Araştırma Makalesi
BibTex RIS Kaynak Göster

Sınırlı Kafesler Üzerinde Üçgensel Normlar (Konormlar) için Yeni Bir İnşa Metodu

Yıl 2024, , 57 - 73, 30.06.2024
https://doi.org/10.53501/rteufemud.1428002

Öz

Bu çalışmada, L∕{0}'ın en küçük elemana sahip olması kısıtıyla, L'nin [a,b] alt aralığı üzerindeki bir t-normdan, L sınırlı kafesi üzerinde üçgensel normlar (konormlar) inşa etmek için yeni bir metot vermeyi ve literatürdeki inşa metotları ile ilişkisini ortaya koymayı amaçlıyoruz. Ayrıca, yeni inşa metodunun, uygun bir sınırlı kafes üzerinde üçgensel normlar (konormlar) için modifiye bir ordinal toplamına tümevarım yoluyla genelleştirilebileceğini gösteriyoruz.

Kaynakça

  • Birkhoff, G. (1967). Lattice Theory, American Mathematical Society Colloquium Publications, ISBN: 978-0-8218-1025-5, Providence, USA.
  • Butnariu, D., Klement, E.P. (1993). Triangular Norm-Based Measures and Games with Fuzzy Coalitions, Kluwer Academic Publishers, ISBN: 978-90-481-4296-5, Dordrecht, Nedherlands.
  • Çaylı, G.D. (2018). On a new class of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems, 332, 129-143. https://doi.org/10.1016/j.fss.2017.07.015
  • Çaylı, G.D. (2019). Some methods to obtain t-norms and t-conorms on bounded Lattices. Kybernetika, 55(2), 273-294. https://doi.org/10.14736/kyb-2019-2-0273
  • Dan, Y., Hu, B.Q., Qiao, J. (2020). New construction of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems, 395, 40-70. https://doi.org/10.1016/j.fss.2019.05.017
  • Dvořák, A., Holčapek, M. (2020). New construction of an ordinal sum of t-norms and t- conorms on bounded lattices. Information Sciences, 515, 116-131. https://doi.org/10.1016/j.ins.2019.12.003
  • El-Zekey, M. (2020). Lattice-based sum of t-norms on bounded lattices. Fuzzy Sets and Systems, 386, 60-76. https://doi.org/10.1016/j.fss.2019.01.006
  • Ertuğrul, Ü. and Yeşilyurt, M. (2019). Ordinal sums of triangular norms on bounded lattices. Information Sciences, 517, 198-216. https://doi.org/10.1016/j.ins.2019.12.056
  • Ertuğrul, Ü., Karaçal, F., Mesiar, R. (2015). Modified ordinal sums of triangular norms and triangular conorms on bounded lattices. International Journal of Intelligent Systems, 30(7), 807-817. https://doi.org/10.1002/int.21713
  • Ertuğrul, Ü., Kesicioğlu, M.N., Karaçal, F. (2019). Some new construction methods for t- norms on bounded lattices. International Journal of General Systems, 48(7), 775-791. https://doi.ogr/10.1080/03081079.2019.1658757
  • Fodor, J.C. and Roubens, M. (1994). Fuzzy Preference Modelling and Multicriteria Decision Support, Kluwer Academic Publishers, ISBN: 978-90-481-4466-2, Dordrecht, Nedherlands.
  • Gottwald, S. (2001). A Treatise on Many-Valued Logic, Research Studies Press Ltd, ISBN: 0-86380- 262-1, Baldock, U.K.
  • Grabisch, M., Nguyen, H.T., Walker, E.A. (1995). Fundamentals of Uncertaintly Calculi with Applications to Fuzzy Inference, Kluwer Academic Publishers, ISBN: 978-90-481-4477-8, Dordrecht, Nedherlands.
  • Hájek, P. (1998). Metamathematics of Fuzzy Logic, Kluwer Academic Publishers, ISBN: 978-0-7923-5238-9, Dordrecht, Nedherlands.
  • Karaçal, F. and Şanlı, Z. (2022). Some new construction methods of t-norms and t-conorms on bounded lattices. Fuzzy Sets and Systems, 451, 84-93. https://doi.org/10.1016/j.fss.2022.07.002
  • Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M.N. (2019). An extension method for t-norms on subintervals to t-norms on bounded lattices. Kybernetika, 55(6), 976-993. https://doi.org/10.14736/kyb-2019-6-0976
  • Karaçal, F., Kesicioğlu, M.N., Ertuğrul, Ü. (2020). Generalized convex combination of triangular norms on bounded lattices. International Journal of General Systems, 49(3), 277-301. https://doi.org/10.1080/03081079.2020.1730358
  • Klement, E.P., Weber, S. (1991). Generalized measures. Fuzzy Sets and Systems, 40(2), 375-394. https://doi.org/10.1016/0165-0114(91)90166-N
  • Klement, E.P., Mesiar, R., Pap, E. (2000). Triangular Norms, Kluwer Academic Publishers, ISBN: 978-0-7923-6416-0, Dordrecht, Nedherlands.
  • Menger, K. (1942). Statistical metrics. Proceeding of National Academy of Sciences, 28 (12), 535-537. https://doi.org/10.1073/pnas.28.12.535
  • Nelsen, R.B. (1999). An Introduction to Copulas, Springer, ISBN: 0387986235, New York. Nguyen, H.T. and Walker, E. (1997). A First Course in Fuzzy Logic, CRC Press, ISBN: 0-84939-477-5, Boca Raton, USA.
  • Pap, E. (1995). Null-Additive Set Functions, Kluwer Academic Publishers, ISBN: 978-0-7923-3658-7, Dordrecht, Nedherlands.
  • Saminger, S. (2006). On ordinal sums of triangular norms on bounded lattices. Fuzzy Sets and Systems, 157(10), 1403-1416. https://doi.org/10.1016/j.fss.2005.12.021
  • Schweizer, B. and Sklar, A. (1960). Statistical metric spaces. Pacific Journal of Mathematic, 10(1), 313-334. http://dx.doi.org/10.2140/pjm.1960.10.313
  • Sugeno, M. (1974). Theory of Fuzzy Integrals and Its Applications, Ph. D. Thesis, Tokyo Institute of Technology, Tokyo, Japan.
  • Wang, Y.-M., Zhan, H., Liu, H.-W. (2020). Uni-nullnorms on bounded lattices. Fuzzy Sets and Systems, 386, 132-144. https://doi.org/10.1016/j.fss.2019.01.001
  • Weber, S. (1984). ⊥-Decomposable measures and ıntegrals for archimedean t-konorms ⊥. Journal of Mathematical Analysis and Applications, 101, 114-138. https://doi.org/10.1016/0022-247X(84)90061-1
  • Zadeh, L.A. (1965). Fuzzy sets. Information and Control, 8(3), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Cebir ve Sayı Teorisi, Matematiksel Mantık, Kümeler Teorisi, Kafesler ve Evrensel Cebir
Bölüm Araştırma Makaleleri
Yazarlar

Ümit Ertuğrul 0000-0003-0672-8134

Eda Nur Ayvaz 0000-0002-7742-259X

Yayımlanma Tarihi 30 Haziran 2024
Gönderilme Tarihi 29 Ocak 2024
Kabul Tarihi 28 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Ertuğrul, Ü., & Ayvaz, E. N. (2024). Sınırlı Kafesler Üzerinde Üçgensel Normlar (Konormlar) için Yeni Bir İnşa Metodu. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 5(1), 57-73. https://doi.org/10.53501/rteufemud.1428002

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025