Araştırma Makalesi
BibTex RIS Kaynak Göster

Bayes Olasılık Modeli ve Frekans Oranı (FO) Yöntemi ile Esmahanım Deresi Havzası’nın (Düzce) Heyelan Duyarlık Analizi

Yıl 2025, Cilt: 6 Sayı: 2, 252 - 276, 27.09.2025
https://doi.org/10.48123/rsgis.1708584

Öz

Bu çalışmada, Bayes Olasılık Modeli ve Frekans oranı (FO) yöntemi ile Esmahanım Deresi Havzası’nın heyelan duyarlılık analizinin yapılması amaçlanmıştır. Batı Karadeniz Bölümü’nde Düzce ili sınırları içerisinde yer alan havza, Melen Çayı su toplama alanı içerisindedir. Bu çalışmada heyelan duyarlılığı üzerinde etkili olan litoloji, yükselti, eğim, yamaç eğriselliği, bakı, topoğrafik nemlilik indeksi (TWI), akarsu güç indeksi (SPI), akarsulara uzaklık, akarsu yoğunluğu, yollara yakınlık, yağış, arazi örtüsü ve Normalize Fark Bitki İndeksi (NDVI) analizleri yapılmıştır. Bu parametreler doğal aralık yöntemi ile yeniden sınıflandırılmış ve raster formata dönüştürülen heyelan envanter verisi ile zonal istatistikle çakıştırılmıştır. Böylece alt grupların heyelanlı ve heyelansız hücre sayıları bulunmuştur. Bayes olasılık modeli ve frekans oranı yöntemlerinde uygulanan formülle alt grupların heyelan üzerinde ağırlık değerleri bulunmuş, katmanların öznitelik tablosuna işlenmiş ve katmanlar toplanarak duyarlılık haritası oluşturulmuştur. Duyarlılık haritasının doğruluğu, kontrol (test) heyelanları kullanılarak ROC analizi ile yapılmıştır. Eğri Altında Kalan (AUC) değeri, Bayes olasılık modeli için 0.815, Frekans oranı için 0.791 olarak bulunmuştur.

Kaynakça

  • Acharya, T. D. (2018). Regional scale landslide hazard assessment using machine learning methods in Nepal [Doctoral dissertation, Kangwon National University].
  • Afet ve Acil Durum Yönetimi Başkanlığı. (2022). Afet bilgileri envanteri. İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Agboola, G., Beni, L. H., Elbayoumi, T., & Thompson, G. (2024). Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, Article 102583. https://doi.org/10.1016/j.ecoinf.2024.102583
  • Akıncı, H., Yavuz Özalp, A., Özalp, M., Temuçin Kılıçer, S., Kılıçoğlu, C., & Everan, E. (2014a, 14–17 Ekim). Bayes olasılık teoremi kullanılarak heyelan duyarlılık haritalarının üretilmesi [Bildiri sunumu]. 5. Uzaktan Algılama–CBS Sempozyumu (UZAL–CBS 2014), İstanbul.
  • Akıncı, H., Yavuz Özalp, A., Özalp, M., Kılıçoğlu, C., Everan, E., & Temuçin Kılıçer, S. (2014b). Artvin il merkezinin heyelan duyarlılık haritalarının üretilmesi. Artvin Çoruh Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (AÇÜBAP), Bilimsel Araştırma Projesi sonuç raporu.
  • Akıncı, H., Yavuz Özalp, A., & Temuçin Kılıçer, S. (2015). Coğrafi bilgi sistemleri ve AHP yöntemi kullanılarak planlı alanlarda heyelan duyarlılığının değerlendirilmesi: Artvin örneği. Doğal Afetler ve Çevre Dergisi, 1(1–2), 40–53. https://doi.org/10.21324/dacd.20952
  • Akıncı, H., Doğan, S., & Kılıçoğlu, C. (2017). Landslide susceptibility mapping of Canik (Samsun) district using Bayesian probability and frequency ratio models. Selcuk University Journal of Engineering Science and Technology, 5(3), 283–299. https://doi.org/10.15317/Scitech.2017.89
  • Akıncı, H., Kılıçoğlu, C., & Doğan, S. (2020). Random forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey. ISPRS International Journal of Geo-Information, 9(9), Article 553. https://doi.org/10.3390/ijgi9090553
  • Aksoy, H. (2023). Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility. Environmental Monitoring and Assessment, 195, Article 1525. https://doi.org/10.1007/s10661-023-12100-0
  • Ali, Y., Gugsa, T. H., & Raghuvanshi, T. K. (2024). GIS-based statistical analysis for landslide susceptibility evaluation and zonation mapping: A case from Blue Nile Gorge, Gohatsion–Dejen road corridor, Central Ethiopia. Environmental Challenges, 16, Article 100968. https://doi.org/10.1016/j.envc.2024.100968
  • Altun, İ. E., & Aksay, A. (2002a). 1/100.000 ölçekli jeoloji haritaları Ereğli F26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Altun, İ. E., & Aksay, A. (2002b). 1/100.000 ölçekli jeoloji haritaları açınsamalı Ereğli F26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara
  • Arca, D. (2024). A comparison of GIS-based landslide susceptibility assessment of the Merkez and Ovacık districts (Karabük, NW Türkiye) by frequency ratio and fuzzy inference system methods. Environmental Engineering and Management Journal, 23(2), 359–376.
  • ArcGIS. (2025). Sentinel-2 10m Land Use/Land Cover Time Series. 11 Nisan 2025’te https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d adresinden alındı.
  • ArcGIS Living Atlas. (2025). Sentinel-2 10-Meter Land Use/Land Cover. 11 Nisan 2025’te https://livingatlas.arcgis.com/landcover/ adresinden alındı.
  • Avci, V. (2023). Esmahanım Deresi Havzası’nın (Akçakoca–Düzce) morfometrik özellikleri ve taşkınlara etkisi. Bartın Orman Fakültesi Dergisi, 25(1), 96–118. https://doi.org/10.24011/barofd.1148666
  • Aydın, M. C., Sevgi Birincioğlu, E., & Büyüksaraç, A. (2022). Landslide susceptibility mapping in Bitlis Province using GIS-based AHP method. Türk Uzaktan Algılama ve CBS Dergisi, 3(2), 160–171. https://doi.org/10.48123/rsgis.1119723
  • Aydınözü, D. (2013). Yükseldikçe bölgelerimize göre her 100 m’deki yağış artışı üzerine bir deneme. Marmara Coğrafya Dergisi, 17, 174–186.
  • Aydoğan, E., & Dağ, S. (2023). İstatistiksel yöntemlerle Yukarı Karasu Havzası’nın kuzeydoğu bölümünün (Erzurum) heyelan duyarlılık analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(1), 64–82. https://doi.org/10.48123/rsgis.1202140
  • Badavath, N., Sahoo, S., & Samal, R. (2024). Landslide susceptibility mapping for West-Jaintia Hills District, Meghalaya. Sādhanā, 49, Article 52. https://doi.org/10.1007/s12046-023-02404-9
  • Başara, A. C., Tabar, M. E., & Şişman, Y. (2021). Landslide susceptibility mapping of Samsun (Turkey) Province using frequency ratio and AHP methods. Turkish Journal of Geographic Information Systems, 3(1), 24–30.
  • Batar, A. K., & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan region: Recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10(3), Article 114. https://doi.org/10.3390/ijgi10030114
  • Baum, R. L., Savage, W. Z., & Godt, J. W. (2002). TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0 (Open-File Report 2008–1159). U.S. Geological Survey.
  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43–69.
  • Bhuyan, K., Rana, K., Ferrer, J. V., Cotton, F., Öztürk, U., Catani, F., & Malik, N. (2024). Landslide topology uncovers failure movements. Nature, Nature Communications, 15, Article 2633. https://doi.org/10.1038/s41467-024-46741-7
  • Bonham-Carter, G. F. (2014). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). Elsevier.
  • Bragagnolo, L., da Silva, R. V., & Grzybowski, J. M. V. (2020). Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena, 184, Article 104240. https://doi.org/10.1016/j.catena.2019.104240
  • Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815–2831.
  • Chaabane, F. Z., Lamine, S., Guettouche, M. S., Bachari, N. E. I., & Hallal, N. (2024). Landslide risk assessments through multicriteria analysis. ISPRS International Journal of Geo-Information, 13, Article 303. https://doi.org/10.3390/ijgi13090303
  • Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147–160.
  • Chen, Z., Quan, H., Jin, R., Jin, A., Lin, Z., Jin, G., & Jin, G. (2024a). Assessment of landslide susceptibility using the PCA and ANFIS with various metaheuristic algorithms. KSCE Journal of Civil Engineering, 28, 1461–1474. https://doi.org/10.1007/s12205-024-1598-y
  • Chen, Z., Tang, J., & Song, D. (2024b). Modeling landslide susceptibility using alternating decision tree and support vector. Terrestrial, Atmospheric and Oceanic Sciences, 35, Article 12. https://doi.org/10.1007/s44195-024-00074-6
  • Conforti, M., & Letto, F. (2021). Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a GIS-based statistical analysis. Geosciences, 11(8), Article 333. https://doi.org/10.3390/geosciences11080333
  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73, 209–263. https://doi.org/10.1007/s10064-013-0538-8
  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87. https://doi.org/10.1016/j.geomorph.2008.03.015
  • Çellek, S. (2023). Linear parameters causing landslides: A case study of distance to the road, fault, drainage. Kocaeli Journal of Science and Engineering, 6(2), 94–113. https://doi.org/10.34088/kojose.1117817
  • Çevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949–962. https://doi.org/10.1007/s00254-003-0838-6
  • Dağdelenler, G. (2020). İki farklı örneklem tekniği kullanılarak oluşturulan heyelan duyarlılık haritalarının frekans oranı (FO) yöntemi ile karşılaştırılması. Jeoloji Mühendisliği Dergisi, 44(1), 19–38. https://doi.org/10.24232/jmd.740509
  • Dalkes, M., & Korkmaz, M. S. (2023). Analitik Hiyerarşi Süreci ve Frekans Oranı yöntemlerinin heyelan duyarlılık analizinde karşılaştırılması: Trabzon ili Akçaabat ve Düzköy ilçeleri örneği. Doğal Afetler ve Çevre Dergisi, 9(1), 16–38. https://doi.org/10.21324/dacd.1105000
  • Demir, G. (2011). Kuzey Anadolu Fayı üzerinde Niksar–Suşehri arasındaki alanın CBS tabanlı heyelan duyarlılık analizi [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Demir, G. (2018). Coğrafi Bilgi Sistemleri ile Suşehri (Sivas) heyelan duyarlılık analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 96–112. https://doi.org/10.17714/gumusfenbil.299987
  • Demir, V., & Ülke Keskin, A. (2022). Taşkın tehlike haritalarının oluşturulması (Samsun, Mert Irmağı örneği). Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47–54. https://doi.org/10.56130/tucbis.1120501
  • Deng, X., Li, L., & Tan, Y. (2017). Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS International Journal of Geo-Information, 6(4), Article 103. https://doi.org/10.3390/ijgi6040103
  • Dietrich, W. E., Reiss, R., Hsu, M. L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9(3–4), 383–400.
  • Dilekçi, S., Marangoz, A. M., & Ateşoğlu, A. (2021). Zonguldak ve Ereğli Orman İşletme Müdürlükleri orman yangını risk alanlarının belirlenmesi. Geomatik, 6(1), 44–53. https://doi.org/10.29128/geomatik.660623
  • Duman, T. Y., Emre, Ö., Çan, T., Nefeslioğlu, H. A., Keçer, M., Doğan, A., Durmaz, S., & Ateş, Ş. (2005). 1/500 000 Ölçekli Türkiye Heyelan Envanteri Haritası Zonguldak Paftası, MTA Genel Müdürlüğü.
  • EarthExplorer. (2025). USGS EarthExplorer data portal. 11 Nisan 2025’te https://earthexplorer.usgs.gov/ adresinden alındı.
  • Ekinci, D. (2011). Zonguldak–Hisarönü arasındaki Karadeniz akaçlama havzasının kütle hareketleri duyarlılık analizi. Titiz Yayıncılık.
  • El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS–multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6, Article 3. https://doi.org/10.1186/s40677-019-0119-7
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Açıklamalı Türkiye diri fay haritası (Ölçek 1:1.250.000). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Environmental Systems Research Institute. (2024). Sentinel-2 10-Meter Land Use/Land Cover. 12 Aralık 2024’te https://livingatlas.arcgis.com/landcover/ adresinden alındı.
  • Erener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of Møre and Romsdal (Norway). Landslides, 7, 55–68.
  • Ergünay, O. (2007, 5–7 Aralık). Türkiye’nin afet profili [Bildiri sunumu]. TMMOB Afet Sempozyumu, Ankara, Türkiye.
  • Fidan, S., & Görüm, T. (2020). Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi. Türk Coğrafya Dergisi, 74, 123–134. https://doi.org/10.17211/tcd.731596
  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
  • Gedik, İ., & Aksay, A. (2002a). 1/100.000 ölçekli jeoloji haritaları Adapazarı G25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Gedik, İ., & Aksay, A. (2002b). 1/100.000 ölçekli jeoloji haritaları açınsamalı Adapazarı G25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Getachew, N., & Meten, M. (2021). Weights of evidence modeling for landslide susceptibility mapping of Kabi–Gebro locality, Gundomeskel area, Central Ethiopia. Geoenvironmental Disasters, 8, Article 6. https://doi.org/10.1186/s40677-021-00177-z
  • Görüm, T. (2006). Coğrafi Bilgi Sistemi ve istatistiksel yöntemler kullanılarak heyelan duyarlılık analizi: Melen Boğazı ve yakın çevresi [Yüksek lisans tezi, İstanbul Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Gu, T., Duan, P., Wang, M., Li, J., & Zhang, Y. (2024). Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Nature Scientific Reports, 14, Article 7201. https://doi.org/10.1038/s41598-024-57964-5
  • Gulbet, E., & Getahun, B. (2024). Landslide susceptibility mapping using frequency ratio and analytical hierarchy process method in Awabel Woreda, Ethiopia. Quaternary Science Advances, 16, Article 100246. https://doi.org/10.1016/j.qsa.2024.100246
  • Guo, Z., Shi, Y., Huang, F., Fan, X., & Huang, J. (2021). Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers, 12(6), Article 101249. https://doi.org/10.1016/j.gsf.2021.101249
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181–216.
  • Güneş, B., & Kömüşcü, A. Ü. (2025). Coğrafi Bilgi Sistemleri (CBS) tabanlı AHS yöntemi ile Erzincan–Sivas karayolu ve çevresinin heyelan duyarlılık analizi. Doğal Afetler ve Çevre Dergisi, 11(1), 89–103.
  • Han, Y., & Semnani, S. J. (2025). Important considerations in machine learning-based landslide susceptibility assessment under future climate conditions. Acta Geotechnica, 20, 475–500. https://doi.org/10.1007/s11440-024-02363-3
  • Harita Genel Komutanlığı. (2001). 1/25.000 Ölçekli Topoğrafya Haritaları (F25c3, F26d4, G25b2 ve G26a1 Paftaları). Harita Genel Komutanlığı, Ankara.
  • Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J. H., & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415
  • Highland, L. M., & Bobrowsky, P. (2008). The landslide handbook – A guide to understanding landslides (Circular 1325, 129). U.S. Geological Survey.
  • Huang, W., Ding, M., Li, Z., Yu, J., Ge, D., Liu, Q., & Yang, J. (2023). Landslide susceptibility mapping and dynamic response along the Sichuan–Tibet transportation corridor using deep learning algorithms. Catena, 222, Article 106866. https://doi.org/10.1016/j.catena.2022.106866
  • Jallayu, P. T., Sharma, A., & Singh, K. (2024). Vulnerability of highways to landslide using landslide susceptibility zonation in GIS: Mandi District, India. Innovative Infrastructure Solutions, 9, Article 354. https://doi.org/10.1007/s41062-024-01653-9
  • İrcan, M. R., Kale, M. M., & Duman, N. (2024). Morfometrik analizlerle taşkın duyarlılık değerlendirmesi: Şanlıurfa örneği. Geomatik, 9(3), 361–374. https://doi.org/10.29128/geomatik.1506840
  • Kanwal, S., Atif, S., & Shafiq, M. (2016). GIS-based landslide susceptibility mapping of northern areas of Pakistan: A case study of Shigar and Shyok Basins. Geomatics, Natural Hazards and Risk, 8(2), 348–366.
  • Karakoca, E., & Ünver, A. (2025). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127–143.
  • Karaman, M. O., Çabuk, S. N., & Pekkan, E. (2022). Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey. Environmental Science and Pollution Research, 29, 91285–91305. https://doi.org/10.1007/s11356-022-21931-2
  • Kavzoğlu, T., Şahin, E. K., & Çölkesen, İ. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11, 425–439. https://doi.org/10.1007/s10346-013-0391-7
  • Kaya, C., Öztürk, Y., Karataş, A., Sayın, H., & Balcıoğlu, Y. E. (2024). Ağrı Dağı volkanik kütlesi’nde lahar oluşumları ve lahar duyarlılığının CBS tabanlı analizi (Doğu Anadolu–Kuzeybatı İran). Geomatik, 10(1), 29–46.
  • Kebeba, O., Shano, L., Chemdesa, Y., & Jothimani, M. (2024). Integration of geospatial analysis, frequency ratio, and analytical hierarchy process for landslide susceptibility assessment in the Maze Catchment, Omo Valley, southern Ethiopia. Quaternary Science Advances, 15, Article 100203. https://doi.org/10.1016/j.qsa.2024.100203
  • Ke, C., He, S., & Qin, Y. (2023). Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment, 82, Article 384. https://doi.org/10.1007/s10064-023-03392-0
  • Khosravi, K., Pourghasemi, H. R., Chapi, K., & Bahri, M. (2016). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188, Article 656. https://doi.org/10.1007/s10661-016-5665-9
  • Kılıçoğlu, C. (2020). Frekans oranı metodu ve Bayesyen olasılık modeli kullanılarak Samsun ili Vezirköprü ilçesinin heyelan duyarlılık haritasının üretilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 138–154. https://doi.org/10.35414/akufemubid.658662
  • Klose, M. (2015). Landslide databases as tools for integrated assessment of landslide risk. Springer.
  • Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095–1113. https://doi.org/10.1007/s002540100310
  • Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982–990. https://doi.org/10.1007/s00254-005-1228-z
  • Luu, C., Ha, H., Tran, X. T., Vu, T. H., & Bui, Q. D. (2024). Landslide susceptibility and building exposure assessment using machine learning models and geospatial analysis techniques. Advances in Space Research, 74(11), 5489–5513. https://doi.org/10.1016/j.asr.2024.08.046
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2002). 1/500.000 ölçekli Türkiye jeoloji haritaları Zonguldak paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2025). 1/25.000 ölçekli sayısal jeoloji haritaları. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d
  • Mengstie, L., Nebere, A., Jothimani, M., & Taye, B. (2024). Landslide susceptibility assessment in Addi Arkay, Ethiopia using GIS, remote sensing, and AHP. Quaternary Science Advances, 15, Article 100217. https://doi.org/10.1016/j.qsa.2024.100217
  • Meteoroloji Genel Müdürlüğü. (2020). Akçakoca sıcaklık ve yağış verileri. Meteoroloji Genel Müdürlüğü, Ankara.
  • Mersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7, Article 20. https://doi.org/10.1186/s40677-020-00155-x
  • Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake-induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020
  • Moazzam, M. F. U., Vansarochana, A., Boonyanuphap, J., Choosumrong, S., Rahman, G., & Djueyep, G. P. (2020). Spatio-statistical comparative approaches for landslide susceptibility modeling: Case of Mae Phun, Uttaradit Province, Thailand. SN Applied Sciences, 2, Article 384. https://doi.org/10.1007/s42452-020-2106-8
  • Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153–1171. https://doi.org/10.1029/93WR02979
  • Montgomery, D. R., Sullivan, K., & Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12(6), 943–955.
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103
  • Mutlu, S., Cindioğlu, İ., Kul, A. Ö., & Sağlam Selçuk, A. (2022). Coğrafi Bilgi Sistemi (CBS) ve Parametre Puanlama Yöntemi ile Hakkâri ili çığ tehlike haritasının oluşturulması. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(2), 71–78.
  • Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., Lee, S., & Melesse, A. M. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), Article 1402. https://doi.org/10.3390/w11071402
  • Olğaç, İ., & Doğan, M. (2024). Düzce Akçakoca ilçesinde köy yerleşmelerinin coğrafi açıdan değerlendirilmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 34(2), 469–482. https://doi.org/10.18069/firatsbed.1436601 OpenStreetMap. (2025). https://www.openstreetmap.org/#map=9/40.874/31.690
  • Özdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197. https://doi.org/10.1016/j.jseaes.2012.12.014
  • Öz, T. (2025). Heyelan duyarlılığının Analitik Hiyerarşi Süreci (AHS) ve Frekans Oranı (FR) ile belirlenmesi: Kürk Çayı Havzası (Elazığ) örneği. Fırat University Journal of Social Sciences, 35(2), 467–485.
  • Öz, T., & Günek, H. (2021). Solaklı Havzası’nın (Trabzon) heyelan duyarlılığı ve yerleşim yeri risk analizi. International Journal of Geography and Geography Education, 44, 396–412. https://doi.org/10.32003/igge.931516
  • Özşahin, E. (2014). Tekirdağ ilinde Coğrafi Bilgi Sistemleri ve Analitik Hiyerarşi Süreci kullanarak heyelan duyarlılık analizi. Humanitas – Uluslararası Sosyal Bilimler Dergisi, 2(3), 167–186. https://doi.org/10.20304/husbd.84015
  • Özşahin, E. (2015). Coğrafi Bilgi Sistemleri yardımıyla heyelan duyarlılık analizi: Ganos Dağı örneği (Tekirdağ). Harita Teknolojileri Elektronik Dergisi, 7(1), 47–63. https://doi.org/10.15659/hartek.15.04.68
  • Özşahin, E., & Öztürk, M. (2024). Kentsel heyelanlara bir örnek: Alkaya Heyelanı (Tekirdağ). Türk Uzaktan Algılama ve CBS Dergisi, 5(2), 240–253. https://doi.org/10.48123/rsgis.1530698
  • Pehlivan, Ş., Bilginer, E., & Aksay, A. (2002). 1/100.000 ölçekli jeoloji haritaları Adapazarı G26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Pourghasemi, H. R., Pradhan, B., Gökçeoğlu, C., & Moezzi, K. D. (2013). A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics, Natural Hazards and Risk, 4(2), 93–118.
  • Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z
  • Radbruch-Hall, D. (1982). Landslide overview map of the conterminous United States (Vol. 1183). US Government Printing Office.
  • Rahaman, A., Dondapati, A., Gupta, S., & Raj, R. (2024). Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu. Geohazard Mechanics, 2(4), 258–269. https://doi.org/10.1016/j.ghm.2024.07.001
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A. M., Pradhan, B., Chapi, K., & Shirzadi, A. (2019). SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6), 2167–2175. https://doi.org/10.1016/j.gsf.2019.03.009
  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically based landslide susceptibility models. Earth-Science Reviews, 180, 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
  • Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Academic Press.
  • SAGA GIS. (2024). Tool Stream Power Index. SAGA-GIS Tool Library Documentation. 12 Aralık 2024’te https://saga-gis.sourceforge.io/saga_tool_doc/3.0.0/ta_hydrology_21.html adresinden alındı.
  • Senouci, R., Taibi, N. E., Teodoro, A. C., Duarte, L., Mansour, H., & Meddah, R. Y. (2021). GIS-based expert knowledge for landslide susceptibility mapping (LSM): Case of Mostaganem Coast District, west of Algeria. Sustainability, 13(2), Article 630. https://doi.org/10.3390/su13020630
  • Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques – A review. Geoenvironmental Disasters, 7, Article 18. https://doi.org/10.1186/s40677-020-00152-0
  • Sharma, M., & Gupta, A. (2017). The practice of business statistics: Using statistics for decision making. Khanna Book Publishing.
  • Shirani, K., Pasandi, M., & Arabameri, A. (2018). Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun Basin, Southwestern Iran. Natural Hazards, 93, 1379–1418. https://doi.org/10.1007/s11069-018-3356-2
  • Silalahi, F. E. S., Pamela Arifianti, Y., & Hidayat, F. (2019). Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Letters, 6, Article 10. https://doi.org/10.1186/s40562-019-0140-4
  • Singh, K., & Kumar, V. (2018). Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in the bosom of Himalaya. Journal of Mountain Science, 15, 808–824. https://doi.org/10.1007/s11629-017-4634-2
  • Sujatha, E. R., & Sudharsan, J. S. (2024). Landslide susceptibility mapping methods—A review. In G. K. Panda, R. Shaw, S. C. Pal, U. Chatterjee, & A. Saha (Eds.), Landslide: Susceptibility, risk assessment and sustainability (Advances in Natural and Technological Hazards Research, Vol. 52). Springer, Cham.
  • Sun, D., Gu, Q., Wen, H., Xu, J., Zhang, Y., Shi, S., Xue, M., & Zhou, X. (2023). Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Research, 123, 89–106. https://doi.org/10.1016/j.gr.2022.07.013
  • Sunkar, M., & Avcı, V. (2016). Şepker Çayı Aşağı Havzası’nın (Adıyaman Batısı) Heyelan Duyarlılık Analizi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 26(2), 13–43. https://doi.org/10.18069/firatsbed.346901
  • Taş, M. A., & Ceylan, M. A. (2020). Melen Çayı Havzası’nda 17–18 Temmuz 2019 tarihinde meydana gelen sel afetinin Uğurlu, Esmahanım, Dilaver ve Davutağa köylerine (Akçakoca) etkilerinin Coğrafi Bilgi Sistemleri (CBS) yazılımlarıyla tespiti. Uluslararası Sosyal Araştırmalar Dergisi, 13(74), 174–192.
  • Timur, E., & Aksay, A. (2002). 1/100.000 ölçekli jeoloji haritaları Ereğli F-24–F25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Türkiye İstatistik Kurumu. (2025). Akçakoca ve Çilimli köy yerleşmelerinin nüfus miktarı. 11 Nisan 2025’te https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr adresinden alındı.
  • U.S. Geological Survey. (2024). Landsat Normalized Difference Vegetation Index. 12 Aralık 2024’te https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index adresinden alındı.
  • Uysal, A., Sunkar, M., & Avci, V. (2025). Malatya ve çevresinde aletsel dönem (1900–2024) depremlerinin mekânsal analizleri. Geomatik, 10(2), 218–240. https://doi.org/10.29128/geomatik.1593289
  • Üzel Günini, N., & Öztürk, D. (2021). Van ili heyelan duyarlılığının frekans oranı yöntemiyle analizi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 865–884. https://doi.org/10.17482/uumfd.969246
  • Yağcı, C., & İşcan, F. (2021). GIS-based site suitability analysis of afforestation in Konya Province, Turkey. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 3(2), 89–95.
  • Yang, S., Li, D., Sun, Y., & She, X. (2024). Effect of landslide spatial representation and raster resolution on the landslide susceptibility assessment. Environmental Earth Sciences, 83, Article 132. https://doi.org/10.1007/s12665-024-11442-3
  • Yılmaz, O. S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 8(1), 42–54. https://doi.org/10.29128/geomatik.1108735
  • Yong, C., Jinlong, D., Fei, G., Bin, T., Tao, Z., Hao, F., Li, W., & Qinghua, Z. (2022). Review of landslide susceptibility assessment based on knowledge mapping. Stochastic Environmental Research and Risk Assessment, 36, 2399–2417. https://doi.org/10.1007/s00477-021-02165-z
  • Youssef, K., Shao, K., Moon, S., & Bouchard, L.-S. (2023). Landslide susceptibility modeling by interpretable neural network. Nature Communications Earth & Environment, 4, Article 162. https://doi.org/10.1038/s43247-023-00806-5
  • Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674.
  • Wubalem, A. (2021). Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenvironmental Disasters, 8(1), 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2
  • Xing, Y., Yue, J., Guo, Z., Chen, Y., Hu, J., & Travé, A. (2021). Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang Mountains of China. Frontiers in Earth Science, 9, Article 722491. https://doi.org/10.3389/feart.2021.722491
  • Xing, Y., Huang, S., Yue, J., Chen, Y., Xie, W., Wang, P., Xiang, Y., & Peng, Y. (2023). Patterns of influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction. Natural Hazards, 118, 709–727. https://doi.org/10.1007/s11069-023-06025-7
  • Zhang, J., Qian, J., Lu, Y., Li, X., & Song, Z. (2024). Study on landslide susceptibility based on multi-model coupling: A case study of Sichuan Province, China. Sustainability, 16(16), Article 6803. https://doi.org/10.3390/su16166803
  • Zong, H., Dai, Q., & Zhu, J. (2024). Ensemble predictions of rainfall-induced landslide risk under climate change in China integrating antecedent soil-wetness factors. Atmosphere, 15(8), Article 1013. https://doi.org/10.3390/atmos15081013

Landslide Susceptibility Analysis of Esmahanım Stream Basin (Düzce) by Using Bayesian Probability Model and Frequency ratio (Fr) Method

Yıl 2025, Cilt: 6 Sayı: 2, 252 - 276, 27.09.2025
https://doi.org/10.48123/rsgis.1708584

Öz

In this study, it is aimed to conduct landslide susceptibility analysis of Esmahanim Stream Basin by using Bayesian Probability Model and Frequency Ratio (FR) Method. Bordered by Duzce Province in the Western Black Sea Region, the basin is located within the water collection area of Melen River. Following analyses were performed: Lithology, elevation, slope, curvature, aspect, topographic wetness index (TWI), stream power index (SPI), distance to streams, stream density, proximity to roads, precipitation, land cover and Normalized Difference Vegetation Index (NDVI), which affect landslide susceptibility. These parameters were reclassified with the natural range method and the landslide inventory data converted to raster format was superimposed with zonal statistics. Thus, the landslide and landslide-free cell numbers of the subgroups were found. The weight values of the subgroups on the landslide were found with the formula applied in the Bayesian probability model and frequency ratio methods, the layers were processed into the attribute table and the susceptibility map was made. The accuracy of the susceptibility map was determined by ROC analysis using control (test) landslides. The Area Under the Curve (AUC) value was found as 0.815 for the Bayesian Probability Model and 0.791 for the frequency ratio.

Kaynakça

  • Acharya, T. D. (2018). Regional scale landslide hazard assessment using machine learning methods in Nepal [Doctoral dissertation, Kangwon National University].
  • Afet ve Acil Durum Yönetimi Başkanlığı. (2022). Afet bilgileri envanteri. İçişleri Bakanlığı, Afet ve Acil Durum Yönetimi Başkanlığı, Ankara.
  • Agboola, G., Beni, L. H., Elbayoumi, T., & Thompson, G. (2024). Optimizing landslide susceptibility mapping using machine learning and geospatial techniques. Ecological Informatics, 81, Article 102583. https://doi.org/10.1016/j.ecoinf.2024.102583
  • Akıncı, H., Yavuz Özalp, A., Özalp, M., Temuçin Kılıçer, S., Kılıçoğlu, C., & Everan, E. (2014a, 14–17 Ekim). Bayes olasılık teoremi kullanılarak heyelan duyarlılık haritalarının üretilmesi [Bildiri sunumu]. 5. Uzaktan Algılama–CBS Sempozyumu (UZAL–CBS 2014), İstanbul.
  • Akıncı, H., Yavuz Özalp, A., Özalp, M., Kılıçoğlu, C., Everan, E., & Temuçin Kılıçer, S. (2014b). Artvin il merkezinin heyelan duyarlılık haritalarının üretilmesi. Artvin Çoruh Üniversitesi Bilimsel Araştırma Projeleri Koordinatörlüğü (AÇÜBAP), Bilimsel Araştırma Projesi sonuç raporu.
  • Akıncı, H., Yavuz Özalp, A., & Temuçin Kılıçer, S. (2015). Coğrafi bilgi sistemleri ve AHP yöntemi kullanılarak planlı alanlarda heyelan duyarlılığının değerlendirilmesi: Artvin örneği. Doğal Afetler ve Çevre Dergisi, 1(1–2), 40–53. https://doi.org/10.21324/dacd.20952
  • Akıncı, H., Doğan, S., & Kılıçoğlu, C. (2017). Landslide susceptibility mapping of Canik (Samsun) district using Bayesian probability and frequency ratio models. Selcuk University Journal of Engineering Science and Technology, 5(3), 283–299. https://doi.org/10.15317/Scitech.2017.89
  • Akıncı, H., Kılıçoğlu, C., & Doğan, S. (2020). Random forest-based landslide susceptibility mapping in coastal regions of Artvin, Turkey. ISPRS International Journal of Geo-Information, 9(9), Article 553. https://doi.org/10.3390/ijgi9090553
  • Aksoy, H. (2023). Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility. Environmental Monitoring and Assessment, 195, Article 1525. https://doi.org/10.1007/s10661-023-12100-0
  • Ali, Y., Gugsa, T. H., & Raghuvanshi, T. K. (2024). GIS-based statistical analysis for landslide susceptibility evaluation and zonation mapping: A case from Blue Nile Gorge, Gohatsion–Dejen road corridor, Central Ethiopia. Environmental Challenges, 16, Article 100968. https://doi.org/10.1016/j.envc.2024.100968
  • Altun, İ. E., & Aksay, A. (2002a). 1/100.000 ölçekli jeoloji haritaları Ereğli F26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Altun, İ. E., & Aksay, A. (2002b). 1/100.000 ölçekli jeoloji haritaları açınsamalı Ereğli F26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara
  • Arca, D. (2024). A comparison of GIS-based landslide susceptibility assessment of the Merkez and Ovacık districts (Karabük, NW Türkiye) by frequency ratio and fuzzy inference system methods. Environmental Engineering and Management Journal, 23(2), 359–376.
  • ArcGIS. (2025). Sentinel-2 10m Land Use/Land Cover Time Series. 11 Nisan 2025’te https://www.arcgis.com/home/item.html?id=cfcb7609de5f478eb7666240902d4d3d adresinden alındı.
  • ArcGIS Living Atlas. (2025). Sentinel-2 10-Meter Land Use/Land Cover. 11 Nisan 2025’te https://livingatlas.arcgis.com/landcover/ adresinden alındı.
  • Avci, V. (2023). Esmahanım Deresi Havzası’nın (Akçakoca–Düzce) morfometrik özellikleri ve taşkınlara etkisi. Bartın Orman Fakültesi Dergisi, 25(1), 96–118. https://doi.org/10.24011/barofd.1148666
  • Aydın, M. C., Sevgi Birincioğlu, E., & Büyüksaraç, A. (2022). Landslide susceptibility mapping in Bitlis Province using GIS-based AHP method. Türk Uzaktan Algılama ve CBS Dergisi, 3(2), 160–171. https://doi.org/10.48123/rsgis.1119723
  • Aydınözü, D. (2013). Yükseldikçe bölgelerimize göre her 100 m’deki yağış artışı üzerine bir deneme. Marmara Coğrafya Dergisi, 17, 174–186.
  • Aydoğan, E., & Dağ, S. (2023). İstatistiksel yöntemlerle Yukarı Karasu Havzası’nın kuzeydoğu bölümünün (Erzurum) heyelan duyarlılık analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(1), 64–82. https://doi.org/10.48123/rsgis.1202140
  • Badavath, N., Sahoo, S., & Samal, R. (2024). Landslide susceptibility mapping for West-Jaintia Hills District, Meghalaya. Sādhanā, 49, Article 52. https://doi.org/10.1007/s12046-023-02404-9
  • Başara, A. C., Tabar, M. E., & Şişman, Y. (2021). Landslide susceptibility mapping of Samsun (Turkey) Province using frequency ratio and AHP methods. Turkish Journal of Geographic Information Systems, 3(1), 24–30.
  • Batar, A. K., & Watanabe, T. (2021). Landslide susceptibility mapping and assessment using geospatial platforms and weights of evidence (WoE) method in the Indian Himalayan region: Recent developments, gaps, and future directions. ISPRS International Journal of Geo-Information, 10(3), Article 114. https://doi.org/10.3390/ijgi10030114
  • Baum, R. L., Savage, W. Z., & Godt, J. W. (2002). TRIGRS—A Fortran program for transient rainfall infiltration and grid-based regional slope-stability analysis, Version 2.0 (Open-File Report 2008–1159). U.S. Geological Survey.
  • Beven, K. J., & Kirkby, M. J. (1979). A physically based, variable contributing area model of basin hydrology / Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrological Sciences Journal, 24(1), 43–69.
  • Bhuyan, K., Rana, K., Ferrer, J. V., Cotton, F., Öztürk, U., Catani, F., & Malik, N. (2024). Landslide topology uncovers failure movements. Nature, Nature Communications, 15, Article 2633. https://doi.org/10.1038/s41467-024-46741-7
  • Bonham-Carter, G. F. (2014). Geographic information systems for geoscientists: Modelling with GIS (Vol. 13). Elsevier.
  • Bragagnolo, L., da Silva, R. V., & Grzybowski, J. M. V. (2020). Artificial neural network ensembles applied to the mapping of landslide susceptibility. Catena, 184, Article 104240. https://doi.org/10.1016/j.catena.2019.104240
  • Catani, F., Lagomarsino, D., Segoni, S., & Tofani, V. (2013). Landslide susceptibility estimation by random forests technique: Sensitivity and scaling issues. Natural Hazards and Earth System Sciences, 13(11), 2815–2831.
  • Chaabane, F. Z., Lamine, S., Guettouche, M. S., Bachari, N. E. I., & Hallal, N. (2024). Landslide risk assessments through multicriteria analysis. ISPRS International Journal of Geo-Information, 13, Article 303. https://doi.org/10.3390/ijgi13090303
  • Chen, W., Xie, X., Wang, J., Pradhan, B., Hong, H., Bui, D. T., Duan, Z., & Ma, J. (2017). A comparative study of logistic model tree, random forest, and classification and regression tree models for spatial prediction of landslide susceptibility. Catena, 151, 147–160.
  • Chen, Z., Quan, H., Jin, R., Jin, A., Lin, Z., Jin, G., & Jin, G. (2024a). Assessment of landslide susceptibility using the PCA and ANFIS with various metaheuristic algorithms. KSCE Journal of Civil Engineering, 28, 1461–1474. https://doi.org/10.1007/s12205-024-1598-y
  • Chen, Z., Tang, J., & Song, D. (2024b). Modeling landslide susceptibility using alternating decision tree and support vector. Terrestrial, Atmospheric and Oceanic Sciences, 35, Article 12. https://doi.org/10.1007/s44195-024-00074-6
  • Conforti, M., & Letto, F. (2021). Modeling shallow landslide susceptibility and assessment of the relative importance of predisposing factors, through a GIS-based statistical analysis. Geosciences, 11(8), Article 333. https://doi.org/10.3390/geosciences11080333
  • Corominas, J., van Westen, C., Frattini, P., Cascini, L., Malet, J.-P., Fotopoulou, S., Catani, F., Van Den Eeckhaut, M., Mavrouli, O., Agliardi, F., Pitilakis, K., Winter, M. G., Pastor, M., Ferlisi, S., Tofani, V., Hervás, J., & Smith, J. T. (2014). Recommendations for the quantitative analysis of landslide risk. Bulletin of Engineering Geology and the Environment, 73, 209–263. https://doi.org/10.1007/s10064-013-0538-8
  • Corsini, A., Cervi, F., & Ronchetti, F. (2009). Weight of evidence and artificial neural networks for potential groundwater spring mapping: An application to the Mt. Modino area (Northern Apennines, Italy). Geomorphology, 111(1–2), 79–87. https://doi.org/10.1016/j.geomorph.2008.03.015
  • Çellek, S. (2023). Linear parameters causing landslides: A case study of distance to the road, fault, drainage. Kocaeli Journal of Science and Engineering, 6(2), 94–113. https://doi.org/10.34088/kojose.1117817
  • Çevik, E., & Topal, T. (2003). GIS-based landslide susceptibility mapping for a problematic segment of the natural gas pipeline, Hendek (Turkey). Environmental Geology, 44, 949–962. https://doi.org/10.1007/s00254-003-0838-6
  • Dağdelenler, G. (2020). İki farklı örneklem tekniği kullanılarak oluşturulan heyelan duyarlılık haritalarının frekans oranı (FO) yöntemi ile karşılaştırılması. Jeoloji Mühendisliği Dergisi, 44(1), 19–38. https://doi.org/10.24232/jmd.740509
  • Dalkes, M., & Korkmaz, M. S. (2023). Analitik Hiyerarşi Süreci ve Frekans Oranı yöntemlerinin heyelan duyarlılık analizinde karşılaştırılması: Trabzon ili Akçaabat ve Düzköy ilçeleri örneği. Doğal Afetler ve Çevre Dergisi, 9(1), 16–38. https://doi.org/10.21324/dacd.1105000
  • Demir, G. (2011). Kuzey Anadolu Fayı üzerinde Niksar–Suşehri arasındaki alanın CBS tabanlı heyelan duyarlılık analizi [Doktora tezi, Karadeniz Teknik Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Demir, G. (2018). Coğrafi Bilgi Sistemleri ile Suşehri (Sivas) heyelan duyarlılık analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 8(1), 96–112. https://doi.org/10.17714/gumusfenbil.299987
  • Demir, V., & Ülke Keskin, A. (2022). Taşkın tehlike haritalarının oluşturulması (Samsun, Mert Irmağı örneği). Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(1), 47–54. https://doi.org/10.56130/tucbis.1120501
  • Deng, X., Li, L., & Tan, Y. (2017). Validation of spatial prediction models for landslide susceptibility mapping by considering structural similarity. ISPRS International Journal of Geo-Information, 6(4), Article 103. https://doi.org/10.3390/ijgi6040103
  • Dietrich, W. E., Reiss, R., Hsu, M. L., & Montgomery, D. R. (1995). A process-based model for colluvial soil depth and shallow landsliding using digital elevation data. Hydrological Processes, 9(3–4), 383–400.
  • Dilekçi, S., Marangoz, A. M., & Ateşoğlu, A. (2021). Zonguldak ve Ereğli Orman İşletme Müdürlükleri orman yangını risk alanlarının belirlenmesi. Geomatik, 6(1), 44–53. https://doi.org/10.29128/geomatik.660623
  • Duman, T. Y., Emre, Ö., Çan, T., Nefeslioğlu, H. A., Keçer, M., Doğan, A., Durmaz, S., & Ateş, Ş. (2005). 1/500 000 Ölçekli Türkiye Heyelan Envanteri Haritası Zonguldak Paftası, MTA Genel Müdürlüğü.
  • EarthExplorer. (2025). USGS EarthExplorer data portal. 11 Nisan 2025’te https://earthexplorer.usgs.gov/ adresinden alındı.
  • Ekinci, D. (2011). Zonguldak–Hisarönü arasındaki Karadeniz akaçlama havzasının kütle hareketleri duyarlılık analizi. Titiz Yayıncılık.
  • El Jazouli, A., Barakat, A., & Khellouk, R. (2019). GIS–multicriteria evaluation using AHP for landslide susceptibility mapping in Oum Er Rbia high basin (Morocco). Geoenvironmental Disasters, 6, Article 3. https://doi.org/10.1186/s40677-019-0119-7
  • Emre, Ö., Duman, T. Y., Özalp, S., Elmacı, H., Olgun, Ş., & Şaroğlu, F. (2013). Açıklamalı Türkiye diri fay haritası (Ölçek 1:1.250.000). Maden Tetkik ve Arama Genel Müdürlüğü.
  • Environmental Systems Research Institute. (2024). Sentinel-2 10-Meter Land Use/Land Cover. 12 Aralık 2024’te https://livingatlas.arcgis.com/landcover/ adresinden alındı.
  • Erener, A., & Düzgün, H. S. B. (2010). Improvement of statistical landslide susceptibility mapping by using spatial and global regression methods in the case of Møre and Romsdal (Norway). Landslides, 7, 55–68.
  • Ergünay, O. (2007, 5–7 Aralık). Türkiye’nin afet profili [Bildiri sunumu]. TMMOB Afet Sempozyumu, Ankara, Türkiye.
  • Fidan, S., & Görüm, T. (2020). Türkiye’de ölümcül heyelanların dağılım karakteristikleri ve ulusal ölçekte öncelikli alanların belirlenmesi. Türk Coğrafya Dergisi, 74, 123–134. https://doi.org/10.17211/tcd.731596
  • Froude, M. J., & Petley, D. N. (2018). Global fatal landslide occurrence from 2004 to 2016. Natural Hazards and Earth System Sciences, 18(8), 2161–2181. https://doi.org/10.5194/nhess-18-2161-2018
  • Gedik, İ., & Aksay, A. (2002a). 1/100.000 ölçekli jeoloji haritaları Adapazarı G25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Gedik, İ., & Aksay, A. (2002b). 1/100.000 ölçekli jeoloji haritaları açınsamalı Adapazarı G25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Getachew, N., & Meten, M. (2021). Weights of evidence modeling for landslide susceptibility mapping of Kabi–Gebro locality, Gundomeskel area, Central Ethiopia. Geoenvironmental Disasters, 8, Article 6. https://doi.org/10.1186/s40677-021-00177-z
  • Görüm, T. (2006). Coğrafi Bilgi Sistemi ve istatistiksel yöntemler kullanılarak heyelan duyarlılık analizi: Melen Boğazı ve yakın çevresi [Yüksek lisans tezi, İstanbul Üniversitesi]. YÖK Ulusal Tez Merkezi.
  • Gu, T., Duan, P., Wang, M., Li, J., & Zhang, Y. (2024). Effects of non-landslide sampling strategies on machine learning models in landslide susceptibility mapping. Nature Scientific Reports, 14, Article 7201. https://doi.org/10.1038/s41598-024-57964-5
  • Gulbet, E., & Getahun, B. (2024). Landslide susceptibility mapping using frequency ratio and analytical hierarchy process method in Awabel Woreda, Ethiopia. Quaternary Science Advances, 16, Article 100246. https://doi.org/10.1016/j.qsa.2024.100246
  • Guo, Z., Shi, Y., Huang, F., Fan, X., & Huang, J. (2021). Landslide susceptibility zonation method based on C5.0 decision tree and K-means cluster algorithms to improve the efficiency of risk management. Geoscience Frontiers, 12(6), Article 101249. https://doi.org/10.1016/j.gsf.2021.101249
  • Guzzetti, F., Carrara, A., Cardinali, M., & Reichenbach, P. (1999). Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology, 31(1-4), 181–216.
  • Güneş, B., & Kömüşcü, A. Ü. (2025). Coğrafi Bilgi Sistemleri (CBS) tabanlı AHS yöntemi ile Erzincan–Sivas karayolu ve çevresinin heyelan duyarlılık analizi. Doğal Afetler ve Çevre Dergisi, 11(1), 89–103.
  • Han, Y., & Semnani, S. J. (2025). Important considerations in machine learning-based landslide susceptibility assessment under future climate conditions. Acta Geotechnica, 20, 475–500. https://doi.org/10.1007/s11440-024-02363-3
  • Harita Genel Komutanlığı. (2001). 1/25.000 Ölçekli Topoğrafya Haritaları (F25c3, F26d4, G25b2 ve G26a1 Paftaları). Harita Genel Komutanlığı, Ankara.
  • Haque, U., da Silva, P. F., Devoli, G., Pilz, J., Zhao, B., Khaloua, A., Wilopo, W., Andersen, P., Lu, P., Lee, J., Yamamoto, T., Keellings, D., Wu, J. H., & Glass, G. E. (2019). The human cost of global warming: Deadly landslides and their triggers (1995–2014). Science of the Total Environment, 682, 673–684. https://doi.org/10.1016/j.scitotenv.2019.03.415
  • Highland, L. M., & Bobrowsky, P. (2008). The landslide handbook – A guide to understanding landslides (Circular 1325, 129). U.S. Geological Survey.
  • Huang, W., Ding, M., Li, Z., Yu, J., Ge, D., Liu, Q., & Yang, J. (2023). Landslide susceptibility mapping and dynamic response along the Sichuan–Tibet transportation corridor using deep learning algorithms. Catena, 222, Article 106866. https://doi.org/10.1016/j.catena.2022.106866
  • Jallayu, P. T., Sharma, A., & Singh, K. (2024). Vulnerability of highways to landslide using landslide susceptibility zonation in GIS: Mandi District, India. Innovative Infrastructure Solutions, 9, Article 354. https://doi.org/10.1007/s41062-024-01653-9
  • İrcan, M. R., Kale, M. M., & Duman, N. (2024). Morfometrik analizlerle taşkın duyarlılık değerlendirmesi: Şanlıurfa örneği. Geomatik, 9(3), 361–374. https://doi.org/10.29128/geomatik.1506840
  • Kanwal, S., Atif, S., & Shafiq, M. (2016). GIS-based landslide susceptibility mapping of northern areas of Pakistan: A case study of Shigar and Shyok Basins. Geomatics, Natural Hazards and Risk, 8(2), 348–366.
  • Karakoca, E., & Ünver, A. (2025). Analitik hiyerarşi süreci ve coğrafi bilgi sistemleri kullanarak Eşen Çayı Havzası’nda taşkın riski değerlendirmesi ve haritalandırılması. Geomatik, 10(1), 127–143.
  • Karaman, M. O., Çabuk, S. N., & Pekkan, E. (2022). Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey. Environmental Science and Pollution Research, 29, 91285–91305. https://doi.org/10.1007/s11356-022-21931-2
  • Kavzoğlu, T., Şahin, E. K., & Çölkesen, İ. (2014). Landslide susceptibility mapping using GIS-based multi-criteria decision analysis, support vector machines, and logistic regression. Landslides, 11, 425–439. https://doi.org/10.1007/s10346-013-0391-7
  • Kaya, C., Öztürk, Y., Karataş, A., Sayın, H., & Balcıoğlu, Y. E. (2024). Ağrı Dağı volkanik kütlesi’nde lahar oluşumları ve lahar duyarlılığının CBS tabanlı analizi (Doğu Anadolu–Kuzeybatı İran). Geomatik, 10(1), 29–46.
  • Kebeba, O., Shano, L., Chemdesa, Y., & Jothimani, M. (2024). Integration of geospatial analysis, frequency ratio, and analytical hierarchy process for landslide susceptibility assessment in the Maze Catchment, Omo Valley, southern Ethiopia. Quaternary Science Advances, 15, Article 100203. https://doi.org/10.1016/j.qsa.2024.100203
  • Ke, C., He, S., & Qin, Y. (2023). Comparison of natural breaks method and frequency ratio dividing attribute intervals for landslide susceptibility mapping. Bulletin of Engineering Geology and the Environment, 82, Article 384. https://doi.org/10.1007/s10064-023-03392-0
  • Khosravi, K., Pourghasemi, H. R., Chapi, K., & Bahri, M. (2016). Flash flood susceptibility analysis and its mapping using different bivariate models in Iran: A comparison between Shannon’s entropy, statistical index, and weighting factor models. Environmental Monitoring and Assessment, 188, Article 656. https://doi.org/10.1007/s10661-016-5665-9
  • Kılıçoğlu, C. (2020). Frekans oranı metodu ve Bayesyen olasılık modeli kullanılarak Samsun ili Vezirköprü ilçesinin heyelan duyarlılık haritasının üretilmesi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 20(1), 138–154. https://doi.org/10.35414/akufemubid.658662
  • Klose, M. (2015). Landslide databases as tools for integrated assessment of landslide risk. Springer.
  • Lee, S., & Min, K. (2001). Statistical analysis of landslide susceptibility at Yongin, Korea. Environmental Geology, 40, 1095–1113. https://doi.org/10.1007/s002540100310
  • Lee, S., & Talib, J. A. (2005). Probabilistic landslide susceptibility and factor effect analysis. Environmental Geology, 47, 982–990. https://doi.org/10.1007/s00254-005-1228-z
  • Luu, C., Ha, H., Tran, X. T., Vu, T. H., & Bui, Q. D. (2024). Landslide susceptibility and building exposure assessment using machine learning models and geospatial analysis techniques. Advances in Space Research, 74(11), 5489–5513. https://doi.org/10.1016/j.asr.2024.08.046
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2002). 1/500.000 ölçekli Türkiye jeoloji haritaları Zonguldak paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Maden Tetkik ve Arama Genel Müdürlüğü. (2025). 1/25.000 ölçekli sayısal jeoloji haritaları. Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Mandrekar, J. N. (2010). Receiver operating characteristic curve in diagnostic test assessment. Journal of Thoracic Oncology, 5(9), 1315–1316. https://doi.org/10.1097/JTO.0b013e3181ec173d
  • Mengstie, L., Nebere, A., Jothimani, M., & Taye, B. (2024). Landslide susceptibility assessment in Addi Arkay, Ethiopia using GIS, remote sensing, and AHP. Quaternary Science Advances, 15, Article 100217. https://doi.org/10.1016/j.qsa.2024.100217
  • Meteoroloji Genel Müdürlüğü. (2020). Akçakoca sıcaklık ve yağış verileri. Meteoroloji Genel Müdürlüğü, Ankara.
  • Mersha, T., & Meten, M. (2020). GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenvironmental Disasters, 7, Article 20. https://doi.org/10.1186/s40677-020-00155-x
  • Meunier, P., Hovius, N., & Haines, J. A. (2008). Topographic site effects and the location of earthquake-induced landslides. Earth and Planetary Science Letters, 275(3–4), 221–232. https://doi.org/10.1016/j.epsl.2008.07.020
  • Moazzam, M. F. U., Vansarochana, A., Boonyanuphap, J., Choosumrong, S., Rahman, G., & Djueyep, G. P. (2020). Spatio-statistical comparative approaches for landslide susceptibility modeling: Case of Mae Phun, Uttaradit Province, Thailand. SN Applied Sciences, 2, Article 384. https://doi.org/10.1007/s42452-020-2106-8
  • Montgomery, D. R., & Dietrich, W. E. (1994). A physically based model for the topographic control on shallow landsliding. Water Resources Research, 30(4), 1153–1171. https://doi.org/10.1029/93WR02979
  • Montgomery, D. R., Sullivan, K., & Greenberg, H. M. (1998). Regional test of a model for shallow landsliding. Hydrological Processes, 12(6), 943–955.
  • Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–30. https://doi.org/10.1002/hyp.3360050103
  • Mutlu, S., Cindioğlu, İ., Kul, A. Ö., & Sağlam Selçuk, A. (2022). Coğrafi Bilgi Sistemi (CBS) ve Parametre Puanlama Yöntemi ile Hakkâri ili çığ tehlike haritasının oluşturulması. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 4(2), 71–78.
  • Nohani, E., Moharrami, M., Sharafi, S., Khosravi, K., Pradhan, B., Pham, B. T., Lee, S., & Melesse, A. M. (2019). Landslide susceptibility mapping using different GIS-based bivariate models. Water, 11(7), Article 1402. https://doi.org/10.3390/w11071402
  • Olğaç, İ., & Doğan, M. (2024). Düzce Akçakoca ilçesinde köy yerleşmelerinin coğrafi açıdan değerlendirilmesi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 34(2), 469–482. https://doi.org/10.18069/firatsbed.1436601 OpenStreetMap. (2025). https://www.openstreetmap.org/#map=9/40.874/31.690
  • Özdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197. https://doi.org/10.1016/j.jseaes.2012.12.014
  • Öz, T. (2025). Heyelan duyarlılığının Analitik Hiyerarşi Süreci (AHS) ve Frekans Oranı (FR) ile belirlenmesi: Kürk Çayı Havzası (Elazığ) örneği. Fırat University Journal of Social Sciences, 35(2), 467–485.
  • Öz, T., & Günek, H. (2021). Solaklı Havzası’nın (Trabzon) heyelan duyarlılığı ve yerleşim yeri risk analizi. International Journal of Geography and Geography Education, 44, 396–412. https://doi.org/10.32003/igge.931516
  • Özşahin, E. (2014). Tekirdağ ilinde Coğrafi Bilgi Sistemleri ve Analitik Hiyerarşi Süreci kullanarak heyelan duyarlılık analizi. Humanitas – Uluslararası Sosyal Bilimler Dergisi, 2(3), 167–186. https://doi.org/10.20304/husbd.84015
  • Özşahin, E. (2015). Coğrafi Bilgi Sistemleri yardımıyla heyelan duyarlılık analizi: Ganos Dağı örneği (Tekirdağ). Harita Teknolojileri Elektronik Dergisi, 7(1), 47–63. https://doi.org/10.15659/hartek.15.04.68
  • Özşahin, E., & Öztürk, M. (2024). Kentsel heyelanlara bir örnek: Alkaya Heyelanı (Tekirdağ). Türk Uzaktan Algılama ve CBS Dergisi, 5(2), 240–253. https://doi.org/10.48123/rsgis.1530698
  • Pehlivan, Ş., Bilginer, E., & Aksay, A. (2002). 1/100.000 ölçekli jeoloji haritaları Adapazarı G26 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi, Ankara.
  • Pourghasemi, H. R., Pradhan, B., Gökçeoğlu, C., & Moezzi, K. D. (2013). A comparative assessment of prediction capabilities of Dempster–Shafer and Weights-of-evidence models in landslide susceptibility mapping using GIS. Geomatics, Natural Hazards and Risk, 4(2), 93–118.
  • Pradhan, B. (2010). Landslide susceptibility mapping of a catchment area using frequency ratio, fuzzy logic and multivariate logistic regression approaches. Journal of the Indian Society of Remote Sensing, 38, 301–320. https://doi.org/10.1007/s12524-010-0020-z
  • Radbruch-Hall, D. (1982). Landslide overview map of the conterminous United States (Vol. 1183). US Government Printing Office.
  • Rahaman, A., Dondapati, A., Gupta, S., & Raj, R. (2024). Leveraging artificial neural networks for robust landslide susceptibility mapping: A geospatial modeling approach in the ecologically sensitive Nilgiri District, Tamil Nadu. Geohazard Mechanics, 2(4), 258–269. https://doi.org/10.1016/j.ghm.2024.07.001
  • Rahmati, O., Samadi, M., Shahabi, H., Azareh, A., Rafiei-Sardooi, E., Alilou, H., Melesse, A. M., Pradhan, B., Chapi, K., & Shirzadi, A. (2019). SWPT: An automated GIS-based tool for prioritization of sub-watersheds based on morphometric and topo-hydrological factors. Geoscience Frontiers, 10(6), 2167–2175. https://doi.org/10.1016/j.gsf.2019.03.009
  • Reichenbach, P., Rossi, M., Malamud, B. D., Mihir, M., & Guzzetti, F. (2018). A review of statistically based landslide susceptibility models. Earth-Science Reviews, 180, 60–91. https://doi.org/10.1016/j.earscirev.2018.03.001
  • Ross, S. M. (2014). Introduction to probability and statistics for engineers and scientists. Academic Press.
  • SAGA GIS. (2024). Tool Stream Power Index. SAGA-GIS Tool Library Documentation. 12 Aralık 2024’te https://saga-gis.sourceforge.io/saga_tool_doc/3.0.0/ta_hydrology_21.html adresinden alındı.
  • Senouci, R., Taibi, N. E., Teodoro, A. C., Duarte, L., Mansour, H., & Meddah, R. Y. (2021). GIS-based expert knowledge for landslide susceptibility mapping (LSM): Case of Mostaganem Coast District, west of Algeria. Sustainability, 13(2), Article 630. https://doi.org/10.3390/su13020630
  • Shano, L., Raghuvanshi, T. K., & Meten, M. (2020). Landslide susceptibility evaluation and hazard zonation techniques – A review. Geoenvironmental Disasters, 7, Article 18. https://doi.org/10.1186/s40677-020-00152-0
  • Sharma, M., & Gupta, A. (2017). The practice of business statistics: Using statistics for decision making. Khanna Book Publishing.
  • Shirani, K., Pasandi, M., & Arabameri, A. (2018). Landslide susceptibility assessment by Dempster–Shafer and Index of Entropy models, Sarkhoun Basin, Southwestern Iran. Natural Hazards, 93, 1379–1418. https://doi.org/10.1007/s11069-018-3356-2
  • Silalahi, F. E. S., Pamela Arifianti, Y., & Hidayat, F. (2019). Landslide susceptibility assessment using frequency ratio model in Bogor, West Java, Indonesia. Geoscience Letters, 6, Article 10. https://doi.org/10.1186/s40562-019-0140-4
  • Singh, K., & Kumar, V. (2018). Hazard assessment of landslide disaster using information value method and analytical hierarchy process in highly tectonic Chamba region in the bosom of Himalaya. Journal of Mountain Science, 15, 808–824. https://doi.org/10.1007/s11629-017-4634-2
  • Sujatha, E. R., & Sudharsan, J. S. (2024). Landslide susceptibility mapping methods—A review. In G. K. Panda, R. Shaw, S. C. Pal, U. Chatterjee, & A. Saha (Eds.), Landslide: Susceptibility, risk assessment and sustainability (Advances in Natural and Technological Hazards Research, Vol. 52). Springer, Cham.
  • Sun, D., Gu, Q., Wen, H., Xu, J., Zhang, Y., Shi, S., Xue, M., & Zhou, X. (2023). Assessment of landslide susceptibility along mountain highways based on different machine learning algorithms and mapping units by hybrid factors screening and sample optimization. Gondwana Research, 123, 89–106. https://doi.org/10.1016/j.gr.2022.07.013
  • Sunkar, M., & Avcı, V. (2016). Şepker Çayı Aşağı Havzası’nın (Adıyaman Batısı) Heyelan Duyarlılık Analizi. Fırat Üniversitesi Sosyal Bilimler Dergisi, 26(2), 13–43. https://doi.org/10.18069/firatsbed.346901
  • Taş, M. A., & Ceylan, M. A. (2020). Melen Çayı Havzası’nda 17–18 Temmuz 2019 tarihinde meydana gelen sel afetinin Uğurlu, Esmahanım, Dilaver ve Davutağa köylerine (Akçakoca) etkilerinin Coğrafi Bilgi Sistemleri (CBS) yazılımlarıyla tespiti. Uluslararası Sosyal Araştırmalar Dergisi, 13(74), 174–192.
  • Timur, E., & Aksay, A. (2002). 1/100.000 ölçekli jeoloji haritaları Ereğli F-24–F25 paftası. MTA Genel Müdürlüğü, Jeoloji Etütleri Dairesi.
  • Türkiye İstatistik Kurumu. (2025). Akçakoca ve Çilimli köy yerleşmelerinin nüfus miktarı. 11 Nisan 2025’te https://biruni.tuik.gov.tr/medas/?kn=95&locale=tr adresinden alındı.
  • U.S. Geological Survey. (2024). Landsat Normalized Difference Vegetation Index. 12 Aralık 2024’te https://www.usgs.gov/landsat-missions/landsat-normalized-difference-vegetation-index adresinden alındı.
  • Uysal, A., Sunkar, M., & Avci, V. (2025). Malatya ve çevresinde aletsel dönem (1900–2024) depremlerinin mekânsal analizleri. Geomatik, 10(2), 218–240. https://doi.org/10.29128/geomatik.1593289
  • Üzel Günini, N., & Öztürk, D. (2021). Van ili heyelan duyarlılığının frekans oranı yöntemiyle analizi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 26(3), 865–884. https://doi.org/10.17482/uumfd.969246
  • Yağcı, C., & İşcan, F. (2021). GIS-based site suitability analysis of afforestation in Konya Province, Turkey. Türkiye Coğrafi Bilgi Sistemleri Dergisi, 3(2), 89–95.
  • Yang, S., Li, D., Sun, Y., & She, X. (2024). Effect of landslide spatial representation and raster resolution on the landslide susceptibility assessment. Environmental Earth Sciences, 83, Article 132. https://doi.org/10.1007/s12665-024-11442-3
  • Yılmaz, O. S. (2023). Frekans oranı yöntemiyle coğrafi bilgi sistemi ortamında heyelan duyarlılık haritasının üretilmesi: Manisa, Demirci, Tekeler Köyü örneği. Geomatik, 8(1), 42–54. https://doi.org/10.29128/geomatik.1108735
  • Yong, C., Jinlong, D., Fei, G., Bin, T., Tao, Z., Hao, F., Li, W., & Qinghua, Z. (2022). Review of landslide susceptibility assessment based on knowledge mapping. Stochastic Environmental Research and Risk Assessment, 36, 2399–2417. https://doi.org/10.1007/s00477-021-02165-z
  • Youssef, K., Shao, K., Moon, S., & Bouchard, L.-S. (2023). Landslide susceptibility modeling by interpretable neural network. Nature Communications Earth & Environment, 4, Article 162. https://doi.org/10.1038/s43247-023-00806-5
  • Whipple, K. X., & Tucker, G. E. (1999). Dynamics of the stream-power river incision model: Implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research: Solid Earth, 104(B8), 17661–17674.
  • Wubalem, A. (2021). Landslide susceptibility mapping using statistical methods in Uatzau catchment area, northwestern Ethiopia. Geoenvironmental Disasters, 8(1), 1–21. https://doi.org/10.21203/rs.3.rs-15731/v2
  • Xing, Y., Yue, J., Guo, Z., Chen, Y., Hu, J., & Travé, A. (2021). Large-scale landslide susceptibility mapping using an integrated machine learning model: A case study in the Lvliang Mountains of China. Frontiers in Earth Science, 9, Article 722491. https://doi.org/10.3389/feart.2021.722491
  • Xing, Y., Huang, S., Yue, J., Chen, Y., Xie, W., Wang, P., Xiang, Y., & Peng, Y. (2023). Patterns of influence of different landslide boundaries and their spatial shapes on the uncertainty of landslide susceptibility prediction. Natural Hazards, 118, 709–727. https://doi.org/10.1007/s11069-023-06025-7
  • Zhang, J., Qian, J., Lu, Y., Li, X., & Song, Z. (2024). Study on landslide susceptibility based on multi-model coupling: A case study of Sichuan Province, China. Sustainability, 16(16), Article 6803. https://doi.org/10.3390/su16166803
  • Zong, H., Dai, Q., & Zhu, J. (2024). Ensemble predictions of rainfall-induced landslide risk under climate change in China integrating antecedent soil-wetness factors. Atmosphere, 15(8), Article 1013. https://doi.org/10.3390/atmos15081013
Toplam 139 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri ve Mekansal Veri Modelleme
Bölüm Araştırma Makaleleri
Yazarlar

Vedat Avci 0000-0003-1439-3098

Yayımlanma Tarihi 27 Eylül 2025
Gönderilme Tarihi 4 Haziran 2025
Kabul Tarihi 25 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 2

Kaynak Göster

APA Avci, V. (2025). Bayes Olasılık Modeli ve Frekans Oranı (FO) Yöntemi ile Esmahanım Deresi Havzası’nın (Düzce) Heyelan Duyarlık Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 6(2), 252-276. https://doi.org/10.48123/rsgis.1708584

Creative Commons License
Turkish Journal of Remote Sensing and GIS (Türk Uzaktan Algılama ve CBS Dergisi), Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License ile lisanlanmıştır.