Araştırma Makalesi
BibTex RIS Kaynak Göster

Türkiye'deki Mezopotamya Dikenli Yılan Balığının (Mastacembelus mastacembelus) (Teleostei: Synbranchiformes) Populasyon Yapısı ve Moleküler Filogenisi

Yıl 2022, Cilt: 3 Sayı: 1, 34 - 39, 30.06.2022
https://doi.org/10.53501/rteufemud.1124666

Öz

Mezopotamya dikenli yılan balığı Mastacembelus mastacembelus, Mezopotamya'nın Fırat ve Dicle nehri drenajlarıyla sınırlı endemik bir tatlı su balığıdır. Bu çalışmada, Mezopotamya dikenli yılan balığının Türkiye'deki genetik varyasyonunun Dicle ve Fırat nehir havzalarındaki dağılım bölgelerinden örneklerle ortaya çıkarılması amaçlanmıştır. Bu amaçla, yedi popülasyondan (Aksu, Merzimen, Karasu, Sinnep, Ambar ve Zarova dereleri ve Dicle Nehri ana gövde) 15 örneğin kısmi mitokondiyal COI gen bölgesi (656 bç) sekanslanmıştır. Sekiz değişken mükleotit pozisyonu tespit edilmiş olup ve bunların üç tanesi polimorfik nükleotit olarak belirlenmiştir. Genel haplotip ve nükleotid çeşitliliği Hd= 0,642±0,081 ve π=0,00339±0,00069 olarak hesaplanmıştır. Biri Dicle Nehri Havzasından, üçü Fırat Nehri Havzasından olmak üzere dört haplotip tespit edilmiştir. Haplotip ağ analizinde en az bir mutasyon farkı olan ve ana nehir drenajları arasında haplotip paylaşımı olmayan dört haplotip belirlenmiştir. En yaygın haplotip H1 haplotipi olup ve üç Dicle popülasyonu tarafından paylaşılmaktadır. Filogenetik analizler sonucunda, Mastacembelus popülasyonlarının iki ana haplogruba ayrıldığı ortaya çıkarılmıştır. Birinci haplogrubu, Dicle Nehri havzası populasyonlarının, ikinci haplogrubu ise, Fırat Nehri havzası popülasyonlarının ve haplotiplerinin oluşturduğu belirlenmiştir.

Kaynakça

  • Alter, S.E., Brown, B., Stiassny, M.L.J. (2015). Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Biology, 15(1): 224. https://doi.org/10.1186/s12862-015-0507-x
  • Bandelt, H.J., Forster, P., Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  • Brown, K.J., Rüber, L., Bills, R., Day, J.J. (2010). Mastacembelid eels support lake tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology, 10(1): 188. https://doi.org/10.1186/1471-2148-10-188
  • Çakmak, E., Alp, A. (2010). Morphological differences among the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), populations. Turkish Journal of Fisheries and Aquatic Sciences, 10(1), 87-92. DOI: 10.4194/trjfas.2010.0113
  • Day, J.J., Fages, A., Brown, K.J., Vreven, E.J., Stiassny, M.L.J., Bills, R., Friel, J.P., Rüber, L. (2017). Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels. Journal of Biogeography, 44(10), 2308–2318. https://doi.org/10.1111/jbi.13037
  • Excoffier, L., Lischer, H.E.L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • Froese, R., Pauly, D. (2022). FishBase. 2022. World Wide Web Electronic Publication. Available at: http://www.Fishbase.org (Accessed on 28 April 2022).
  • Gholamhosseini, A., Razbanian, M., Esmaeili, H.R., Eagderi, S. (2022). Molecular systematics and morphological variation in the Mesopotamian spiny eel Mastacembelus mastacembelus (Teleostei: Mastacembelidae). The European Zoological Journal, 89(1), 546–555. https://doi.org/10.1080/24750263.2022.2057604
  • Hall, T.A. (1999). BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083
  • Ronquist, F., Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  • Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sanchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
  • Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Tutar, E. (2015). Combined mitochondrial DNA analysis of the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), and its phylogenetic position. International Journal of Aquatic Biology, 3(5), 314–322.
  • Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. Hebert, P.D.N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B, 360, 1847–1857.

Population Structure and Molecular Phylogeny of Mesopotamian Spiny Eel (Mastacembelus mastacembelus) (Teleostei: Synbranchiformes) in Turkey

Yıl 2022, Cilt: 3 Sayı: 1, 34 - 39, 30.06.2022
https://doi.org/10.53501/rteufemud.1124666

Öz

The Mesopotamian spiny eel Mastacembelus mastacembelus is an endemic freshwater fish confined to the Euphrates and Tigris drainages of Mesopotamia. In this study, it was aimed to reveal the genetic variation of Mesopotamian spiny eel in Turkey with samples from the distribution regions in the Tigris and Euphrates river basins. For this purpose, the partial mitochondrial COI gene region (656 bp) was sequenced from 15 samples from seven populations (Aksu, Merzimen, Karasu, Sinnep, Ambar, Zarova streams and main body of Tigris River). Eight variable nucleotide positions were identified and three of which were polymorphic. Overall haplotype and nucleotide diversity are Hd= 0.642±0.081 and π=0.00339±0.00069. Four haplotypes were identified, one from the Tigris River basin, and three from the Euphrates River basin. Haplotype network analysis contains four unique haplotypes with at least one mutational step and no haplotype shared between main river drainages. The most common haplotype was H1 and three Tigris populations shared it. The phylogenetic inferences suggest that Mastacembelus populations are divided into two main clades. The first clade consists of haplotypes of the Tigris River basin while the second clade contains Euphrates River basin populations.

Kaynakça

  • Alter, S.E., Brown, B., Stiassny, M.L.J. (2015). Molecular phylogenetics reveals convergent evolution in lower Congo River spiny eels. BMC Evolutionary Biology, 15(1): 224. https://doi.org/10.1186/s12862-015-0507-x
  • Bandelt, H.J., Forster, P., Röhl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular Biology and Evolution, 16(1), 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
  • Brown, K.J., Rüber, L., Bills, R., Day, J.J. (2010). Mastacembelid eels support lake tanganyika as an evolutionary hotspot of diversification. BMC Evolutionary Biology, 10(1): 188. https://doi.org/10.1186/1471-2148-10-188
  • Çakmak, E., Alp, A. (2010). Morphological differences among the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), populations. Turkish Journal of Fisheries and Aquatic Sciences, 10(1), 87-92. DOI: 10.4194/trjfas.2010.0113
  • Day, J.J., Fages, A., Brown, K.J., Vreven, E.J., Stiassny, M.L.J., Bills, R., Friel, J.P., Rüber, L. (2017). Multiple independent colonizations into the Congo Basin during the continental radiation of African Mastacembelus spiny eels. Journal of Biogeography, 44(10), 2308–2318. https://doi.org/10.1111/jbi.13037
  • Excoffier, L., Lischer, H.E.L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x
  • Froese, R., Pauly, D. (2022). FishBase. 2022. World Wide Web Electronic Publication. Available at: http://www.Fishbase.org (Accessed on 28 April 2022).
  • Gholamhosseini, A., Razbanian, M., Esmaeili, H.R., Eagderi, S. (2022). Molecular systematics and morphological variation in the Mesopotamian spiny eel Mastacembelus mastacembelus (Teleostei: Mastacembelidae). The European Zoological Journal, 89(1), 546–555. https://doi.org/10.1080/24750263.2022.2057604
  • Hall, T.A. (1999). BioEdit a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.
  • Kumar, S., Stecher, G., Li, M., Knyaz, C., Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35(6), 1547–1549. https://doi.org/10.1093/molbev/msy096
  • Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25(7), 1253–1256. https://doi.org/10.1093/molbev/msn083
  • Ronquist, F., Huelsenbeck, J.P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574. https://doi.org/10.1093/bioinformatics/btg180
  • Rozas, J., Ferrer-Mata, A., Sanchez-DelBarrio, J.C., Guirao-Rico, S., Librado, P., Ramos-Onsins, S.E., Sanchez-Gracia, A. (2017). DnaSP 6: DNA sequence polymorphism analysis of large data sets. Molecular Biology and Evolution, 34(12), 3299–3302. https://doi.org/10.1093/molbev/msx248
  • Thompson, J.D., Higgins, D.G., Gibson, T.J. (1994). CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22, 4673–4680. https://doi.org/10.1093/nar/22.22.4673
  • Tutar, E. (2015). Combined mitochondrial DNA analysis of the Mesopotamian spiny eel, Mastacembelus mastacembelus (Banks & Solander 1794), and its phylogenetic position. International Journal of Aquatic Biology, 3(5), 314–322.
  • Ward, R.D., Zemlak, T.S., Innes, B.H., Last, P.R. Hebert, P.D.N. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B, 360, 1847–1857.
Toplam 16 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm Araştırma Makaleleri
Yazarlar

Gökhan Kalaycı 0000-0003-1255-496X

Recep Durmaz Bu kişi benim 0000-0002-8686-7152

Yayımlanma Tarihi 30 Haziran 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 3 Sayı: 1

Kaynak Göster

APA Kalaycı, G., & Durmaz, R. (2022). Population Structure and Molecular Phylogeny of Mesopotamian Spiny Eel (Mastacembelus mastacembelus) (Teleostei: Synbranchiformes) in Turkey. Recep Tayyip Erdoğan Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi, 3(1), 34-39. https://doi.org/10.53501/rteufemud.1124666

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025