Araştırma Makalesi
BibTex RIS Kaynak Göster

Alkali pH’da Escherichia coli’nin VBNC Forma Geçişinde CusS-CusR İki Bileşikli Sisteminin Rolünün Araştırılması

Yıl 2021, Cilt: 2 Sayı: 2, 36 - 50, 31.12.2021
https://doi.org/10.53501/rteufemud.982864

Öz

Canlı fakat kültürü yapılamayan (VBNC) durum henüz moleküler mekanizması çözülememiş bir süreçtir. Bu çalışmada iki bileşikli fosforlama sistemlerinden birisi olan CusS-R’nin alkalin pH (8.5) ortamında VBNC forma geçişte rollerinin olup olmadığı araştırılmıştır. Çalışmada elde edilen sonuçlara göre hem cusS hem de cusR genlerinin nakavt edilmesi pH 7.2 de bir etki göstermezken, E. coli‘nin alkali ortamda yaşamını sınırlamıştır. Yabani tip E. coli W3110’un plak sayımına göre t99 değeri 57 gün iken, bu değer cusS geni nakavt edildiğinde 31, cusR geni nakavt edildiğinde ise 34 gün olduğu tespit edilmiştir. Nakavt edilmiş olan genler plazmit ile tamamlandığında t99 değerinin E. coli cusS mutantı için 62 gün, E. coli cusR mutantı için 61 gün olarak tespit edilmiş olup bu değerler yabani tip E. coli ile benzerdir. Mutantlarda alkali pH’da görülen bu azalmanın VBNC oluşumundan kaynaklanıp kaynaklanmadığını belirlemek için canlı hücre sayımları Live Dead sayımı, CTC sayımı ve DVC sayım metotları ile elde edilmiştir. Bu sayım sonuçlarına göre mutantların plak sayımlarında görülen azalmanın aslında VBNC forma giren bakterilerden kaynaklandığı tespit edilmiştir. Dolayısı ile cusS ve cusR genlerinin VBNC forma geçişte bir rolleri olmadığı tespit edilmiştir.

Destekleyen Kurum

TÜBİTAK ve Bilecik Şeyh Edebali Üniversitesi BAP

Proje Numarası

113T003 nolu TÜBİTAK projesi ile, bir kısmı ise 2018- 02.BŞEÜ.25-01 numaralı Bilecik Şeyh Edebali Üniversitesi BAP projesi

Teşekkür

Bu çalışmanın bir kısmı 113T003 nolu TÜBİTAK projesi ile, bir kısmı ise 2018-02.BŞEÜ.25-01 numaralı Bilecik Şeyh Edebali Üniversitesi BAP projesi ile desteklenmiştir. Bu destek için hem TÜBİTAK hem de Bilecik Şeyh Edebali Üniversitesine teşekkür ederiz.

Kaynakça

  • Abe, A., Ohashi, E., Ren, H., Hayashi, T., & Endo, H. (2007). Isolation and characterization of a cold-induced nonculturable suppression mutant of Vibrio vulnificus. Microbiological Research, 162, 130–138.
  • Afari, G. K., Hung, Y. C. (2018). Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157:H7 and Listeria monocytogenes using flow cytometry and standard plating. J Food Sci., 83, 1913–1920.
  • Almagro-Moreno, S., Kim, T. K., Skorupski, K., Taylor, R. K. (2015). Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state. PLoS Genet., 11, e1005145.
  • Asakura, H., Panutdaporn, N., Kawamoto, K., Igimi, S., Yamamoto, S., & Makino, S.-I. (2007). Proteomic characterization of enterohemorrhagic Escherichia coli O157:H7 in the oxidation-induced viable but non-culturable state. Microbiol. Immunol., 51, 875. doi: 10.1111/j.1348-0421.2007.tb03969.x.
  • Ayrapetyan, M., Williams, T., Oliver, J.D. (2018). Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 200 (20), e00249-18. Barcina, I. & Arana, I. (2009). The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria? Rev Environ Sci Biotechnol, 8, 245–255.
  • Boaretti, M., del Mar Lleo, M., Bonato, B., Signoretto, C., & Canepari, P. (2003). Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environmental Microbiology, 5, 986–996.
  • Bodor, A., Bounedjoum, N., Vincze, E. G., Kis, A. E., Laczi, K., Bende, G. (2020). Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. Biotechnol., 19, 1–22. doi: 10.1007/s11157-020-09522-4.
  • Darcan, C. (2005). Karadeniz suyunda pH, osmolarite ve açlık stresinin E. coli’nin dış membran porin protein sentez düzeyine etkisinin araştırılması, Doktora tezi, Ondokuz mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
  • Darcan, C. (2012) Expression of OmpC and OmpF porin proteins and survival of Escherichia coli under photooxidative stress in Black Sea water. Aquatic Biology 17 (2), 97-105.
  • Darcan, C., Aydin E. (2012) Fur-mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biologica Hungarica 63 (3), 399-409.
  • Darcan, C., Özkanca R., İdil Ö. & Flint K.P. (2009). Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol. J. Microbiol., 58, 307–17.
  • Darcan, C., Özkanca, R., İdil Ö. & Flint K.P. (2003). Survival of nonspecific porin-deficient mutants of Escherichia coli in black sea water. Letters in Applied Microbiology, 37, 380-385.
  • Dong, K., Pan, H. X., Yang, D., Rao, L., Zhao, L., Wang, Y. T., & Liao, X. J. (2020). Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci., F 19, 149– 183.
  • Duffy, G., Rıordan, D.C.R., Sherıdan, J.J., Call, J.E., Whiting, R.C., Blair, I.S. & Mcdonald, D.A. (2000). Effect of pH on survival, thermotolerance, and verotoxin production of Escherichia coli 0157:H7 during simulated fermentation and storage. J. Food Prot., 63, 12-18.
  • Erdoğrul, O., & F. Erbilir. (2005). Resistance of Escherichia coli to acid and alkali pH. Annal. Microbiol., 55, 91–95.
  • Franke, S., Grass, G., Rensing, C., Nies D. H. (2003). Molecular Analysis of the Copper- Transporting Efflux System CusCFBA of Escherichia coli. Journal of Bacteriology, 3804–3812. Gahan, C.G.M., O’Driscoll, B. & Hill, C. (1996). Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods during milk fermentation. Appl. Environ. Microbiol., 62, 3 128-3 132.
  • Gangaiah, D., Kassem, I. I., Liu, Z., & Rajashekara, G. (2009). Importance of polyphosphate kinase 1 for Campylobacter jejuni viable but-nonculturable cell formation, natural transformation, and antimicrobial resistance. Applied and Environmental Microbiology, 75, 7838–7849.
  • Grass, G., Rensing, C. (2001). CueO Is a Multi-copper Oxidase That Confers Copper Tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 286, 902–908.
  • Gudipaty, A. S., Larsen, A., S., Rensing, C., Mcevoy, M.M. (2012). Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. Published in final edited form as: FEMS Microbiol Lett., 330 (1), 30–37.
  • Hijarrubia, M.J., Lazaro, B., Sunen, E. & Fernandez-Astorga, A. (1996). Survival of Vibrio vulnificus under pH, salinity and temperature combined stress. Food Microbiol., 13, 193-199.
  • Jayakumar J, Balasubramanian D, Reddi G, Almagro-Moreno S. (2020). Synergistic Role of Abiotic Factors Driving Viable but Non-culturable Vibrio Cholerae. Environ Microbioly Rep., 12(4), 454–65.
  • Jiang, Y., Yan, P., and Liang, J. (2014). Biological changes of Enterococcus faecalis in the viable but nonculturable state. Genet. Mol. Res., 14, 14790–14801. doi: 10.4238/2015.November.18.44.
  • Joux, F., P. Lebaron, & M. Troussellier. (1997). Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiol. Ecol., 22, 65-76.
  • Kong, I. S., Bates, T. C., Hülsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004). Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiology Ecology, 50, 133–142.
  • Kumar, S.S., Ghosh, A.R. (2019). Assessment of Bacterial Viability: A Comprehensive Review on Recent Advances and Challenges. Microbiology (U.K.), 165, 593–610.
  • Kusumoto, A., Asakura, H., & Kawamoto, K. (2012). General stress sigma factor RpoS influences time required to enter the viable but non-culturable state in Salmonella enterica. Microbiology and Immunology, 56, 228–237. https://doi.org/10.1111/ j.1348-0421.2012.00428.x.
  • Larsen A. (2011). Growth Studies of The Copper Sensing Histidine Kinase, CusS. (Thesis), Universty of Arizona.
  • Lawrence, R.A. & Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952-958. DOI: 10.1016/0006-291x(76)90747-6.
  • Leyer, G.J., Wang, L.L. & Johnson, E.A. (1995). Acid adaptation of Escherichia coli 0157:H7 increases survival in acidic foods. Appl. Environ. Microbiol., 61, 3752-3755.
  • Li H, Xu Z, Zhao F, Wang Y, Liao X. (2016). Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innov. Food. Sci. Emerg., 33, 180-186.
  • Li, L., Mendis, N., Trigui, H., Oliver J.D. & Faucher, S.P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 5, 258.
  • Lleo` Reissbrodt, R., Heier, H., Tschape, H. (2000). Resuscitation by ferrioxamine E of stressed Salmonella enterica serovar typhimurium from soil and water microcosms. Appl. Environ. Microbiol., 66, 4128–30.
  • Maalej S, Gdoura R, Dukan S, Hammami A, Bouain A. (2004). Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. J Appl Microbiol., 97, 557–65. doi:10.1111/j.1365-2672.2004.02336.x
  • Miller, J. H. (1992). Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. New York: Cold Spring Harbor Laboratory Press.
  • Munson, G. P., Lam, D. L. Outten, F. W. & O’Halloran, T. V. (2000). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol., 182, 5864–5871.
  • Noor, R., Murata, M., & Yamada, M. (2009). Oxidative stress as a trigger for growth phase-specific σE-dependent cell lysis in Escherichia coli. Journal ofMolecular Microbiology and Biotechnology, 17, 177–187.
  • Nowakowska, J., and Oliver, J. D. (2013). Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol. Ecol. 84, 213–222. doi: 10.1111/1574-6941.12052.
  • Oliver, J. D. (2005). The viable but nonculturable state in bacteria. J. Microbiology, 43, 93–100.
  • Ordax M, Marco-Noales E, Lopez MM, Biosca EG (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72: 3482–3488.
  • Ou A, Wang K, Mao Y, Yuan L, Ye Y, Chen L, Zou Y & Huang T. (2021). First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Front. Microbiol., 11, 615875. doi: 10.3389/fmicb.2020.615875.
  • Outten F. W., Huffman D. L., Hale J. A., O’Halloran T. V. (2001). The Independent cue and cus Systems Confer Copper Tolerance during Aerobic and Anaerobic Growth in Escherichia coli. The Journal of Biological Chemistry, 276 (33), 30670–30677.
  • Padan, E., Tzubery, T., Herz, K., Kozachkov, L., Rimon, A., Galili, L. (2004). NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+antiporter. Biochimica et Biophysica Acta, 1658, 2 –13.
  • Petersen, C., Moller, L. B. (2000). Control of copper homeostasis in Escherichia coli by a P- type ATPase, CopA, and a MerR-like transcriptional activator CopR. Gene, 261, 289–298.
  • Pinto, D., Santos, M. A., & Chambel, L. (2015). Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol., 41, 61–76.
  • Porter, J., Mobbs, K., Hart, C.A., Saunders, J.R., Pickup, R.W. & Edwards, C. (1997). Detection, distribution and probable fate of Escherichia coli 0157 from asymtomatic cattle on a dairy farm. J. Appl. Microbiol., 83, 297- 306.
  • Postnikova OA, Shao J, Mock NM, Baker CJ, Nemchinov LG. (2015). Gene expression profiling in viable but nonculturable (VBNC) cells of Pseudomonas syringae pv. syringae. Front Microbiol., 6,1419.
  • Rahman, I., Shahamat, M., Kirchman, P.A. (1994). Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol., 60, 3573–8.
  • Rensing C. & Grass G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27, 197-213.
  • Rigsbee, W., Simpson, L.M. & Oltver, J.D. (1997). Detection of the viable but nonculturable state in Escherichia coli 0157:H7. J. Food Safety, 16, 225-262.
  • Signoretto, C., Lleo, M.D., Tafi, M.C., Canepari, P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state”, Appl. Environ. Microbiol., 66, 1953–9.
  • Solic, M., and N. Krstulovic. (1992). Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater. Mar. Poll. Bull., 24, 411-416.
  • Stoyanov, J.V., Hobman, J.L., Brown, N.L. (2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol., 39, 502–511.
  • Takeda, Y. (2011). Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae. Proc. Jpn. Acad. Ser. B. Phy. Biol. Sci., 87, 1–12.
  • Vanhauteghem, D., Janssens, G. P., Lauwaerts, A., Sys, S., Boyen, F., Cox, E. (2013). Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. PLoS One, 8, 60328. doi: 10.1371/journal. pone.0060328
  • Wang, G. & Doyle, M.P. (1998). Survival of enterohemorrhagic Escherichia coli 0157:H7 in water. J. Food Protect., 61, 662-667.
  • Wang, H. W., Chung, C. H., Ma, T. Y., & Wong, H. C. (2013). Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Applied and Environmental Microbiology, 79, 3734–3743.
  • Xu, H.-S., N. Roberts, F.L. Singleton, RW. Attwell, DJ. Grimes, and RR. Colwell. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol., 8, 313-323.
  • Yoon, J. H., & Lee, S. Y. (2020). Characteristics of viablebut- nonculturable Vibrio parahaemolyticus induced by nutrient deficiency at cold temperature. Critical Reviews in Food Science and Nutrition, 31, 1–19. https://doi.org/10.1080/10408398.2019. 1570076.
  • Zhang X. H., Ahmad W., Zhu X.Y., Chen J., Austin B. (2020). Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Marine Life Science & Technology.
  • Zhang, L., Jiang, L., Nie, X., Liao, H. (2021). Factors affecting the occurrence of viable but non-culturable state in Salmonella, Escherichia coli and Staphylococcus aureus during thermosonication and prevent it with sodium pyruvate. International Journal of Food Science and Technology, 56, 2244–2254.
  • Zhao L. and Matthews K. R. (2000). Influence of starvation, temperature, and pH on culturability of enterohemorrhagic Escherichia coli O157:H7. J. Food Saf., 20, 193-2.
  • Zhao X, Zhong J, Wei C, Lin CW, Ding T. (2017). Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol., 8, 580.
  • Zhao, F., Wang, Y., An, H., Hao, Y., Hu, X., & Liao, X. (2016). New insights into the formation of viable but nonculturable Escherichia coli O157:H7 induced by high-pressure CO2. mBio., 7, e00961– 00916.
  • Zhao, T., Doyle, M.P. & Besser, R.E. (1993). Fate of Enterohemorrhagic Escherichia coli 0157:H7 in apple cider with and without preservatives. Appl. Envir. Microbiol., 59, 2526-2530.

Investigation of the Role of the CusS-CusR Two-Component System in the Transition to VBNC Form of Escherichia coli at Alkaline pH

Yıl 2021, Cilt: 2 Sayı: 2, 36 - 50, 31.12.2021
https://doi.org/10.53501/rteufemud.982864

Öz

The Viable but non-culturable (VBNC) state is a process whose molecular mechanism has not yet been resolved. In this study, it was studied whether CusS-R, one of the two-component phosphorylating systems, has a role in the transition to VBNC form in an alkaline pH (8.5) environment. According to the results obtained in the study, while knocking out both cusS and cusR genes did not have an effect at pH 7.2, it limited the survival of E. coli in an alkaline environment. The t99 value of wild type E. coli W3110 was 57 according to the plaque count, while this value was 31 days when the cusS gene was knockout and 34 days when the cusR gene was knockout. When the knocked out genes were completed with the plasmid, the t99 value was determined as 62 days for the E. coli cusS mutant and 61 days for the E. coli cusR mutant, which is similar to that of wild-type E. coli. To determine whether this decrease in alkaline pH in mutants is due to VBNC formation, live cell counts were obtained by Live Dead count, CTC count and DVC count methods. According to these counting results, it was determined that the decrease in the plaque counts of the mutants was actually caused by bacteria entering the VBNC form. Therefore, it was determined that the cusS and cusR genes do not have a role in the transition to the VBNC form.

Proje Numarası

113T003 nolu TÜBİTAK projesi ile, bir kısmı ise 2018- 02.BŞEÜ.25-01 numaralı Bilecik Şeyh Edebali Üniversitesi BAP projesi

Kaynakça

  • Abe, A., Ohashi, E., Ren, H., Hayashi, T., & Endo, H. (2007). Isolation and characterization of a cold-induced nonculturable suppression mutant of Vibrio vulnificus. Microbiological Research, 162, 130–138.
  • Afari, G. K., Hung, Y. C. (2018). Detection and verification of the viable but nonculturable (VBNC) state of Escherichia coli O157:H7 and Listeria monocytogenes using flow cytometry and standard plating. J Food Sci., 83, 1913–1920.
  • Almagro-Moreno, S., Kim, T. K., Skorupski, K., Taylor, R. K. (2015). Proteolysis of virulence regulator ToxR is associated with entry of Vibrio cholerae into a dormant state. PLoS Genet., 11, e1005145.
  • Asakura, H., Panutdaporn, N., Kawamoto, K., Igimi, S., Yamamoto, S., & Makino, S.-I. (2007). Proteomic characterization of enterohemorrhagic Escherichia coli O157:H7 in the oxidation-induced viable but non-culturable state. Microbiol. Immunol., 51, 875. doi: 10.1111/j.1348-0421.2007.tb03969.x.
  • Ayrapetyan, M., Williams, T., Oliver, J.D. (2018). Relationship between the viable but nonculturable state and antibiotic persister cells. J. Bacteriol. 200 (20), e00249-18. Barcina, I. & Arana, I. (2009). The viable but nonculturable phenotype: a crossroads in the life-cycle of non-differentiating bacteria? Rev Environ Sci Biotechnol, 8, 245–255.
  • Boaretti, M., del Mar Lleo, M., Bonato, B., Signoretto, C., & Canepari, P. (2003). Involvement of rpoS in the survival of Escherichia coli in the viable but non-culturable state. Environmental Microbiology, 5, 986–996.
  • Bodor, A., Bounedjoum, N., Vincze, E. G., Kis, A. E., Laczi, K., Bende, G. (2020). Challenges of unculturable bacteria: environmental perspectives. Rev. Environ. Sci. Biotechnol., 19, 1–22. doi: 10.1007/s11157-020-09522-4.
  • Darcan, C. (2005). Karadeniz suyunda pH, osmolarite ve açlık stresinin E. coli’nin dış membran porin protein sentez düzeyine etkisinin araştırılması, Doktora tezi, Ondokuz mayıs Üniversitesi Fen Bilimleri Enstitüsü, Samsun.
  • Darcan, C. (2012) Expression of OmpC and OmpF porin proteins and survival of Escherichia coli under photooxidative stress in Black Sea water. Aquatic Biology 17 (2), 97-105.
  • Darcan, C., Aydin E. (2012) Fur-mutation increases the survival time of Escherichia coli under photooxidative stress in aquatic environments. Acta Biologica Hungarica 63 (3), 399-409.
  • Darcan, C., Özkanca R., İdil Ö. & Flint K.P. (2009). Viable but non-culturable state (VBNC) of Escherichia coli related to EnvZ under the effect of pH, starvation and osmotic stress in sea water. Pol. J. Microbiol., 58, 307–17.
  • Darcan, C., Özkanca, R., İdil Ö. & Flint K.P. (2003). Survival of nonspecific porin-deficient mutants of Escherichia coli in black sea water. Letters in Applied Microbiology, 37, 380-385.
  • Dong, K., Pan, H. X., Yang, D., Rao, L., Zhao, L., Wang, Y. T., & Liao, X. J. (2020). Induction, detection, formation, and resuscitation of viable but non-culturable state microorganisms. Compr. Rev. Food Sci., F 19, 149– 183.
  • Duffy, G., Rıordan, D.C.R., Sherıdan, J.J., Call, J.E., Whiting, R.C., Blair, I.S. & Mcdonald, D.A. (2000). Effect of pH on survival, thermotolerance, and verotoxin production of Escherichia coli 0157:H7 during simulated fermentation and storage. J. Food Prot., 63, 12-18.
  • Erdoğrul, O., & F. Erbilir. (2005). Resistance of Escherichia coli to acid and alkali pH. Annal. Microbiol., 55, 91–95.
  • Franke, S., Grass, G., Rensing, C., Nies D. H. (2003). Molecular Analysis of the Copper- Transporting Efflux System CusCFBA of Escherichia coli. Journal of Bacteriology, 3804–3812. Gahan, C.G.M., O’Driscoll, B. & Hill, C. (1996). Acid adaptation of Listeria monocytogenes can enhance survival in acidic foods during milk fermentation. Appl. Environ. Microbiol., 62, 3 128-3 132.
  • Gangaiah, D., Kassem, I. I., Liu, Z., & Rajashekara, G. (2009). Importance of polyphosphate kinase 1 for Campylobacter jejuni viable but-nonculturable cell formation, natural transformation, and antimicrobial resistance. Applied and Environmental Microbiology, 75, 7838–7849.
  • Grass, G., Rensing, C. (2001). CueO Is a Multi-copper Oxidase That Confers Copper Tolerance in Escherichia coli. Biochemical and Biophysical Research Communications, 286, 902–908.
  • Gudipaty, A. S., Larsen, A., S., Rensing, C., Mcevoy, M.M. (2012). Regulation of Cu(I)/Ag(I) efflux genes in Escherichia coli by the sensor kinase CusS. Published in final edited form as: FEMS Microbiol Lett., 330 (1), 30–37.
  • Hijarrubia, M.J., Lazaro, B., Sunen, E. & Fernandez-Astorga, A. (1996). Survival of Vibrio vulnificus under pH, salinity and temperature combined stress. Food Microbiol., 13, 193-199.
  • Jayakumar J, Balasubramanian D, Reddi G, Almagro-Moreno S. (2020). Synergistic Role of Abiotic Factors Driving Viable but Non-culturable Vibrio Cholerae. Environ Microbioly Rep., 12(4), 454–65.
  • Jiang, Y., Yan, P., and Liang, J. (2014). Biological changes of Enterococcus faecalis in the viable but nonculturable state. Genet. Mol. Res., 14, 14790–14801. doi: 10.4238/2015.November.18.44.
  • Joux, F., P. Lebaron, & M. Troussellier. (1997). Succession of cellular states in a Salmonella typhimurium population during starvation in artificial seawater microcosms. FEMS Microbiol. Ecol., 22, 65-76.
  • Kong, I. S., Bates, T. C., Hülsmann, A., Hassan, H., Smith, B. E., & Oliver, J. D. (2004). Role of catalase and oxyR in the viable but nonculturable state of Vibrio vulnificus. FEMS Microbiology Ecology, 50, 133–142.
  • Kumar, S.S., Ghosh, A.R. (2019). Assessment of Bacterial Viability: A Comprehensive Review on Recent Advances and Challenges. Microbiology (U.K.), 165, 593–610.
  • Kusumoto, A., Asakura, H., & Kawamoto, K. (2012). General stress sigma factor RpoS influences time required to enter the viable but non-culturable state in Salmonella enterica. Microbiology and Immunology, 56, 228–237. https://doi.org/10.1111/ j.1348-0421.2012.00428.x.
  • Larsen A. (2011). Growth Studies of The Copper Sensing Histidine Kinase, CusS. (Thesis), Universty of Arizona.
  • Lawrence, R.A. & Burk, R.F. (1976). Glutathione peroxidase activity in selenium-deficient rat liver. Biochemical and Biophysical Research Communications, 71(4), 952-958. DOI: 10.1016/0006-291x(76)90747-6.
  • Leyer, G.J., Wang, L.L. & Johnson, E.A. (1995). Acid adaptation of Escherichia coli 0157:H7 increases survival in acidic foods. Appl. Environ. Microbiol., 61, 3752-3755.
  • Li H, Xu Z, Zhao F, Wang Y, Liao X. (2016). Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. Innov. Food. Sci. Emerg., 33, 180-186.
  • Li, L., Mendis, N., Trigui, H., Oliver J.D. & Faucher, S.P. (2014). The importance of the viable but non-culturable state in human bacterial pathogens. Frontiers in Microbiology, 5, 258.
  • Lleo` Reissbrodt, R., Heier, H., Tschape, H. (2000). Resuscitation by ferrioxamine E of stressed Salmonella enterica serovar typhimurium from soil and water microcosms. Appl. Environ. Microbiol., 66, 4128–30.
  • Maalej S, Gdoura R, Dukan S, Hammami A, Bouain A. (2004). Maintenance of pathogenicity during entry into and resuscitation from viable but nonculturable state in Aeromonas hydrophila exposed to natural seawater at low temperature. J Appl Microbiol., 97, 557–65. doi:10.1111/j.1365-2672.2004.02336.x
  • Miller, J. H. (1992). Short Course in Bacterial Genetics: A Laboratory Manual and Handbook for Escherichia coli and Related Bacteria. New York: Cold Spring Harbor Laboratory Press.
  • Munson, G. P., Lam, D. L. Outten, F. W. & O’Halloran, T. V. (2000). Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol., 182, 5864–5871.
  • Noor, R., Murata, M., & Yamada, M. (2009). Oxidative stress as a trigger for growth phase-specific σE-dependent cell lysis in Escherichia coli. Journal ofMolecular Microbiology and Biotechnology, 17, 177–187.
  • Nowakowska, J., and Oliver, J. D. (2013). Resistance to environmental stresses by Vibrio vulnificus in the viable but nonculturable state. FEMS Microbiol. Ecol. 84, 213–222. doi: 10.1111/1574-6941.12052.
  • Oliver, J. D. (2005). The viable but nonculturable state in bacteria. J. Microbiology, 43, 93–100.
  • Ordax M, Marco-Noales E, Lopez MM, Biosca EG (2006) Survival strategy of Erwinia amylovora against copper: induction of the viable-but-nonculturable state. Appl Environ Microbiol 72: 3482–3488.
  • Ou A, Wang K, Mao Y, Yuan L, Ye Y, Chen L, Zou Y & Huang T. (2021). First Report on the Rapid Detection and Identification of Methicillin-Resistant Staphylococcus aureus (MRSA) in Viable but Non-culturable (VBNC) Under Food Storage Conditions. Front. Microbiol., 11, 615875. doi: 10.3389/fmicb.2020.615875.
  • Outten F. W., Huffman D. L., Hale J. A., O’Halloran T. V. (2001). The Independent cue and cus Systems Confer Copper Tolerance during Aerobic and Anaerobic Growth in Escherichia coli. The Journal of Biological Chemistry, 276 (33), 30670–30677.
  • Padan, E., Tzubery, T., Herz, K., Kozachkov, L., Rimon, A., Galili, L. (2004). NhaA of Escherichia coli, as a model of a pH-regulated Na+/H+antiporter. Biochimica et Biophysica Acta, 1658, 2 –13.
  • Petersen, C., Moller, L. B. (2000). Control of copper homeostasis in Escherichia coli by a P- type ATPase, CopA, and a MerR-like transcriptional activator CopR. Gene, 261, 289–298.
  • Pinto, D., Santos, M. A., & Chambel, L. (2015). Thirty years of viable but nonculturable state research: unsolved molecular mechanisms. Crit. Rev. Microbiol., 41, 61–76.
  • Porter, J., Mobbs, K., Hart, C.A., Saunders, J.R., Pickup, R.W. & Edwards, C. (1997). Detection, distribution and probable fate of Escherichia coli 0157 from asymtomatic cattle on a dairy farm. J. Appl. Microbiol., 83, 297- 306.
  • Postnikova OA, Shao J, Mock NM, Baker CJ, Nemchinov LG. (2015). Gene expression profiling in viable but nonculturable (VBNC) cells of Pseudomonas syringae pv. syringae. Front Microbiol., 6,1419.
  • Rahman, I., Shahamat, M., Kirchman, P.A. (1994). Methionine uptake and cytopathogenicity of viable but nonculturable Shigella dysenteriae type 1. Appl. Environ. Microbiol., 60, 3573–8.
  • Rensing C. & Grass G. (2003). Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiology Reviews, 27, 197-213.
  • Rigsbee, W., Simpson, L.M. & Oltver, J.D. (1997). Detection of the viable but nonculturable state in Escherichia coli 0157:H7. J. Food Safety, 16, 225-262.
  • Signoretto, C., Lleo, M.D., Tafi, M.C., Canepari, P. (2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state”, Appl. Environ. Microbiol., 66, 1953–9.
  • Solic, M., and N. Krstulovic. (1992). Separate and combined effects of solar radiation, temperature, salinity, and pH on the survival of faecal coliforms in seawater. Mar. Poll. Bull., 24, 411-416.
  • Stoyanov, J.V., Hobman, J.L., Brown, N.L. (2001). CueR (YbbI) of Escherichia coli is a MerR family regulator controlling expression of the copper exporter CopA. Mol Microbiol., 39, 502–511.
  • Takeda, Y. (2011). Vibrio parahaemolyticus, enterotoxigenic Escherichia coli, enterohemorrhagic Escherichia coli and Vibrio cholerae. Proc. Jpn. Acad. Ser. B. Phy. Biol. Sci., 87, 1–12.
  • Vanhauteghem, D., Janssens, G. P., Lauwaerts, A., Sys, S., Boyen, F., Cox, E. (2013). Exposure to the proton scavenger glycine under alkaline conditions induces Escherichia coli viability loss. PLoS One, 8, 60328. doi: 10.1371/journal. pone.0060328
  • Wang, G. & Doyle, M.P. (1998). Survival of enterohemorrhagic Escherichia coli 0157:H7 in water. J. Food Protect., 61, 662-667.
  • Wang, H. W., Chung, C. H., Ma, T. Y., & Wong, H. C. (2013). Roles of alkyl hydroperoxide reductase subunit C (AhpC) in viable but nonculturable Vibrio parahaemolyticus. Applied and Environmental Microbiology, 79, 3734–3743.
  • Xu, H.-S., N. Roberts, F.L. Singleton, RW. Attwell, DJ. Grimes, and RR. Colwell. (1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol., 8, 313-323.
  • Yoon, J. H., & Lee, S. Y. (2020). Characteristics of viablebut- nonculturable Vibrio parahaemolyticus induced by nutrient deficiency at cold temperature. Critical Reviews in Food Science and Nutrition, 31, 1–19. https://doi.org/10.1080/10408398.2019. 1570076.
  • Zhang X. H., Ahmad W., Zhu X.Y., Chen J., Austin B. (2020). Viable but nonculturable bacteria and their resuscitation: implications for cultivating uncultured marine microorganisms. Marine Life Science & Technology.
  • Zhang, L., Jiang, L., Nie, X., Liao, H. (2021). Factors affecting the occurrence of viable but non-culturable state in Salmonella, Escherichia coli and Staphylococcus aureus during thermosonication and prevent it with sodium pyruvate. International Journal of Food Science and Technology, 56, 2244–2254.
  • Zhao L. and Matthews K. R. (2000). Influence of starvation, temperature, and pH on culturability of enterohemorrhagic Escherichia coli O157:H7. J. Food Saf., 20, 193-2.
  • Zhao X, Zhong J, Wei C, Lin CW, Ding T. (2017). Current perspectives on viable but non-culturable state in foodborne pathogens. Front Microbiol., 8, 580.
  • Zhao, F., Wang, Y., An, H., Hao, Y., Hu, X., & Liao, X. (2016). New insights into the formation of viable but nonculturable Escherichia coli O157:H7 induced by high-pressure CO2. mBio., 7, e00961– 00916.
  • Zhao, T., Doyle, M.P. & Besser, R.E. (1993). Fate of Enterohemorrhagic Escherichia coli 0157:H7 in apple cider with and without preservatives. Appl. Envir. Microbiol., 59, 2526-2530.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Bölüm Araştırma Makaleleri
Yazarlar

Özge Kaygusuz 0000-0002-3652-4266

Cihan Darcan 0000-0003-0205-3774

Proje Numarası 113T003 nolu TÜBİTAK projesi ile, bir kısmı ise 2018- 02.BŞEÜ.25-01 numaralı Bilecik Şeyh Edebali Üniversitesi BAP projesi
Yayımlanma Tarihi 31 Aralık 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 2 Sayı: 2

Kaynak Göster

APA Kaygusuz, Ö., & Darcan, C. (2021). Alkali pH’da Escherichia coli’nin VBNC Forma Geçişinde CusS-CusR İki Bileşikli Sisteminin Rolünün Araştırılması. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 2(2), 36-50. https://doi.org/10.53501/rteufemud.982864

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025