Derleme
BibTex RIS Kaynak Göster

Algal Bioactive Components

Yıl 2024, Cilt: 5 Sayı: 2, 204 - 215, 31.12.2024
https://doi.org/10.53501/rteufemud.1485427

Öz

Algae are eukaryotic creatures. Since algae, which ensure the continuity and order of the ecosystem, multiply by dividing, they have a wide area among marine creatures. Algae are photosynthetic creatures that can generally live in aquatic environments such as freshwater lakes, streams, streams, puddles, rivers and oceans. Algae have bioactive compounds such as carbohydrates, proteins, lipids, vitamins, minerals, pigments and sterols in their structures. Thanks to its bioactive components, it has antihypertensive, antitumor, antidiabetes, antioxidant and anti-inflammatory effects. It is a functional food thanks to its high nutritional content and health-promoting effects. For this reason, algae are used in many areas such as medicine, pharmaceutical and nutritional supplements, food, industry, agriculture, waste treatment, animal feed, fertilizer, biodiesel production and cosmetics. Its use as a food additive and nutritional supplement has become widespread, especially in the food industry. It is also thought that it can be among the alternative food sources for food scarcity and nutritional deficiency problems that may arise with the increasing population. Its usage areas are increasing over time and it is considered as a natural alternative food. Therefore, in this study, information about the properties of algae, the bioactive components in its structure and their effects is given.

Kaynakça

  • Aktar, S. ve Cebe, A.S. (2010). Alglerin genel özellikleri, kullanım alanları ve eczacılıktaki önemi. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 39(3), 237–264. http://dx.doi.org/10.1501/Eczfak_0000000568
  • Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda, 14(4), 418-423.
  • Altuner, Z, Pabuçcu, K, Türkekul, İ, (2002), Tohumsuz Bitkiler Sistematiği (Algler), Altan Yayınları, Ankara.
  • Aydın-Şişman G., “Mikroalg Teknolojisi ve Çevresel Kullanımı”, Harran Üniversitesi Mühendislik Dergisi, 4(1): 81- 92, (2019).
  • Barka, A., Blecker, C. (2016). Microalgae as a potential source of single-cell proteins. A review. Base.
  • https://doi.org/10.25518/1780-4507.13132
  • Batista, A.P., Gouveia, L., Bvearra, N.M., Franco, J.M., Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Resource 2: 164– 73.
  • http://dx.doi.org/10.1016/j.algal.2013.01.004
  • Baytaşoğlu, H., Başusta, N. (2015). Deniz canlılarının tıp ve eczacılık alanlarında kullanılması. Aquaculture Studies, 15(2), 71-80. http://dx.doi.org/10.17693/yunus.68862
  • Becker E.W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  • Bleakley, S., Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods (Basel, Switzerland), 6(5), 33.
  • https://doi.org/10.3390/foods6050033
  • Cabrita, A.R., Maia, M.R., Oliveira, H.M., Sousa-Pinto, I., Almeida, A.A., Pinto, E., Fonseca, A.J. (2016). Tracing seaweeds as mineral sources for farm-animals. Journal of applied phycology, 28, 3135-3150.
  • http://dx.doi.org/10.1007/s10811-016-0839-y
  • Chandini, S.K., Ganesan, P., Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry 107(2): 707- 713.
  • https://doi.org/10.1016/j.foodchem.2007.08.081
  • Cirik, Ş., Cirik, S. (2011). Su Bitkileri I-Deniz Bitkilerinin Biyolojisi, Ekolojisi Ve Yetiştirme Teknikleri, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, 58, 135-145.
  • Combs Jr, G.F., McClung, J.P. (2016). The vitamins: fundamental aspects in nutrition and health. Academic press.
  • Çelikel, N., Kınık, Ö., Gönç, S., Kavas, G. (2006). Mikroalglerin gıdalarda renk verici madde (pigment) kaynağı olarak kullanımı. Türkiye, 9, 24-26.
  • Çılgın, E. (2015). 3. Nesil biyoyakıt teknolojisi alglerin bir dizel motorunda performans ve egzoz emisyonlarına etkisinin araştırılması. Journal of the Institute of Science & Technology/Fen Bilimleri Estitüsü Dergisi, 5(3).
  • D’Souza, F.M.L., Kelly, G.J., (2000). Effects of a diet of a nitrogen limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tigerprawn (Penaeus semisulcatus) larvae. Aquaculture 181: 311-29.
  • http://dx.doi.org/10.1016/S0044-8486(99)00231-8
  • Da Costa Cardoso, L.A., Kanno, K.Y.F., Karp, S.G. (2017). Microbial production of carotenoids A review. African Journal of Biotechnology, 16(4), 139-146.
  • https://doi.org/10.5897/AJB2016.15763
  • De Swaaf, M. E., de Rijk, T. C., Eggink, G., & Sijtsma, L. (1999). Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. In Progress in industrial microbiology (Vol. 35, pp. 185-192). Elsevier.
  • Demiriz, T., (2008). Bazı Alglerin Antibakteriyal Etkileri, Yüksek Lisans Tezi, Ankara Üniversitesi Biyoloji Anabilim Dalı, Ankara.
  • Demiriz Yücer T., Pabuçcu, K. (2024). Fatty acids, Vitamins and Antioxidant Properties of Cladophora fracta var. intricata. Journal of the Institute of Science and Technology, 14(1), 87-95.
  • https://doi.org/10.21597/jist.1362003
  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9), 389-406.
  • http://dx.doi.org/10.1016/j.tifs.2005.02.006
  • Eleren, S.Ç., Öner, B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319. https://dx.doi.org/10.5505/pajes.2018.93992
  • Erdal, P., Ökmen, G. (2013). Gıdalarda kullanılan mikrobiyal kaynaklı pigmentler. Türk Bilimsel Derlemeler Dergisi, 6(2), 56-68.
  • Fábregas, J., García, D., Morales, E., Domínguez, A., & Otero, A. (1998). Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. Journal of fermentation and bioengineering, 86(5), 477-481.
  • Fan, Y.Y., Chapkin, R.S. (1998). Importance of dietary gamma-linolenic acid in human health and nutrition. The Journal of nutrition, 128(9), 1411–1414.
  • https://doi.org/10.1093/jn/128.9.1411
  • Fang, X., Wei, C., Zhao-Ling, C., & Fan, O. (2004). Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. Journal of Applied Phycology, 16, 499-503.
  • FAO, (2010). Algae-based biofuels: Applications and co-products. FAO Aquatic Biofuels Working Group, ISBN 978-92-5-106623-2, Rome, Italy.
  • Fernández, F. A., Pérez, J. S., Sevilla, J. F., Camacho, F. G., & Grima, E. M. (2000). Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering, 68(2), 173-183.
  • Francavilla, M., Trotta, P., & Luque, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresource Technology. 101, 4144- 4150.
  • Freile-Pelegrín, Y., Robledo, D. (2014). Bioactive Compounds from Marine Foods: Plant and Animal Sources, John Wiley & Sons, Ltd, ISBN: 9781118412848
  • García-Casal, M.N., Ramírez, J., Leets, I., Pereira, A.C., Quiroga, M.F. (2009). Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. The British journal of nutrition, 101(1), 79–85.
  • https://doi.org/10.1017/S0007114508994757
  • Glazer, A.N., (1994). Phycobiliproteins a family of valuable, widely used fluorophores. Journal of Applied Phycology 6: 105-112. http://dx.doi.org/10.1007/BF02186064
  • Gouveia, J. D., Ruiz, J., van den Broek, L. A., Hesselink, T., Peters, S., Kleinegris, D. M., ... & Wijffels, R. H. (2017). Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. Journal of biotechnology, 248, 77-86.
  • Gökpınar, Ş., Işık, O., Göksan, T., Durmaz, Y., Uslu, L., Ak, B., Önalan, S.K. and Akdoğan, P. (2013). Algal biyoteknoloji çalışmaları. Aquaculture Studies, 2013(4). https://doi.org/10.17693/yunusae.v2013i21903.235409
  • Grossmann, L., Ebert, S., Hinrichs, J., & Weiss, J. (2018). Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal research, 29, 266-276.
  • Guedes, A.C., Amaro, H.M., Sousa-Pinto, I., Malcata, F.X. (2019). Algal spent biomass—A pool of applications. In Biofuels from algae, Edited by A. Pandey, Elsevier, Amsterdam, pp. 397-433.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Probiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology and Experimentation, 4(4): 00120.
  • https://doi.org/10.15406/jmen.2017.04.00120
  • Hannan, M.A., Sohag, A.A.M., Dash, R., Haque, M.N., Mohibbullah, M., Oktaviani, D.F., Moon, I.S. (2020). Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, 69, 153-201.
  • Hazra, S., Ghosh, S., Hazra, B. (2017). Phytochemicals with Antileishmanial Activity: Prospective Drug Targets. In Studies in Natural Products Chemistry, Edited by A. Rahman, Elsevier, Amsterdam, pp. 303-336.
  • Heo, S.J., Yoon, W.J., Kim, K.N., Ahn, G.N., Kang, S.M., Kang, D.H., Affan, A., Oh, C., Jung, W.K., Jeon, Y.J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 48(8-9), 2045–2051. https://doi.org/10.1016/j.fct.2010.05.003
  • Heo, Y. M., Lee, H., Lee, C., Kang, J., Ahn, J. W., Lee, Y. M., ... & Kim, J. J. (2017). An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal research, 27, 286-294.
  • Hernveez-Ledesma, B., Herrero M., (2014). Bioactive Compounds from Marine Foods: Plant and Animal Sources. 1st ed. John Wiley & Sons Ltd; Chichester, UK pp. 173–187.
  • İlter, I., Akyıl, S., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen stabilize edici maddeler. Akademik Gıda, 14(3), 315-321.
  • Keskinkaya, H.B., Akköz, C. (2018). Alglerden Elde Edilen Sekonder Metabolitler ve Biyoaktif Özellikleri. Presented at the IV. Internatıonal Academic Research Congress 2018.
  • Khalil, Z. I., Asker, M. M., El-Sayed, S., Kobbia, I. A. (2010). Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World journal of microbiology and biotechnology, 26(7), 1225–1231.
  • https://doi.org/10.1007/s11274-009-0292-z
  • Khichi, S. S., Anis, A., & Ghosh, S. (2018). Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes. Biochemical Engineering Journal, 134, 44-56.
  • Khozin, I., Adlerstein, D., Bigongo, C., Heimer, Y. M., & Cohen, Z. (1997). Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum (II. Studies with radiolabeled precursors). Plant Physiology, 114(1), 223-230.
  • Kim, S. K., Ta, Q. V. (2011). Potential beneficial effects of marine algal sterols on human health. Advances in food and nutrition research, 64, 191–198.
  • https://doi.org/10.1016/B978-0-12-387669-0.00014-4
  • Klein, B., Davis, R. (2023). Algal Biomass Production via Open Pond Algae Farm Cultivation: 2022 State of Technology and Future Research (No. NREL/TP-5100-85661). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
  • Kumkapu, M., Şahin-Yeşilçubuk, N. (2023). Sürdürülebilir gıda, gıda takviyesi ve gıda katkı maddesi üretiminde alglerin önemi. Akademik Gıda, 21(2), 187-197.
  • https://doi.org/10.24323/akademik-gida.1351186
  • Kurhan, S., (2012). Fulvik ve Humik Asidin Chlorella vulgaris ve Spirulina platensis Gelisimine Etkisinin Değerlendirilmesi, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Ankara.
  • Kyle, D. J., Ratledge, C. (1992). Industrial applications of single cell oils. AOCS Publishing. ISBN: 9781003041009
  • Kyle, D., (2001). The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. ACS Symposium Series 788: 92–107.
  • http://dx.doi.org/10.1021/bk-2001-0788.ch008
  • Li, Y., Xu, H., Han, F., Mu, J., Chen, D., Feng, B., & Zeng, H. (2015). Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource technology, 192, 781-791.
  • Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., Miyashita, K. (2005). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and biophysical research communications, 332(2), 392–397. https://doi.org/10.1016/j.bbrc.2005.05.002
  • Makri, A., Bellou, S., Birkou, M., Papatrehas, K., Dolapsakis, N.P., Bokas, D., Papanikolaou, S. Aggelis, G. (2011). Lipid synthesized by micro‐algae grown in laboratory and industrial‐scale bioreactors. Engineering in Life Sciences 11(1): 52-58. http://dx.doi.org/10.1002/elsc.201000086
  • Mason, J.B. (2007). Vitamins, trace minerals, and other micronutrients. Cecil Textbook of Medicine 23, 1626-1639.
  • http://dx.doi.org/10.1016/B978-1-4377-1604-7.00225-6
  • McHugh, D.J., (2003). A guide to the seaweed industry. FAO Fish Technology 441: 1-105.
  • Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource technology, 97(6), 841-846.
  • Nuutila, A. M., Aura, A. M., Kiesvaara, M., & Kauppinen, V. (1997). The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. Journal of biotechnology, 55(1), 55-63.
  • O'Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038–2064. https://doi.org/10.3390/md8072038
  • Øverland, M., Mydland, L.T., Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1): 13-24. https://doi.org/10.1002/jsfa.9143
  • Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied microbiology and biotechnology, 90, 1429-1441.
  • Peet, M., Brind, J., Ramchand, C. N., Shah, S., & Vankar, G. K. (2001). Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia research, 49(3),243–251. https://doi.org/10.1016/s0920-9964(00)00083-9
  • Pérez, M. J., Falqué, E., Domínguez, H. (2016). Antimicrobial Action of Compounds from Marine Seaweed. Marine drugs, 14(3), 52. https://doi.org/10.3390/md14030052
  • Qi, B., Beaudoin, F., Fraser, T., Stobart, A. K., Napier, J. A., & Lazarus, C. M. (2002). Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS letters, 510(3), 159-165.
  • Robertson, R., Guihéneuf, F., Schmid, M., Stengel, D.B., Fitzgerald, G., Ross, P., Stanton, C. (2013). Polyunsaturated Fatty Acids: Sources, Antioxidant Properties and Health Benefits, Nova Science Publishers, Inc. ISBN: 1629481513.
  • Rose, P.D., Brady, D., Letebele, B., Duncan, J.R. (1994). Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water Sa, 20(3), 213-218.
  • Servel, M.O., Claire, C., Derrien, A., Coiffard, L., De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry 36(3): 691-693.
  • https://doi.org/10.1016/S0031-9422(00)89798-8
  • Sjors, V.I., Alessvero, F. (2010). Algae based biofuels, Applications and co-products. Environment and natural resources management working paper. Environment Climate Change. Bioenergy Monitoring and Assessment. http://www.fao.org/3/a-i1704e.pdf.
  • Stiger-Pouvreau, V., Bourgougnon, N., Deslandes, E. (2018). Seaweed in Health and Disease Prevention, Academic Press, ISBN: 978-0-12-802772-1, English.
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35(3), 263-269.
  • Tang, G., Suter, P.M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1(2), 111-118.
  • http://dx.doi.org/10.6000/1927-5951.2011.01.02.04
  • Thomas, N.V., Kim, S.K., (2013). Beneficial effects of marine algal compounds in cosmeceuticals, Marine Drugs, 11. https://doi.org/10.3390%2Fmd11010146
  • Uma, V.S., Usmani, Z., Sharma, M., Diwan, D., Sharma, M., Guo, M., Gupta, V.K. (2022). Valorisation of algal biomass to value-added metabolites: Emerging trends and opportunities. Phytochemistry Reviews, 1-26.
  • https://doi.org/10.1007/s11101-022-09805-4
  • URL-1, (2019). https://www.birbes.com/?p=19005,14 Mayıs 2024.
  • Vehapi, M. (2016). Makro Ve Mikroalglerin Antimikrobiyal Ve Antioksidan Etkilerinin İncelenmesi / Makro Ve Mikroalglerin Antimikrobiyal Ve Antioksidan Aktivitelerinin Araştırılması. Yükseklisans Tezi. Yıldız Teknik Üniversitesi. Türkiye.
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4): 251-263.
  • http://dx.doi.org/10.1515/pjfns-2017-0017
  • Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., ... & Chang, J. S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource technology, 198, 619-625.
  • Ward, O.P., Singh A., (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 40: 3627-3652. http://dx.doi.org/10.1016/j.procbio.2005.02.020
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E., Brawley, S.H. (2017). Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology, 29: 949-982. https://doi.org/10.1007/s10811-016-0974-5
  • Xie, T., Xia, Y., Zeng, Y., Li, X., & Zhang, Y. (2017). Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresource technology, 233, 247–255. https://doi.org/10.1016/j.biortech.2017.02.099
  • Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the American Oil Chemists' Society, 74, 1431-1434.
  • Yaron, A.S., Arad, M.S., (1993). Phycobiliproteins blue and red natural pigments for use in food and cosmetics. In: Food Flavors, Ingredients and Composition. Developments in Food Science (ed. G. Charalambous), Elsevier, London: 835–838.
  • Yen, H.W., Chiang, W.C., Sun, C.H., (2012). Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. Journal of the Taiwan Institute of Chemical Engineers 43: 53–57.
  • http://dx.doi.org/10.1016/j.jtice.2011.07.010
  • Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S. (2013). Microalgae-based biorefinery–from biofuels to natural products. Bioresource Technology, 135, 166-174. https://doi.org/10.1016/j.biortech.2012.10.099
  • Yongmanitchai, W. A. R. D., & Ward, O. P. (1991). Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and environmental microbiology, 57(2), 419-425.235
  • Ziyaei, K., Ataie, Z., Mokhtari, M., Adrah, K., Daneshmehr, M.A. (2022). An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. International Journal of Biological Macromolecules, 209, 244-257. https://doi.org/10.1016/j.ijbiomac.2022.03.063

Algal Biyoaktif Bileşenler

Yıl 2024, Cilt: 5 Sayı: 2, 204 - 215, 31.12.2024
https://doi.org/10.53501/rteufemud.1485427

Öz

Algler ökaryötik canlılardır, Ekosistemin devamlılığı ve düzenini sağlayan algler bölünerek çoğaldığından dolayı deniz canlıları arasında geniş bir alana sahiptir. Genellikle tatlı su gölleri, çaylar, dereler, su birikintileri, nehirleri okyanuslar gibi sucul ortamlarda yaşayabilen algler, fotosentetik canlılardır. Algler yapılarında karbonhidrat, protein, lipid, vitamin, mineral, pigment, sterol gibi biyoaktif bileşiklere sahiptir. Biyoaktif bileşenler sayesinde antihipertansif, antitümör, antidiyabet, antioksidan, antiinflamatuar etkiler göstermektedir. Yüksek besin içeriği ve sağlığı geliştirici etkileri sayesinde fonksiyonel gıda niteliği taşımaktadır. Bu nedenle tıp, ilaç ve besin takviyesi, gıda, endüstri, tarım, atıkların arıtılması, hayvan yemi, gübre, biyodizel üretimi, kozmetik gibi pek çok alanda alglerden yararlanılmaktadır. Özellikle gıda sektöründe gıda katkı maddesi ve besin takviyesi olarak kullanımı yaygınlaşmıştır. Ayrıca artan nüfus ile birlikte ortaya çıkabilecek gıda kıtlığı ve besin yetersizliği problemlerine yönelik alternatif besin kaynakları arasında yer alabileceği düşünülmektedir. Zamanla kullanım alanları artış göstermekte ve doğal bir alternatif besin olarak ele alınmaktadır. Bu nedenle bu çalışmada alglerin özellikleri, yapısındaki biyoaktif bileşenler ve etkileri hakkında bilgiler verilmiştir.

Kaynakça

  • Aktar, S. ve Cebe, A.S. (2010). Alglerin genel özellikleri, kullanım alanları ve eczacılıktaki önemi. Ankara Üniversitesi Eczacılık Fakültesi Dergisi, 39(3), 237–264. http://dx.doi.org/10.1501/Eczfak_0000000568
  • Akyıl, S., İlter, I., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden Elde Edilen Yüksek Değerlikli Bileşiklerin Biyoaktif/Biyolojik Uygulama Alanları. Akademik Gıda, 14(4), 418-423.
  • Altuner, Z, Pabuçcu, K, Türkekul, İ, (2002), Tohumsuz Bitkiler Sistematiği (Algler), Altan Yayınları, Ankara.
  • Aydın-Şişman G., “Mikroalg Teknolojisi ve Çevresel Kullanımı”, Harran Üniversitesi Mühendislik Dergisi, 4(1): 81- 92, (2019).
  • Barka, A., Blecker, C. (2016). Microalgae as a potential source of single-cell proteins. A review. Base.
  • https://doi.org/10.25518/1780-4507.13132
  • Batista, A.P., Gouveia, L., Bvearra, N.M., Franco, J.M., Raymundo, A. (2013). Comparison of microalgal biomass profiles as novel functional ingredient for food products. Algal Resource 2: 164– 73.
  • http://dx.doi.org/10.1016/j.algal.2013.01.004
  • Baytaşoğlu, H., Başusta, N. (2015). Deniz canlılarının tıp ve eczacılık alanlarında kullanılması. Aquaculture Studies, 15(2), 71-80. http://dx.doi.org/10.17693/yunus.68862
  • Becker E.W. (2007). Micro-algae as a source of protein. Biotechnology advances, 25(2), 207–210. https://doi.org/10.1016/j.biotechadv.2006.11.002
  • Bleakley, S., Hayes, M. (2017). Algal Proteins: Extraction, Application, and Challenges Concerning Production. Foods (Basel, Switzerland), 6(5), 33.
  • https://doi.org/10.3390/foods6050033
  • Cabrita, A.R., Maia, M.R., Oliveira, H.M., Sousa-Pinto, I., Almeida, A.A., Pinto, E., Fonseca, A.J. (2016). Tracing seaweeds as mineral sources for farm-animals. Journal of applied phycology, 28, 3135-3150.
  • http://dx.doi.org/10.1007/s10811-016-0839-y
  • Chandini, S.K., Ganesan, P., Bhaskar, N. (2008). In vitro antioxidant activities of three selected brown seaweeds of India. Food Chemistry 107(2): 707- 713.
  • https://doi.org/10.1016/j.foodchem.2007.08.081
  • Cirik, Ş., Cirik, S. (2011). Su Bitkileri I-Deniz Bitkilerinin Biyolojisi, Ekolojisi Ve Yetiştirme Teknikleri, Ege Üniversitesi Su Ürünleri Fakültesi Yayınları, 58, 135-145.
  • Combs Jr, G.F., McClung, J.P. (2016). The vitamins: fundamental aspects in nutrition and health. Academic press.
  • Çelikel, N., Kınık, Ö., Gönç, S., Kavas, G. (2006). Mikroalglerin gıdalarda renk verici madde (pigment) kaynağı olarak kullanımı. Türkiye, 9, 24-26.
  • Çılgın, E. (2015). 3. Nesil biyoyakıt teknolojisi alglerin bir dizel motorunda performans ve egzoz emisyonlarına etkisinin araştırılması. Journal of the Institute of Science & Technology/Fen Bilimleri Estitüsü Dergisi, 5(3).
  • D’Souza, F.M.L., Kelly, G.J., (2000). Effects of a diet of a nitrogen limited alga (Tetraselmis suecica) on growth, survival and biochemical composition of tigerprawn (Penaeus semisulcatus) larvae. Aquaculture 181: 311-29.
  • http://dx.doi.org/10.1016/S0044-8486(99)00231-8
  • Da Costa Cardoso, L.A., Kanno, K.Y.F., Karp, S.G. (2017). Microbial production of carotenoids A review. African Journal of Biotechnology, 16(4), 139-146.
  • https://doi.org/10.5897/AJB2016.15763
  • De Swaaf, M. E., de Rijk, T. C., Eggink, G., & Sijtsma, L. (1999). Optimisation of docosahexaenoic acid production in batch cultivations by Crypthecodinium cohnii. In Progress in industrial microbiology (Vol. 35, pp. 185-192). Elsevier.
  • Demiriz, T., (2008). Bazı Alglerin Antibakteriyal Etkileri, Yüksek Lisans Tezi, Ankara Üniversitesi Biyoloji Anabilim Dalı, Ankara.
  • Demiriz Yücer T., Pabuçcu, K. (2024). Fatty acids, Vitamins and Antioxidant Properties of Cladophora fracta var. intricata. Journal of the Institute of Science and Technology, 14(1), 87-95.
  • https://doi.org/10.21597/jist.1362003
  • Dufossé, L., Galaup, P., Yaron, A., Arad, S. M., Blanc, P., Murthy, K. N. C., Ravishankar, G. A. (2005). Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality? Trends in Food Science and Technology, 16(9), 389-406.
  • http://dx.doi.org/10.1016/j.tifs.2005.02.006
  • Eleren, S.Ç., Öner, B. (2019). Sürdürülebilir ve çevre dostu biyoyakıt hammaddesi: Mikroalgler. Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 25(3), 304-319. https://dx.doi.org/10.5505/pajes.2018.93992
  • Erdal, P., Ökmen, G. (2013). Gıdalarda kullanılan mikrobiyal kaynaklı pigmentler. Türk Bilimsel Derlemeler Dergisi, 6(2), 56-68.
  • Fábregas, J., García, D., Morales, E., Domínguez, A., & Otero, A. (1998). Renewal rate of semicontinuous cultures of the microalga Porphyridium cruentum modifies phycoerythrin, exopolysaccharide and fatty acid productivity. Journal of fermentation and bioengineering, 86(5), 477-481.
  • Fan, Y.Y., Chapkin, R.S. (1998). Importance of dietary gamma-linolenic acid in human health and nutrition. The Journal of nutrition, 128(9), 1411–1414.
  • https://doi.org/10.1093/jn/128.9.1411
  • Fang, X., Wei, C., Zhao-Ling, C., & Fan, O. (2004). Effects of organic carbon sources on cell growth and eicosapentaenoic acid content of Nannochloropsis sp. Journal of Applied Phycology, 16, 499-503.
  • FAO, (2010). Algae-based biofuels: Applications and co-products. FAO Aquatic Biofuels Working Group, ISBN 978-92-5-106623-2, Rome, Italy.
  • Fernández, F. A., Pérez, J. S., Sevilla, J. F., Camacho, F. G., & Grima, E. M. (2000). Modeling of eicosapentaenoic acid (EPA) production from Phaeodactylum tricornutum cultures in tubular photobioreactors. Effects of dilution rate, tube diameter, and solar irradiance. Biotechnology and Bioengineering, 68(2), 173-183.
  • Francavilla, M., Trotta, P., & Luque, R. (2010). Phytosterols from Dunaliella tertiolecta and Dunaliella salina: a potentially novel industrial application. Bioresource Technology. 101, 4144- 4150.
  • Freile-Pelegrín, Y., Robledo, D. (2014). Bioactive Compounds from Marine Foods: Plant and Animal Sources, John Wiley & Sons, Ltd, ISBN: 9781118412848
  • García-Casal, M.N., Ramírez, J., Leets, I., Pereira, A.C., Quiroga, M.F. (2009). Antioxidant capacity, polyphenol content and iron bioavailability from algae (Ulva sp., Sargassum sp. and Porphyra sp.) in human subjects. The British journal of nutrition, 101(1), 79–85.
  • https://doi.org/10.1017/S0007114508994757
  • Glazer, A.N., (1994). Phycobiliproteins a family of valuable, widely used fluorophores. Journal of Applied Phycology 6: 105-112. http://dx.doi.org/10.1007/BF02186064
  • Gouveia, J. D., Ruiz, J., van den Broek, L. A., Hesselink, T., Peters, S., Kleinegris, D. M., ... & Wijffels, R. H. (2017). Botryococcus braunii strains compared for biomass productivity, hydrocarbon and carbohydrate content. Journal of biotechnology, 248, 77-86.
  • Gökpınar, Ş., Işık, O., Göksan, T., Durmaz, Y., Uslu, L., Ak, B., Önalan, S.K. and Akdoğan, P. (2013). Algal biyoteknoloji çalışmaları. Aquaculture Studies, 2013(4). https://doi.org/10.17693/yunusae.v2013i21903.235409
  • Grossmann, L., Ebert, S., Hinrichs, J., & Weiss, J. (2018). Effect of precipitation, lyophilization, and organic solvent extraction on preparation of protein-rich powders from the microalgae Chlorella protothecoides. Algal research, 29, 266-276.
  • Guedes, A.C., Amaro, H.M., Sousa-Pinto, I., Malcata, F.X. (2019). Algal spent biomass—A pool of applications. In Biofuels from algae, Edited by A. Pandey, Elsevier, Amsterdam, pp. 397-433.
  • Gupta, S., Gupta, C., Garg, A.P., Prakash, D. (2017). Probiotic efficiency of blue green algae on probiotics microorganisms. Journal of Microbiology and Experimentation, 4(4): 00120.
  • https://doi.org/10.15406/jmen.2017.04.00120
  • Hannan, M.A., Sohag, A.A.M., Dash, R., Haque, M.N., Mohibbullah, M., Oktaviani, D.F., Moon, I.S. (2020). Phytosterols of marine algae: Insights into the potential health benefits and molecular pharmacology. Phytomedicine, 69, 153-201.
  • Hazra, S., Ghosh, S., Hazra, B. (2017). Phytochemicals with Antileishmanial Activity: Prospective Drug Targets. In Studies in Natural Products Chemistry, Edited by A. Rahman, Elsevier, Amsterdam, pp. 303-336.
  • Heo, S.J., Yoon, W.J., Kim, K.N., Ahn, G.N., Kang, S.M., Kang, D.H., Affan, A., Oh, C., Jung, W.K., Jeon, Y.J. (2010). Evaluation of anti-inflammatory effect of fucoxanthin isolated from brown algae in lipopolysaccharide-stimulated RAW 264.7 macrophages. Food and chemical toxicology: an international journal published for the British Industrial Biological Research Association, 48(8-9), 2045–2051. https://doi.org/10.1016/j.fct.2010.05.003
  • Heo, Y. M., Lee, H., Lee, C., Kang, J., Ahn, J. W., Lee, Y. M., ... & Kim, J. J. (2017). An integrative process for obtaining lipids and glucose from Chlorella vulgaris biomass with a single treatment of cell disruption. Algal research, 27, 286-294.
  • Hernveez-Ledesma, B., Herrero M., (2014). Bioactive Compounds from Marine Foods: Plant and Animal Sources. 1st ed. John Wiley & Sons Ltd; Chichester, UK pp. 173–187.
  • İlter, I., Akyıl, S., Koç, M., Kaymak-Ertekin, F. (2016). Alglerden elde edilen stabilize edici maddeler. Akademik Gıda, 14(3), 315-321.
  • Keskinkaya, H.B., Akköz, C. (2018). Alglerden Elde Edilen Sekonder Metabolitler ve Biyoaktif Özellikleri. Presented at the IV. Internatıonal Academic Research Congress 2018.
  • Khalil, Z. I., Asker, M. M., El-Sayed, S., Kobbia, I. A. (2010). Effect of pH on growth and biochemical responses of Dunaliella bardawil and Chlorella ellipsoidea. World journal of microbiology and biotechnology, 26(7), 1225–1231.
  • https://doi.org/10.1007/s11274-009-0292-z
  • Khichi, S. S., Anis, A., & Ghosh, S. (2018). Mathematical modeling of light energy flux balance in flat panel photobioreactor for Botryococcus braunii growth, CO2 biofixation and lipid production under varying light regimes. Biochemical Engineering Journal, 134, 44-56.
  • Khozin, I., Adlerstein, D., Bigongo, C., Heimer, Y. M., & Cohen, Z. (1997). Elucidation of the biosynthesis of eicosapentaenoic acid in the microalga Porphyridium cruentum (II. Studies with radiolabeled precursors). Plant Physiology, 114(1), 223-230.
  • Kim, S. K., Ta, Q. V. (2011). Potential beneficial effects of marine algal sterols on human health. Advances in food and nutrition research, 64, 191–198.
  • https://doi.org/10.1016/B978-0-12-387669-0.00014-4
  • Klein, B., Davis, R. (2023). Algal Biomass Production via Open Pond Algae Farm Cultivation: 2022 State of Technology and Future Research (No. NREL/TP-5100-85661). National Renewable Energy Laboratory (NREL), Golden, CO (United States).
  • Kumkapu, M., Şahin-Yeşilçubuk, N. (2023). Sürdürülebilir gıda, gıda takviyesi ve gıda katkı maddesi üretiminde alglerin önemi. Akademik Gıda, 21(2), 187-197.
  • https://doi.org/10.24323/akademik-gida.1351186
  • Kurhan, S., (2012). Fulvik ve Humik Asidin Chlorella vulgaris ve Spirulina platensis Gelisimine Etkisinin Değerlendirilmesi, Yüksek Lisans Tezi, Ankara Üniversitesi, Fen Bilimleri Enstitüsü, Gıda Mühendisliği Anabilim Dalı, Ankara.
  • Kyle, D. J., Ratledge, C. (1992). Industrial applications of single cell oils. AOCS Publishing. ISBN: 9781003041009
  • Kyle, D., (2001). The large-scale production and use of a single-cell oil highly enriched in docosahexaenoic acid. ACS Symposium Series 788: 92–107.
  • http://dx.doi.org/10.1021/bk-2001-0788.ch008
  • Li, Y., Xu, H., Han, F., Mu, J., Chen, D., Feng, B., & Zeng, H. (2015). Regulation of lipid metabolism in the green microalga Chlorella protothecoides by heterotrophy–photoinduction cultivation regime. Bioresource technology, 192, 781-791.
  • Maeda, H., Hosokawa, M., Sashima, T., Funayama, K., Miyashita, K. (2005). Fucoxanthin from edible seaweed, Undaria pinnatifida, shows antiobesity effect through UCP1 expression in white adipose tissues. Biochemical and biophysical research communications, 332(2), 392–397. https://doi.org/10.1016/j.bbrc.2005.05.002
  • Makri, A., Bellou, S., Birkou, M., Papatrehas, K., Dolapsakis, N.P., Bokas, D., Papanikolaou, S. Aggelis, G. (2011). Lipid synthesized by micro‐algae grown in laboratory and industrial‐scale bioreactors. Engineering in Life Sciences 11(1): 52-58. http://dx.doi.org/10.1002/elsc.201000086
  • Mason, J.B. (2007). Vitamins, trace minerals, and other micronutrients. Cecil Textbook of Medicine 23, 1626-1639.
  • http://dx.doi.org/10.1016/B978-1-4377-1604-7.00225-6
  • McHugh, D.J., (2003). A guide to the seaweed industry. FAO Fish Technology 441: 1-105.
  • Miao, X., & Wu, Q. (2006). Biodiesel production from heterotrophic microalgal oil. Bioresource technology, 97(6), 841-846.
  • Nuutila, A. M., Aura, A. M., Kiesvaara, M., & Kauppinen, V. (1997). The effect of salinity, nitrate concentration, pH and temperature on eicosapentaenoic acid (EPA) production by the red unicellular alga Porphyridium purpureum. Journal of biotechnology, 55(1), 55-63.
  • O'Sullivan, L., Murphy, B., McLoughlin, P., Duggan, P., Lawlor, P.G., Hughes, H., Gardiner, G.E. (2010). Prebiotics from marine macroalgae for human and animal health applications. Marine drugs, 8(7), 2038–2064. https://doi.org/10.3390/md8072038
  • Øverland, M., Mydland, L.T., Skrede, A. (2019). Marine macroalgae as sources of protein and bioactive compounds in feed for monogastric animals. Journal of the Science of Food and Agriculture, 99(1): 13-24. https://doi.org/10.1002/jsfa.9143
  • Pal, D., Khozin-Goldberg, I., Cohen, Z., & Boussiba, S. (2011). The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp. Applied microbiology and biotechnology, 90, 1429-1441.
  • Peet, M., Brind, J., Ramchand, C. N., Shah, S., & Vankar, G. K. (2001). Two double-blind placebo-controlled pilot studies of eicosapentaenoic acid in the treatment of schizophrenia. Schizophrenia research, 49(3),243–251. https://doi.org/10.1016/s0920-9964(00)00083-9
  • Pérez, M. J., Falqué, E., Domínguez, H. (2016). Antimicrobial Action of Compounds from Marine Seaweed. Marine drugs, 14(3), 52. https://doi.org/10.3390/md14030052
  • Qi, B., Beaudoin, F., Fraser, T., Stobart, A. K., Napier, J. A., & Lazarus, C. M. (2002). Identification of a cDNA encoding a novel C18-Δ9 polyunsaturated fatty acid-specific elongating activity from the docosahexaenoic acid (DHA)-producing microalga, Isochrysis galbana. FEBS letters, 510(3), 159-165.
  • Robertson, R., Guihéneuf, F., Schmid, M., Stengel, D.B., Fitzgerald, G., Ross, P., Stanton, C. (2013). Polyunsaturated Fatty Acids: Sources, Antioxidant Properties and Health Benefits, Nova Science Publishers, Inc. ISBN: 1629481513.
  • Rose, P.D., Brady, D., Letebele, B., Duncan, J.R. (1994). Bioaccumulation of metals by Scenedesmus, Selenastrum and Chlorella algae. Water Sa, 20(3), 213-218.
  • Servel, M.O., Claire, C., Derrien, A., Coiffard, L., De Roeck-Holtzhauer, Y. (1994). Fatty acid composition of some marine microalgae. Phytochemistry 36(3): 691-693.
  • https://doi.org/10.1016/S0031-9422(00)89798-8
  • Sjors, V.I., Alessvero, F. (2010). Algae based biofuels, Applications and co-products. Environment and natural resources management working paper. Environment Climate Change. Bioenergy Monitoring and Assessment. http://www.fao.org/3/a-i1704e.pdf.
  • Stiger-Pouvreau, V., Bourgougnon, N., Deslandes, E. (2018). Seaweed in Health and Disease Prevention, Academic Press, ISBN: 978-0-12-802772-1, English.
  • Sukenik, A. (1991). Ecophysiological considerations in the optimization of eicosapentaenoic acid production by Nannochloropsis sp. (Eustigmatophyceae). Bioresource Technology, 35(3), 263-269.
  • Tang, G., Suter, P.M. (2011). Vitamin A, nutrition, and health values of algae: Spirulina, Chlorella, and Dunaliella. Journal of Pharmacy and Nutrition Sciences, 1(2), 111-118.
  • http://dx.doi.org/10.6000/1927-5951.2011.01.02.04
  • Thomas, N.V., Kim, S.K., (2013). Beneficial effects of marine algal compounds in cosmeceuticals, Marine Drugs, 11. https://doi.org/10.3390%2Fmd11010146
  • Uma, V.S., Usmani, Z., Sharma, M., Diwan, D., Sharma, M., Guo, M., Gupta, V.K. (2022). Valorisation of algal biomass to value-added metabolites: Emerging trends and opportunities. Phytochemistry Reviews, 1-26.
  • https://doi.org/10.1007/s11101-022-09805-4
  • URL-1, (2019). https://www.birbes.com/?p=19005,14 Mayıs 2024.
  • Vehapi, M. (2016). Makro Ve Mikroalglerin Antimikrobiyal Ve Antioksidan Etkilerinin İncelenmesi / Makro Ve Mikroalglerin Antimikrobiyal Ve Antioksidan Aktivitelerinin Araştırılması. Yükseklisans Tezi. Yıldız Teknik Üniversitesi. Türkiye.
  • Villarruel-López, A., Ascencio, F., Nuño, K. (2017). Microalgae, a potential natural functional food source – a review. Polish Journal of Food and Nutrition Sciences, 67(4): 251-263.
  • http://dx.doi.org/10.1515/pjfns-2017-0017
  • Wang, Y., Guo, W., Yen, H. W., Ho, S. H., Lo, Y. C., Cheng, C. L., ... & Chang, J. S. (2015). Cultivation of Chlorella vulgaris JSC-6 with swine wastewater for simultaneous nutrient/COD removal and carbohydrate production. Bioresource technology, 198, 619-625.
  • Ward, O.P., Singh A., (2005). Omega-3/6 fatty acids: Alternative sources of production. Process Biochemistry 40: 3627-3652. http://dx.doi.org/10.1016/j.procbio.2005.02.020
  • Wells, M.L., Potin, P., Craigie, J.S., Raven, J.A., Merchant, S.S., Helliwell, K.E., Smith, A.G., Camire, M.E., Brawley, S.H. (2017). Algae as nutritional and functional food sources: Revisiting our understanding. Journal of Applied Phycology, 29: 949-982. https://doi.org/10.1007/s10811-016-0974-5
  • Xie, T., Xia, Y., Zeng, Y., Li, X., & Zhang, Y. (2017). Nitrate concentration-shift cultivation to enhance protein content of heterotrophic microalga Chlorella vulgaris: Over-compensation strategy. Bioresource technology, 233, 247–255. https://doi.org/10.1016/j.biortech.2017.02.099
  • Yaguchi, T., Tanaka, S., Yokochi, T., Nakahara, T., & Higashihara, T. (1997). Production of high yields of docosahexaenoic acid by Schizochytrium sp. strain SR21. Journal of the American Oil Chemists' Society, 74, 1431-1434.
  • Yaron, A.S., Arad, M.S., (1993). Phycobiliproteins blue and red natural pigments for use in food and cosmetics. In: Food Flavors, Ingredients and Composition. Developments in Food Science (ed. G. Charalambous), Elsevier, London: 835–838.
  • Yen, H.W., Chiang, W.C., Sun, C.H., (2012). Supercritical fluid extraction of lutein from Scenedesmus cultured in an autotrophical photobioreactor. Journal of the Taiwan Institute of Chemical Engineers 43: 53–57.
  • http://dx.doi.org/10.1016/j.jtice.2011.07.010
  • Yen, H.W., Hu, I.C., Chen, C.Y., Ho, S.H., Lee, D.J., Chang, J.S. (2013). Microalgae-based biorefinery–from biofuels to natural products. Bioresource Technology, 135, 166-174. https://doi.org/10.1016/j.biortech.2012.10.099
  • Yongmanitchai, W. A. R. D., & Ward, O. P. (1991). Growth of and omega-3 fatty acid production by Phaeodactylum tricornutum under different culture conditions. Applied and environmental microbiology, 57(2), 419-425.235
  • Ziyaei, K., Ataie, Z., Mokhtari, M., Adrah, K., Daneshmehr, M.A. (2022). An insight to the therapeutic potential of algae-derived sulfated polysaccharides and polyunsaturated fatty acids: Focusing on the COVID-19. International Journal of Biological Macromolecules, 209, 244-257. https://doi.org/10.1016/j.ijbiomac.2022.03.063
Toplam 110 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Algoloji, Tatlı Su Ekolojisi, Endüstriyel Biyoteknoloji (Diğer), Sucul Toksikoloji
Bölüm Derleme
Yazarlar

Merve Karakurluk 0009-0002-2301-1282

Tuğba Demiriz Yücer 0000-0002-2494-4511

Yayımlanma Tarihi 31 Aralık 2024
Gönderilme Tarihi 16 Mayıs 2024
Kabul Tarihi 20 Ekim 2024
Yayımlandığı Sayı Yıl 2024 Cilt: 5 Sayı: 2

Kaynak Göster

APA Karakurluk, M., & Demiriz Yücer, T. (2024). Algal Biyoaktif Bileşenler. Recep Tayyip Erdogan University Journal of Science and Engineering, 5(2), 204-215. https://doi.org/10.53501/rteufemud.1485427

Taranılan Dizinler

27717   22936   22937  22938   22939     22941   23010    23011   23019  23025