Derleme
BibTex RIS Kaynak Göster

Böceklerde Hemositlerin Morfolojik, Sitokimyasal Ve Fonksiyonel Özellikleri

Yıl 2025, Cilt: 6 Sayı: 3, 976 - 986, 31.12.2025
https://doi.org/10.53501/rteufemud.1759958

Öz

Böcek bağışıklık sistemi, humoral ve hücresel bağışıklık olarak iki şekilde çalışır. Humoral savunmalar, antimikrobiyal peptitlerin, oksijen veya nitrojenin reaktif ara maddelerinin ve hemolenfin pıhtılaşmasını veya melanizasyonunu düzenleyen karmaşık enzimatik metabolitlerin üretimini içerir. Hücresel bağışıklık ise fagositoz, nodülasyon ve kapsülleme, pıhtılaşma, dokuların yeniden şekillenmesi gibi hemosit özelindeki temel bağışıklık tepkilerini ifade eder. Böcek bağışıklık sistemi ile ilgili araştırmalar, bu karmaşık ve kompleks sistemin işleyişini anlayabilmek için önemli bulgular elde etmeye devam etmektedir. Böcek hemositlerinin sınıflandırılması da bu sürecin önemli bir parçası olarak karşımıza çıkmaktadır. Bu derlemede, böcek hemositlerinin morfolojik, sitokimyasal ve fonksiyonel özellikleri güncel literatür ışığında değerlendirilmiştir. Çeşitli böcek takımlarında prohemositler, granülositler, plazmatositler, sferülositler ve önositoidler başlıca hücre tipleri olarak tanımlanmıştır. Bazı türlerde bunlara adipohemosit, kristal hücre, lamellosit gibi özel tiplerin eklendiği görülmüştür. Drosophila gibi model organizmalarda hemosit tipleri sınırlı ve farklı terminolojiyle tanımlanırken, Lepidoptera, Diptera, Hemiptera ve Orthoptera gibi takımlarda daha geniş bir çeşitlilik rapor edilmiştir. Ayrıca, tek hücreli RNA dizileme (scRNA-seq) gibi yeni teknolojiler taksonomik sınıflandırmada standartlaşma potansiyeli taşımaktadır. Ancak, türler arası farklılıklar, fizyolojik durum ve deneysel yöntemler nedeniyle hemosit sınıflandırmasında hâlen önemli tutarsızlıklar bulunmaktadır. Böcek hemositlerinin görev ve özelliklerinin net olarak anlaşılması, yalnızca temel entomoloji bilgisine katkı sağlamakla kalmayıp, entegre zararlı yönetimi ve biyokontrol stratejilerinin geliştirilmesi açısından da önem arz etmektedir.

Kaynakça

  • Akai, H. and Sato, S. (1971). An ultrastructural study of the haemopoietic organs of the silkworm. Bombyx mori, Journal of Insect Physiology, 17 (9), 1665-1676. https://doi.org/10.1016/0022-1910(71)90062-X
  • Black, J.L., Clark, M.K., Sword, G.A. (2022). Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. Plos One, 17(2), e0263620. https://doi.org/10.1371/journal.pone.0263620
  • Bogdan, C., Röllinghoff, M., Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12 (1), 64-76. https://doi.org/10.1016/S0952-7915(99)00052-7
  • Brayner, F.A., Araújo, H.R.C., Cavalcanti, M.G.S., Alves, L.C., Peixoto, C.A. (2005). Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (Diptera: Culicidae). Micron, 36 (4), 359-367. https://doi.org/10.1016/j.micron.2004.11.007
  • Brehélin, M., Zachary D., Hoffmann, J. A. (1978). A comparative ultrastructural study of blood cells from nine insect orders. Cell Tissue Research, 195 (1), 45–57. https://doi.org/10.1007/BF00233676
  • Browne, N., Heelan, M., Kavanagh, K. (2013). An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence, 4(7), 597-603. https://doi.org/10.4161/viru.25906
  • Bruno, D., Montali, A., Gariboldi, M., Wrońska, A.K., Kaczmarek, A., Mohamed, A., Tian, L., Casartelli, M., Tettamanti, G. (2023). Morphofunctional characterization of hemocytes in black soldier fly larvae. Insect Science, 30 (4), 912-932. https://doi.org/10.1111/1744-7917.13111
  • Cerenius L. and Söderhall, K. (2021). Immune properties of invertebrate phenoloxidases. Developmental and Comparative Immunology, 122, 104098. https://doi.org/10.1016/j.dci.2021.104098
  • Cho, Y. and Cho, S. (2019). Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. Scientific Reports, 9, 18066. https://doi.org/10.1038/s41598-019-54484-5
  • Cho,Y. and Cho S. (2024). Granulocyte dynamics: a key player in the immune priming effects of crickets. Frontiers in Immunology, 15, 1383498. https://doi.org/10.3389/fimmu.2024.1383498
  • Çelik, D. (2014). Konağa Verilen Indol-3-asetik asit’in Konak Achoria grisella Fabricus, 1794 (Lepidoptera: Pyralidae) Hemositlerine Etkisi, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Türkiye.
  • Fiorotti, J., Menna-Barreto, R.F.S., Gôlo, P.S., Coutinho-Rodrigues, C.J.B., Bitencourt, R.O.B., Spadacci-Morena, D.D., Angelo, I.D.C., Bittencourt, V.R.E.P. (2019). Ultrastructural and cytotoxic effects of Metarhizium robertsii infection on Rhipicephalus microplus hemocytes. Frontiers in Physiology, 10, 654. https://doi.org/10.3389/fphys.2019.00654
  • Gamal, E., Hassan, A., Abdel-Rahman, M., Hassan, M., Tawfik, M. (2023). Immune responses and bioactive peptides of insect hemolymph. Egyptian Academic Journal of Biological Sciences. A, Entomology, 16 (3), 13-25. https://doi.org/10.21608/eajbsa.2023.312076
  • Gillespie, J.P., Kanost, M.R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  • Go, M.S., Cho, Y., Park, K.B., Kim, M., Park, S.S., Park, J., Cho, S. (2022). Classification and characterization of immune haemocytes in the larvae of the Indian fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). European Journal of Entomology, 119, 430–438. https://doi.org/10.14411/eje.2022.045
  • Gold, K.S. and Brückner, K. (2014). Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimental Hematology, 42 (8), 717–727. https://doi.org/10.1016/j.exphem.2014.06.002
  • Goodman C.L., Kang D.S., Stanley D. (2021). Cell line platforms support research into arthropod immunity. Insects, 12, 738. https://doi.org/10.3390/insects12080738
  • Grigorian, M. and Hartenstein, V. (2013). Hematopoiesis and hematopoietic organs in arthropods. Development Genes and Evolution, 223, 103–115. https://doi.org/10.1007/s00427-012-0428-2.
  • Gupta, A.P. (1979). Arthropod Phylogeny (1. Baskı), Van Nostrand Reinhold Company, ISBN: 9780442229733, 044222973, New York, 762 pp.
  • Gupta A.P. (1985). Cellular Elements in the hemolymph, In: Integument, Respiration and Circulation (Eds. Kerkut, G.A., Gilbert, L.I.), Pergamon Press, ISBN: 9780080308043, New York, 625 pp.
  • Hillyer, J.F. and Christensen, B.M. (2002) Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and Cell Biology, 117, 431–440. https://doi.org/10.1007/s00418-002-0408-0
  • Hillyer, J. F., Schmidt, S. L., Christensen, B. M. (2003). Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell and Tissue Research, 313, 117-127. https://doi.org/10.1007/s00441-003-0744-y
  • Hinks C.F., and Arnold, J.W. (1977). Haemopoiesis in Lepidoptera II.: The role of haemopoietic organs. Canadian Journal of Zoology, 55(10), 1740-1755. https://doi.org/10.1139/z77-225
  • Honti, V., Csordas, G., Kurucz, E., Markus, R, Ando, I. (2014). The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Developmental and Comparative Immunology, 42(1), 47–56. https://doi.org/10.1016/j.dci.2013.06.005
  • Hultmark, D. and Ando, I. (2022). Hematopoietic plasticity mapped in Drosophila and other insects. eLife, 11, e78906. https://doi.org/10.7554/eLife.78906
  • Jones, J.C. (1970). Hematopoiesis in insects, In: Regulation of hematopoieis (Eds. Gordon, A.S.), Appleton Press, ISBN: : 0390376531, New York, 766 pp.
  • Kara, A., Tunçsoy, B., Özalp, P. (2020). Cu, Zn ve karışımlarının Galleria mellonella L. (Lepidoptera: Pyralidae) larvalarının hemosit tipleri ve sayıları üzerine etkileri. Anadolu Çevre ve Hayvancılık Bilimleri Dergisi, 5(1), 45-51. https://doi.org/10.35229/jaes.649536
  • Kaaya, G.P. and Ratcliffe, N.A. (1982). Comparative study of hemocytes and associated cells of some medically important dipterans. Journal of Morphology, 173 (3), 351–365. https://doi.org/10.1002/jmor.1051730310
  • Lavine, M.D. and Strand M.R. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology. 32 (10), 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
  • Lanot, R., Zachary, D., Holder, F., Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Developmental Biology, 230 (2), 243-257. https://doi.org/10.1006/dbio.2000.0123
  • Lawrence, P.O. (2008). Hemocytes of Insects: Their Morphology and Function. In: Encyclopedia of Entomology (Eds.Capinera, J.L.), Springer, Dordrecht. ISBN: 978-1-4020-6242-1.
  • Lee, J., Hwang, S., Cho, S. (2016). Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. Scientific Reports. 6, 31722. https://doi.org/10.1038/srep31722
  • Levin, D.M. (2007). An Integrin Required for the Encapsulation Immune Response in the Tobacco Hornworm Manduca sexta L. (Lepidoptera: Sphingidae), PhD Thesis, Kansas State University, Manhattan, Kansas.
  • Lowenberger, C.A. (2001). The innate immune response of Aedes aegypti. Insect Biochemistry and Molecular Biology, 31(3), 219-229. https://doi.org/10.1016/S0965-1748(00)00141-7
  • Meister, M., Hetru, C., Hoffmann, J.A. (2000). The antimicrobial host defense of Drosophila. Current Topics in Microbiology and Immunology, 248, 17-36. https://doi.org/10.1007/978-3-642-59674-2_2
  • Moyetta, N.R., Ramos, F.O., Leyria, J., Canavoso, L.E., Fruttero, L.L. (2021). Morphological and ultrastructural characterization of hemocytes in an ınsect model, the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insects, 12 (7), 640-652. https://doi.org/10.3390/insects12070640
  • Muta, T. and Iwanaga, S. (1996). The role of hemolymph coagulation in innate immunity. Current Opinion in Immunology, 8(1), 41-47. https://doi.org/10.1016/S0952-7915(96)80103-8
  • Nappi, A. J. and Vass, E. (2001). Cytotoxic reactions associated with insect immunity. In: Phylogenetic Perspectives on the Vertebrate Immune System, Beck, G., Sugumaran, M., Cooper, E.L. (eds). Advances in Experimental Medicine and Biology, 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_33
  • Pandey J.P. and Tiwari, R.K. (2012). An overview of ınsect hemocyte science and its future application in applied and biomedical fields. American Journal of Biochemistry and Molecular Biology, 2(3), 82-105. https://doi.org/10.3923/ajbmb.2012.82.105
  • Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C. P. (1985). Invertebrate immunity: basic concepts and recent advances. International Review of Cytology, 97, 186–350. https://doi.org/10.1016/S0074-7696(08)62351-7
  • Ribeiro, C. and Brehelin, M. (2006). Insect haemocytes: What type of cell is that?. Journal of Insect Physiology, 52 (5), 417-429. https://doi.org/10.1016/j.jinsphys.2006.01.005
  • Romoser, W.S. and Stoffolano, J.G. (1994). The Science of Entomology (4. Baskı), WCB Mc Graw-Hill Publishers, ISBN: 0697228487, 9780697228482, United States, 605 pp.
  • Roy, M.C., Nam, K., Kim, J., Stanley, D. Kim Y. (2021). Thromboxane mobilizes insect blood cells to infection foci. Frontiers in Immunology, 12, 791319, 17. https://doi.org/10.3389/fimmu.2021.791319
  • Schmidt, O., Theopold, U., Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays, 23(4), 344-351. https://doi.org/10.1002/bies.1049
  • Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1), 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  • Strand, M. R. and Pech, L.L. (1995). Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. Journal of General Virology, 76(2), 283-291. https://doi.org/10.1099/0022-1317-76-2-283
  • Tepass, U., Liselotte, I., Fessler, L. I., Aziz, A., Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development, 120 (7), 1829-1837. https://doi.org/10.1242/dev.120.7.1829
  • Turnbull, M.W., Martin, S.B., Webb, B.A. (2004). Quantitative analysis of hemocyte morphological abnormalities associated with Campoletis sonorensis parasitization. Journal of Insect Science, 4 (1), 11-26. https://doi.org/10.1093/jis/4.1.11
  • Vogelweith, F., Moret, Y., Monceau, K., Thiéry, D., Moreau, J. (2016). The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. Journal of Insect Physiology, 88, 33-39. https://doi.org/10.1016/j.jinsphys.2016.02.010
  • Wang, S., Miao, S., Li, Y., Wang, J., Li, C., Lu, Y., Li, B. (2024). Morphological and functional characterization of circulatinghemocytes in Tribolium castaneum larvae. Insect Science, 32, 1331-1350. https://doi.org/10.1111/1744-7917.13455
  • Wu, G., Liu, Y., Ding, Y., Yunhong Y. (2016). Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue and Cell, 48 (4), 297-304. https://doi.org/10.1016/j.tice.2016.06.007
  • Wyatt, G.R., Loughheed, T. C., Wyatt, S.S. (1956). The chemistry of insect hemolymph. Journal of General Physiology, 6, 853-868. https://doi.org/10.1085/jgp.39.6.853
  • Zhang, K. and Zhang, X. (2021). Haemocyte variations in 35 species of grasshoppers and locusts. Science Progress, 104 (4), 368504211053551. https://doi.org/10.1177/00368504211053551
  • Zhang, J., Tang, T., Lin, D., Ma, L., Liu, F. (2025). Identification of hemocyte types and characterization of their immune function in the house fly based on morphological observation and single-cell RNA sequencing. Insect Biochemistry and Molecular Biology, 182, 104358. https://doi.org/10.1016/j.ibmb.2025.104358

Morphological, Cytochemical and Functional Properties of Haemocytes in Insects

Yıl 2025, Cilt: 6 Sayı: 3, 976 - 986, 31.12.2025
https://doi.org/10.53501/rteufemud.1759958

Öz

The insect immune system operates through two main mechanisms: humoral and cellular immunity. Humoral defences involve the production of antimicrobial peptides, reactive oxygen or nitrogen intermediates, and complex enzymatic metabolites that regulate haemolymph clotting or melanisation. Cellular immunity, on the other hand, refers to primary immune responses specific to hemocytes, such as phagocytosis, nodulation, encapsulation, clotting and tissue remodelling. Research into the insect immune system continues to yield significant findings that help us to better understand how this intricate and complex system functions. Classifying insect hemocytes is also a crucial part of this process. This review evaluates the morphological, cytochemical and functional characteristics of insect hemocytes in light of current literature. Various insect orders have been found to contain prohemocytes, granulocytes, plasmatocytes, spherulocytes and oenocytoids as their main cell types. Some species also exhibit additional specialised types, such as adipohemocytes, crystal cells, and lamellocytes. In model organisms such as Drosophila, hemocyte types are limited and described using different terminology. In contrast, orders such as Lepidoptera, Diptera, Hemiptera and Orthoptera have been documented to exhibit greater diversity. Furthermore, novel technologies such as single-cell RNA sequencing (scRNA-seq) show promise in standardising taxonomic classification. However, substantial inconsistencies in hemocyte classification remain due to interspecies differences, physiological conditions and experimental methods. A clear understanding of the roles and characteristics of insect hemocytes is valuable not only for advancing basic entomological knowledge, but also for developing integrated pest management and biocontrol strategies.

Kaynakça

  • Akai, H. and Sato, S. (1971). An ultrastructural study of the haemopoietic organs of the silkworm. Bombyx mori, Journal of Insect Physiology, 17 (9), 1665-1676. https://doi.org/10.1016/0022-1910(71)90062-X
  • Black, J.L., Clark, M.K., Sword, G.A. (2022). Physiological and transcriptional immune responses of a non-model arthropod to infection with different entomopathogenic groups. Plos One, 17(2), e0263620. https://doi.org/10.1371/journal.pone.0263620
  • Bogdan, C., Röllinghoff, M., Diefenbach, A. (2000). Reactive oxygen and reactive nitrogen intermediates in innate and specific immunity. Current Opinion in Immunology, 12 (1), 64-76. https://doi.org/10.1016/S0952-7915(99)00052-7
  • Brayner, F.A., Araújo, H.R.C., Cavalcanti, M.G.S., Alves, L.C., Peixoto, C.A. (2005). Ultrastructural characterization of the hemocytes of Culex quinquefasciatus (Diptera: Culicidae). Micron, 36 (4), 359-367. https://doi.org/10.1016/j.micron.2004.11.007
  • Brehélin, M., Zachary D., Hoffmann, J. A. (1978). A comparative ultrastructural study of blood cells from nine insect orders. Cell Tissue Research, 195 (1), 45–57. https://doi.org/10.1007/BF00233676
  • Browne, N., Heelan, M., Kavanagh, K. (2013). An analysis of the structural and functional similarities of insect hemocytes and mammalian phagocytes. Virulence, 4(7), 597-603. https://doi.org/10.4161/viru.25906
  • Bruno, D., Montali, A., Gariboldi, M., Wrońska, A.K., Kaczmarek, A., Mohamed, A., Tian, L., Casartelli, M., Tettamanti, G. (2023). Morphofunctional characterization of hemocytes in black soldier fly larvae. Insect Science, 30 (4), 912-932. https://doi.org/10.1111/1744-7917.13111
  • Cerenius L. and Söderhall, K. (2021). Immune properties of invertebrate phenoloxidases. Developmental and Comparative Immunology, 122, 104098. https://doi.org/10.1016/j.dci.2021.104098
  • Cho, Y. and Cho, S. (2019). Hemocyte-hemocyte adhesion by granulocytes is associated with cellular immunity in the cricket, Gryllus bimaculatus. Scientific Reports, 9, 18066. https://doi.org/10.1038/s41598-019-54484-5
  • Cho,Y. and Cho S. (2024). Granulocyte dynamics: a key player in the immune priming effects of crickets. Frontiers in Immunology, 15, 1383498. https://doi.org/10.3389/fimmu.2024.1383498
  • Çelik, D. (2014). Konağa Verilen Indol-3-asetik asit’in Konak Achoria grisella Fabricus, 1794 (Lepidoptera: Pyralidae) Hemositlerine Etkisi, Yüksek Lisans Tezi, Kocaeli Üniversitesi, Türkiye.
  • Fiorotti, J., Menna-Barreto, R.F.S., Gôlo, P.S., Coutinho-Rodrigues, C.J.B., Bitencourt, R.O.B., Spadacci-Morena, D.D., Angelo, I.D.C., Bittencourt, V.R.E.P. (2019). Ultrastructural and cytotoxic effects of Metarhizium robertsii infection on Rhipicephalus microplus hemocytes. Frontiers in Physiology, 10, 654. https://doi.org/10.3389/fphys.2019.00654
  • Gamal, E., Hassan, A., Abdel-Rahman, M., Hassan, M., Tawfik, M. (2023). Immune responses and bioactive peptides of insect hemolymph. Egyptian Academic Journal of Biological Sciences. A, Entomology, 16 (3), 13-25. https://doi.org/10.21608/eajbsa.2023.312076
  • Gillespie, J.P., Kanost, M.R., Trenczek, T. (1997). Biological mediators of insect immunity. Annual Review of Entomology, 42, 611-643. https://doi.org/10.1146/annurev.ento.42.1.611
  • Go, M.S., Cho, Y., Park, K.B., Kim, M., Park, S.S., Park, J., Cho, S. (2022). Classification and characterization of immune haemocytes in the larvae of the Indian fritillary, Papilio hyperbius (Lepidopetra: Nymphalidae). European Journal of Entomology, 119, 430–438. https://doi.org/10.14411/eje.2022.045
  • Gold, K.S. and Brückner, K. (2014). Drosophila as a model for the two myeloid blood cell systems in vertebrates. Experimental Hematology, 42 (8), 717–727. https://doi.org/10.1016/j.exphem.2014.06.002
  • Goodman C.L., Kang D.S., Stanley D. (2021). Cell line platforms support research into arthropod immunity. Insects, 12, 738. https://doi.org/10.3390/insects12080738
  • Grigorian, M. and Hartenstein, V. (2013). Hematopoiesis and hematopoietic organs in arthropods. Development Genes and Evolution, 223, 103–115. https://doi.org/10.1007/s00427-012-0428-2.
  • Gupta, A.P. (1979). Arthropod Phylogeny (1. Baskı), Van Nostrand Reinhold Company, ISBN: 9780442229733, 044222973, New York, 762 pp.
  • Gupta A.P. (1985). Cellular Elements in the hemolymph, In: Integument, Respiration and Circulation (Eds. Kerkut, G.A., Gilbert, L.I.), Pergamon Press, ISBN: 9780080308043, New York, 625 pp.
  • Hillyer, J.F. and Christensen, B.M. (2002) Characterization of hemocytes from the yellow fever mosquito, Aedes aegypti. Histochemistry and Cell Biology, 117, 431–440. https://doi.org/10.1007/s00418-002-0408-0
  • Hillyer, J. F., Schmidt, S. L., Christensen, B. M. (2003). Hemocyte-mediated phagocytosis and melanization in the mosquito Armigeres subalbatus following immune challenge by bacteria. Cell and Tissue Research, 313, 117-127. https://doi.org/10.1007/s00441-003-0744-y
  • Hinks C.F., and Arnold, J.W. (1977). Haemopoiesis in Lepidoptera II.: The role of haemopoietic organs. Canadian Journal of Zoology, 55(10), 1740-1755. https://doi.org/10.1139/z77-225
  • Honti, V., Csordas, G., Kurucz, E., Markus, R, Ando, I. (2014). The cell-mediated immunity of Drosophila melanogaster: hemocyte lineages, immune compartments, microanatomy and regulation. Developmental and Comparative Immunology, 42(1), 47–56. https://doi.org/10.1016/j.dci.2013.06.005
  • Hultmark, D. and Ando, I. (2022). Hematopoietic plasticity mapped in Drosophila and other insects. eLife, 11, e78906. https://doi.org/10.7554/eLife.78906
  • Jones, J.C. (1970). Hematopoiesis in insects, In: Regulation of hematopoieis (Eds. Gordon, A.S.), Appleton Press, ISBN: : 0390376531, New York, 766 pp.
  • Kara, A., Tunçsoy, B., Özalp, P. (2020). Cu, Zn ve karışımlarının Galleria mellonella L. (Lepidoptera: Pyralidae) larvalarının hemosit tipleri ve sayıları üzerine etkileri. Anadolu Çevre ve Hayvancılık Bilimleri Dergisi, 5(1), 45-51. https://doi.org/10.35229/jaes.649536
  • Kaaya, G.P. and Ratcliffe, N.A. (1982). Comparative study of hemocytes and associated cells of some medically important dipterans. Journal of Morphology, 173 (3), 351–365. https://doi.org/10.1002/jmor.1051730310
  • Lavine, M.D. and Strand M.R. (2002). Insect hemocytes and their role in immunity. Insect Biochemistry and Molecular Biology. 32 (10), 1295-1309. https://doi.org/10.1016/S0965-1748(02)00092-9
  • Lanot, R., Zachary, D., Holder, F., Meister, M. (2001). Postembryonic hematopoiesis in Drosophila. Developmental Biology, 230 (2), 243-257. https://doi.org/10.1006/dbio.2000.0123
  • Lawrence, P.O. (2008). Hemocytes of Insects: Their Morphology and Function. In: Encyclopedia of Entomology (Eds.Capinera, J.L.), Springer, Dordrecht. ISBN: 978-1-4020-6242-1.
  • Lee, J., Hwang, S., Cho, S. (2016). Immune tolerance to an intestine-adapted bacteria, Chryseobacterium sp., injected into the hemocoel of Protaetia brevitarsis seulensis. Scientific Reports. 6, 31722. https://doi.org/10.1038/srep31722
  • Levin, D.M. (2007). An Integrin Required for the Encapsulation Immune Response in the Tobacco Hornworm Manduca sexta L. (Lepidoptera: Sphingidae), PhD Thesis, Kansas State University, Manhattan, Kansas.
  • Lowenberger, C.A. (2001). The innate immune response of Aedes aegypti. Insect Biochemistry and Molecular Biology, 31(3), 219-229. https://doi.org/10.1016/S0965-1748(00)00141-7
  • Meister, M., Hetru, C., Hoffmann, J.A. (2000). The antimicrobial host defense of Drosophila. Current Topics in Microbiology and Immunology, 248, 17-36. https://doi.org/10.1007/978-3-642-59674-2_2
  • Moyetta, N.R., Ramos, F.O., Leyria, J., Canavoso, L.E., Fruttero, L.L. (2021). Morphological and ultrastructural characterization of hemocytes in an ınsect model, the hematophagous Dipetalogaster maxima (Hemiptera: Reduviidae). Insects, 12 (7), 640-652. https://doi.org/10.3390/insects12070640
  • Muta, T. and Iwanaga, S. (1996). The role of hemolymph coagulation in innate immunity. Current Opinion in Immunology, 8(1), 41-47. https://doi.org/10.1016/S0952-7915(96)80103-8
  • Nappi, A. J. and Vass, E. (2001). Cytotoxic reactions associated with insect immunity. In: Phylogenetic Perspectives on the Vertebrate Immune System, Beck, G., Sugumaran, M., Cooper, E.L. (eds). Advances in Experimental Medicine and Biology, 484. Springer, Boston, MA. https://doi.org/10.1007/978-1-4615-1291-2_33
  • Pandey J.P. and Tiwari, R.K. (2012). An overview of ınsect hemocyte science and its future application in applied and biomedical fields. American Journal of Biochemistry and Molecular Biology, 2(3), 82-105. https://doi.org/10.3923/ajbmb.2012.82.105
  • Ratcliffe, N.A., Rowley, A.F., Fitzgerald, S.W., Rhodes, C. P. (1985). Invertebrate immunity: basic concepts and recent advances. International Review of Cytology, 97, 186–350. https://doi.org/10.1016/S0074-7696(08)62351-7
  • Ribeiro, C. and Brehelin, M. (2006). Insect haemocytes: What type of cell is that?. Journal of Insect Physiology, 52 (5), 417-429. https://doi.org/10.1016/j.jinsphys.2006.01.005
  • Romoser, W.S. and Stoffolano, J.G. (1994). The Science of Entomology (4. Baskı), WCB Mc Graw-Hill Publishers, ISBN: 0697228487, 9780697228482, United States, 605 pp.
  • Roy, M.C., Nam, K., Kim, J., Stanley, D. Kim Y. (2021). Thromboxane mobilizes insect blood cells to infection foci. Frontiers in Immunology, 12, 791319, 17. https://doi.org/10.3389/fimmu.2021.791319
  • Schmidt, O., Theopold, U., Strand, M. (2001). Innate immunity and its evasion and suppression by hymenopteran endoparasitoids. BioEssays, 23(4), 344-351. https://doi.org/10.1002/bies.1049
  • Strand, M. R. (2008). The insect cellular immune response. Insect Science, 15(1), 1-14. https://doi.org/10.1111/j.1744-7917.2008.00183.x
  • Strand, M. R. and Pech, L.L. (1995). Microplitis demolitor polydnavirus induces apoptosis of a specific haemocyte morphotype in Pseudoplusia includens. Journal of General Virology, 76(2), 283-291. https://doi.org/10.1099/0022-1317-76-2-283
  • Tepass, U., Liselotte, I., Fessler, L. I., Aziz, A., Hartenstein, V. (1994). Embryonic origin of hemocytes and their relationship to cell death in Drosophila. Development, 120 (7), 1829-1837. https://doi.org/10.1242/dev.120.7.1829
  • Turnbull, M.W., Martin, S.B., Webb, B.A. (2004). Quantitative analysis of hemocyte morphological abnormalities associated with Campoletis sonorensis parasitization. Journal of Insect Science, 4 (1), 11-26. https://doi.org/10.1093/jis/4.1.11
  • Vogelweith, F., Moret, Y., Monceau, K., Thiéry, D., Moreau, J. (2016). The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. Journal of Insect Physiology, 88, 33-39. https://doi.org/10.1016/j.jinsphys.2016.02.010
  • Wang, S., Miao, S., Li, Y., Wang, J., Li, C., Lu, Y., Li, B. (2024). Morphological and functional characterization of circulatinghemocytes in Tribolium castaneum larvae. Insect Science, 32, 1331-1350. https://doi.org/10.1111/1744-7917.13455
  • Wu, G., Liu, Y., Ding, Y., Yunhong Y. (2016). Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: Cell types and their role in the innate immunity. Tissue and Cell, 48 (4), 297-304. https://doi.org/10.1016/j.tice.2016.06.007
  • Wyatt, G.R., Loughheed, T. C., Wyatt, S.S. (1956). The chemistry of insect hemolymph. Journal of General Physiology, 6, 853-868. https://doi.org/10.1085/jgp.39.6.853
  • Zhang, K. and Zhang, X. (2021). Haemocyte variations in 35 species of grasshoppers and locusts. Science Progress, 104 (4), 368504211053551. https://doi.org/10.1177/00368504211053551
  • Zhang, J., Tang, T., Lin, D., Ma, L., Liu, F. (2025). Identification of hemocyte types and characterization of their immune function in the house fly based on morphological observation and single-cell RNA sequencing. Insect Biochemistry and Molecular Biology, 182, 104358. https://doi.org/10.1016/j.ibmb.2025.104358
Toplam 54 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Entomoloji
Bölüm Derleme
Yazarlar

Beran Feridun 0000-0002-2103-6147

Nurver Altun 0000-0002-2657-9263

Gönderilme Tarihi 7 Ağustos 2025
Kabul Tarihi 6 Kasım 2025
Yayımlanma Tarihi 31 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 6 Sayı: 3

Kaynak Göster

APA Feridun, B., & Altun, N. (2025). Böceklerde Hemositlerin Morfolojik, Sitokimyasal Ve Fonksiyonel Özellikleri. Recep Tayyip Erdogan University Journal of Science and Engineering, 6(3), 976-986. https://doi.org/10.53501/rteufemud.1759958

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025