kurulu üyelerini aşağıda yer alan rolleri ve sorumluluklarına ilişkin bilgilendirmelidir
    - Derginin gelişimini desteklemek
    - Kendilerinden istendiğinde uzmanlık alanlarına ilişkin derlemeler yazmak
    - Yayım ve yazım kurallarını gözden geçirmek ve iyileştirmek
  • - Derginin işletiminde gerekli sorumlulukları yerine getirmek



RJBB Dergisi’ne gönderilen tüm makaleler basılmadan önce yazılım programı ile taranmaktadır. Benzerlik oranı %20 dur ve altında olan makaleler yayına kabul edilir. Bu oranı aşan makaleler ayrıntılı olarak incelenir ve gerekli görülürse gözden geçirilmesi ya da düzeltilmesi için yazarlara geri gönderilir, intihal ya da etik dışı davranışlar tespit edilirse yayımlanması reddedilir.

Hakem değerlendirme süreci tamamlanmış ve kabul edilmiş tüm makaleler herhangi bir makale gönderim ve/veya değerlendirme ücreti talep edilmeksizin yayımlanmaktadır. Dergi aboneliği için ücret talep edilmez.

Yayın ve Danışma Kurulu

Mikrobiyoloji, Biyomedikal Bilimler ve Teknolojiler, Veteriner Gıda Hijyeni ve Teknolojisi, Veteriner Mikrobiyolojisi
Fiziksel Kimya (Diğer)

Alan Editörleri

Genotoksisite ve Sitotoksisite, Biyomedikal Mühendisliğinde Biyomateryaller, Doku Mühendisliği, Kaplama Teknolojisi, Malzeme Karekterizasyonu, Metaller ve Alaşım Malzemeleri , Nanomalzemeler
Kimya, Analitik Kimya, Elektroanalitik Kimya, Enstrümantal Yöntemler, Elektrokimyasal Teknolojiler
Gıda Mühendisliği, Et Teknolojisi, Gıda Ambalajlama, Saklama ve İşleme, Gıda Mikrobiyolojisi, Gıda Teknolojileri
Kimya, Fiziksel Kimya, Polimerizasyon Mekanizmaları, Nanoteknoloji

Yayın Editörü

Doğrusal Olmayan Optik ve Spektroskopi, Plazma Fiziği; Füzyon Plazmaları; Elektrik Deşarjları, Biyomedikal Mühendisliği