Araştırma Makalesi
BibTex RIS Kaynak Göster

Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode

Yıl 2018, Cilt: 22 Sayı: 6, 1493 - 1499, 01.12.2018
https://doi.org/10.16984/saufenbilder.343272

Öz



The Organic Field Effect
Transistor (OFET) with channel length modulation was fabricated by spin coating
method using a Poly(3-hexylthiophene) (P3HT) and the Polystyrene (PS) insulator
on a prepatterned as source-drain Indium thin oxide (ITO) substrate. The
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) was used
as  gate electrode. So, the structure of
OFET device is obtained as ITO/P3HT/PS/PEDOT:PSS. The ITO/PS/PEDOT:PSS
structure was prepared using same method for capacitance measurements of a
polymer insulator. Electrical characterization of OFET devices were held in
total darkness and in air ambient for the purpose of achieving output and
transfer current-voltage (I-V)
characteristics. The main parameters such as the threshold voltage (VTh), field effect mobility (
mFET)
and current on/off ratio (Ion/off)
of the OFET devices were extracted from capacitance-frequency (C-f) plot of the ITO/PS/PEDOT:PSS
structure.  It was found that fabricated
PS-OFETs exhibit good device performance such as low VTh, remarkable mobility, and  Ion/off
values.




Kaynakça

  • E. Scavetta, A.G. Solito, M, Demelas, P. Cosseddu, A. Bonfiglio, “Electrochemical characterization of self assembled monolayers on flexible electrodes", Electrochim. Acta, vol.65 pp. 159, 2012.
  • H.T. Nguyen, B.C. Dong, N.H. Nguyen, “A novel conducting amphiphilic diblock copolymer containing regioregular poly(3-hexylthiophene)”, Macromol. Res,.vol.22 pp. 85, 2014.
  • P. Dataa, P. Pander, M. Lapkowski, A. Swist, J. Soloduchoc, R.R. Reghud, J.V. Grazulevicius, “Unusual properties of electropolymerized 2,7- and 3,6- carbazole derivatives”, Electrochim. Acta, vol. 128 pp. 430, 2014.
  • C. Solis, E. Baigorria, M.E. Milanesio, G. Morales, E.N. Durantini, L. Otero, M. Gervaldo,“Electrochemical polymerization of EDOT modified Phthalocyanines and their applications as electrochromic materials with green coloration, and strong absorption in the Near-IR”, Electrochim. Acta, vol. 213 pp. 594, 2016.
  • J. Sun, B. Zhang, H.E. Katz, Materials for Printable, “Transparent, and Low-Voltage Transistors”, Adv. Funct. Mater., vol. 21 pp. 29, 2011.
  • R.A. Street, “Thin-Film Transistors”, Adv. Mater., vol. 21 pp. 2007, 2009.
  • J.Y. Kwon, D.J. Lee, K.B. Kim, “Review paper: "Transparent amorphous oxide semiconductor thin film transistor”, Electron. Mater. Lett., vol. 7 pp. 1, 2011.
  • S. Ju, L. Li, J. Liu, P.C Chen, Y.G Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D.B. Janes, T.J. Marks, “Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry”, Nano Lett., vol. 8 pp. 997, 2008.
  • Q. Cao, Z.T Zhu, M.G Lemaitre, M.G. Xia, M. Shim, J.A. Rogers, “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes”, Appl. Phys. Lett., vol. 88 pp. 113511, 2006.
  • W.H. Lee, J. Park, S.H Sim, S.B. Jo, K.S. Kim, B.H Hong, K. Cho, “Transparent Flexible Organic Transistors Based on Monolayer Graphene Electrodes on Plastic”, Adv. Mater., vol. 23 pp. 1752, 2011.
  • Y, Yu, H, Wada, J.I. Inoue, S. Imaizumi, Y. Kounosu, K. Tsuboi, H. Matsumoto, M. Ashizawa, T. Mori, M. Minagawa, A. Tanioka, “Inkjet Printing of Graphene Nanoribbons for Organic Field-Effect Transistors”, Appl. Phys. Express, vol. 4 pp. 115101, 2011.
  • H. Ohta, T. Kambayashi, K. Nomura, M. Hirano, K. Ishikawa, H. Takezoe, H. Hosono, Channel, “Transparent Organic Thin-Film Transistor with a Laterally Grown Non-Planar Phthalocyanine Channel”, Adv. Mater., vol. 16 pp. 312 2004.
  • D.J. Yun, S.W. Rhee, “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor”, Thin Solid Films, vol. 517 pp. 4644, 2009.
  • J.M. Choi, D.K. Hwang, J.H. Kim, S. Im, “Transparent thin-film transistors with pentacene channel, AlOxAlOx gate, and NiOxNiOx electrodes”, Appl. Phys. Lett., vol. 86 pp. 123505, 2005.
  • S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A.J. Heeger, M. Surin, R. Lazzaroni, “Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films”, J. Appl. Phys., vol. 100 pp. 114503, 2006.
  • L.A. Majewski, M. Grell, S.D. Ogier, J. Veres, “A novel gate insulator for flexible electronics”, Org. Electron., vol. 4 pp. 27, 2003.
  • Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, A.J. “Lovinger, High-Performance Plastic Transistors Fabricated by Printing Techniques”, Chem. Mater., pp. 9 pp. 1299, 1997.
  • V. Dyakonov, I. Riedel, C. Deibel, J. Parisi, C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, “Electronic Properties of Polymer-Fullerene Solar Cells”, Mat. Res. Soc. Symp. Proc. Vol. 665 pp. C7.1, 2001.
  • W. Fix, A. Ullmann, J. Ficker, W. Clemens, “Fast polymer integrated circuits”, Appl. Phys. Lett. vol. 81 pp. 1735, 2002.
  • J. Ficker, A. Ullmann, W. Fix, H. Rost, W. Clemens, “Stability of polythiophene-based transistors and circuits” J. Appl. Phys.” Vol. 94 pp. 2638, 2003.
  • Y. Jang, D.H. Kim, Y.D. Park, J.H. Cho, M. Hwang, K. Cho, “Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor”, Appl. Phys. Lett., vol. 87 pp. 152105, 2005.
  • S. Han, X. Zhuang, W. Shi, X. Yang, L. Li, J. Yu, “Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor”, Sens. Actuators B, vol. 225 pp. 10, 2016.
  • R.K. Goyal, P.A. Jagadale, U.P. Mulik, “Thermal, mechanical, and dielectric properties of polystyrene/expanded graphite nanocomposites”, J. Appl. Polym. Sci., vol. 111 pp. 2071, 2009.
  • K. Chen, K. Harris, S. Vyazovkin, “Tacticity as a Factor Contributing to the Thermal Stability of Polystyrene”, Macromol. Chem. Phys., vol. 208 pp. 2525, 2007.
  • C. Shin, “Filtration application from recycled expanded polystyrene”. J. Colloid Interface Sci., vol. 302 pp. 267, 2006.
  • D. Aussawasathien, S. Sahasithiwat, L. Menbangpung, “Electrospun camphorsulfonic acid doped poly(o-toluidine)–polystyrene composite fibers: Chemical vapor sensing”, Synth. Met., vol. 158 pp. 259, 2008.
  • J.Y. Lee, V. Kumar, X.W. Tang, D.J. Lee, “Mechanical and electrical behavior of rubber nanocomposites under static and cyclic strain”, Compos. Sci. Technol., vol. 142 pp. 1, 2017.
  • G. Albrecht, S. Heuser, C. Keil, D. Schlettwein, “Strategy for preparation of transparent organic thin film transistors with PEDOT:PSS electrodes and a polymeric gate dielectric”, Mater. Sci. Semicond. Process., vol. 40 pp. 772, 2015.
  • J.G. Tait, B.J. Worfolk, S.A. Maloney, T.C. Hauger, A.L. Elias, J.M. Buriak, K.D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells”, Sol. Energy Mater. Sol. Cells, vol. 110 pp. 98, 2013.
  • Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.J. Chua, “A mechanical assessment of flexible optoelectronic devices”, Thin Solid Films., vol. 394 pp. 201, 2001.
  • J. Veres, S. Ogier, G. Lloyd, Gate “Insulators in Organic Field-Effect Transistors”, Chem. Mater., vol. 16 pp. 4543, 2004.
  • T.W. Kelley, L.D. Boardman, T.D. Dunbar, D.V. Muyres, M.J. Pellerite, T.P. Smith, “High-Performance OTFTs Using Surface-Modified Alumina Dielectrics”, J. Phys. Chem. B, vol. 107 pp. 5877, 2003.
  • P. Mittal, B. Kumar, Y.S. Negi, B.K. Kaushik, R.K. Singh, “Channel length variation effect on performance parameters of organic field effect transistors”, Microelectron. J., vol. 43 pp. 985, 2012.
  • Y. Yan, L.B. Huang, Y. Zhou, S.T. Han, L. Zhou, J. Zhuang, Z.X. Xu, V.A.L. Roy, “Self-aligned, full solution process polymer field-effect transistor on flexible substrates”, Sci. Rep., vol. 5 pp. 15770, 2015.
  • A. Demir, O. Köysal, “Investigation of photo-induced change of electro-optical performance in a liquid crystal-organic field effect transistor (LC-OFET”, Philos. Mag., vol. 96 pp. 2362, 2016.
  • A. Demir, A. Atahan, S. Bağcı, M. Aslan, M.S Islam, “Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material”, Philos. Mag., vol. 96 pp. 274, 2016.
  • L. Herlogsson, X. Crispin, N.D. Robinson, M. Sandberg, O.J Hagel, G. Gustafsson, M. Berggren, “Low-Voltage Polymer Field-Effect Transistors Gated via a Proton Conductor”, Adv. Mater., vol. 19 pp. 97, 2007.
  • F Bordi1, C Cametti, R.H. Colby, “Dielectric spectroscopy and conductivity of polyelectrolyte solutions”, J. Phys.: Condens. Matter, vol. 16 pp. R1423 2004.
  • Y. Sun, Y. Liu, D. Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem., vol. 15 pp. 53, 2005.
  • B.C. Shekar, J. Lee, S.W. Rhee, “Organic thin film transistors: Materials, processes and devices”, Korean J. Chem. Eng., vol. 21 pp. 267, 2004.
  • G. Xu, Z. Bao, J.T. Groves, “Langmuir−Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors”, Langmuir, vol. 16 pp. 1834, 2000.
  • A. Demir, S. Bağci, S.E. San, Z. Doğruyol, “Pentacene-Based Organic Thin Film Transistor With SiO2 Gate Dielectric”, Surf. Rev. Lett., vol. 22 pp. 1550038, 2015.

PEDOT: PSS Kompozit Elektrot Kullanarak Polistiren Yalıtkanlı Organik Alan Etkili Transistörde Kanal Uzunluğu Modülasyonu

Yıl 2018, Cilt: 22 Sayı: 6, 1493 - 1499, 01.12.2018
https://doi.org/10.16984/saufenbilder.343272

Öz



Kanal uzunluğu modülasyonlu
Organik Alan Etkili Transistör (OFET), önceden oluşturulmuş indiyum kalay
oksitli (ITO) kaynak-savak alt-tabaka üzerinde Poly(3-hexylthiophene) (P3HT) ve
Polystyrene (PS) yalıtkan kullanarak spin kaplama yöntemi ile üretildi.
Kapı Elektrodu olarak 
poly(3,4-ethylenedioxythiophene) polystyrene sulfonate
(PEDOT:PSS)
kullanılmıştır.
Böylece, OFET cihazının yapısı ITO/P3HT/PS/ PEDOT:PSS olarak elde edilmiştir.
ITO/PS/PEDOT:PSS yapısı polimer yalıtkanının kapasitans ölçümleri için aynı
yöntem kullanılarak hazırlanmıştır. OFET cihazlarının elektriksel
karakterizasyonu çıkış ve transfer akım voltaj (I-V) karakteristikleri elde
etmek amacıyla tam karanlıkta ve hava ortamında yapılmıştır. OFET cihazlarının
eşik voltajı (
VTh), alan etkili mobilite (mFET) ve akım
açma/kapama oranı (
Ion/off) gibi ana parametreler, ITO/PS/PEDOT:PSS yapısının
kapasitans frekansı (
C-f) ölçümlerinden elde edildi. Üretilen PS-OFET'lerin düşük
VTh, kaydadeğer mobilite ve akım açık/kapama değerleri gibi
iyi cihaz performansı sergilediği gözlenmiştir.




Kaynakça

  • E. Scavetta, A.G. Solito, M, Demelas, P. Cosseddu, A. Bonfiglio, “Electrochemical characterization of self assembled monolayers on flexible electrodes", Electrochim. Acta, vol.65 pp. 159, 2012.
  • H.T. Nguyen, B.C. Dong, N.H. Nguyen, “A novel conducting amphiphilic diblock copolymer containing regioregular poly(3-hexylthiophene)”, Macromol. Res,.vol.22 pp. 85, 2014.
  • P. Dataa, P. Pander, M. Lapkowski, A. Swist, J. Soloduchoc, R.R. Reghud, J.V. Grazulevicius, “Unusual properties of electropolymerized 2,7- and 3,6- carbazole derivatives”, Electrochim. Acta, vol. 128 pp. 430, 2014.
  • C. Solis, E. Baigorria, M.E. Milanesio, G. Morales, E.N. Durantini, L. Otero, M. Gervaldo,“Electrochemical polymerization of EDOT modified Phthalocyanines and their applications as electrochromic materials with green coloration, and strong absorption in the Near-IR”, Electrochim. Acta, vol. 213 pp. 594, 2016.
  • J. Sun, B. Zhang, H.E. Katz, Materials for Printable, “Transparent, and Low-Voltage Transistors”, Adv. Funct. Mater., vol. 21 pp. 29, 2011.
  • R.A. Street, “Thin-Film Transistors”, Adv. Mater., vol. 21 pp. 2007, 2009.
  • J.Y. Kwon, D.J. Lee, K.B. Kim, “Review paper: "Transparent amorphous oxide semiconductor thin film transistor”, Electron. Mater. Lett., vol. 7 pp. 1, 2011.
  • S. Ju, L. Li, J. Liu, P.C Chen, Y.G Ha, F. Ishikawa, H. Chang, C. Zhou, A. Facchetti, D.B. Janes, T.J. Marks, “Transparent Active Matrix Organic Light-Emitting Diode Displays Driven by Nanowire Transistor Circuitry”, Nano Lett., vol. 8 pp. 997, 2008.
  • Q. Cao, Z.T Zhu, M.G Lemaitre, M.G. Xia, M. Shim, J.A. Rogers, “Transparent flexible organic thin-film transistors that use printed single-walled carbon nanotube electrodes”, Appl. Phys. Lett., vol. 88 pp. 113511, 2006.
  • W.H. Lee, J. Park, S.H Sim, S.B. Jo, K.S. Kim, B.H Hong, K. Cho, “Transparent Flexible Organic Transistors Based on Monolayer Graphene Electrodes on Plastic”, Adv. Mater., vol. 23 pp. 1752, 2011.
  • Y, Yu, H, Wada, J.I. Inoue, S. Imaizumi, Y. Kounosu, K. Tsuboi, H. Matsumoto, M. Ashizawa, T. Mori, M. Minagawa, A. Tanioka, “Inkjet Printing of Graphene Nanoribbons for Organic Field-Effect Transistors”, Appl. Phys. Express, vol. 4 pp. 115101, 2011.
  • H. Ohta, T. Kambayashi, K. Nomura, M. Hirano, K. Ishikawa, H. Takezoe, H. Hosono, Channel, “Transparent Organic Thin-Film Transistor with a Laterally Grown Non-Planar Phthalocyanine Channel”, Adv. Mater., vol. 16 pp. 312 2004.
  • D.J. Yun, S.W. Rhee, “Deposition of Al-doped ZnO thin-films with radio frequency magnetron sputtering for a source/drain electrode for pentacene thin-film transistor”, Thin Solid Films, vol. 517 pp. 4644, 2009.
  • J.M. Choi, D.K. Hwang, J.H. Kim, S. Im, “Transparent thin-film transistors with pentacene channel, AlOxAlOx gate, and NiOxNiOx electrodes”, Appl. Phys. Lett., vol. 86 pp. 123505, 2005.
  • S. Cho, K. Lee, J. Yuen, G. Wang, D. Moses, A.J. Heeger, M. Surin, R. Lazzaroni, “Thermal annealing-induced enhancement of the field-effect mobility of regioregular poly(3-hexylthiophene) films”, J. Appl. Phys., vol. 100 pp. 114503, 2006.
  • L.A. Majewski, M. Grell, S.D. Ogier, J. Veres, “A novel gate insulator for flexible electronics”, Org. Electron., vol. 4 pp. 27, 2003.
  • Z. Bao, Y. Feng, A. Dodabalapur, V.R. Raju, A.J. “Lovinger, High-Performance Plastic Transistors Fabricated by Printing Techniques”, Chem. Mater., pp. 9 pp. 1299, 1997.
  • V. Dyakonov, I. Riedel, C. Deibel, J. Parisi, C.J. Brabec, N.S. Sariciftci, J.C. Hummelen, “Electronic Properties of Polymer-Fullerene Solar Cells”, Mat. Res. Soc. Symp. Proc. Vol. 665 pp. C7.1, 2001.
  • W. Fix, A. Ullmann, J. Ficker, W. Clemens, “Fast polymer integrated circuits”, Appl. Phys. Lett. vol. 81 pp. 1735, 2002.
  • J. Ficker, A. Ullmann, W. Fix, H. Rost, W. Clemens, “Stability of polythiophene-based transistors and circuits” J. Appl. Phys.” Vol. 94 pp. 2638, 2003.
  • Y. Jang, D.H. Kim, Y.D. Park, J.H. Cho, M. Hwang, K. Cho, “Influence of the dielectric constant of a polyvinyl phenol insulator on the field-effect mobility of a pentacene-based thin-film transistor”, Appl. Phys. Lett., vol. 87 pp. 152105, 2005.
  • S. Han, X. Zhuang, W. Shi, X. Yang, L. Li, J. Yu, “Poly(3-hexylthiophene)/polystyrene (P3HT/PS) blends based organic field-effect transistor ammonia gas sensor”, Sens. Actuators B, vol. 225 pp. 10, 2016.
  • R.K. Goyal, P.A. Jagadale, U.P. Mulik, “Thermal, mechanical, and dielectric properties of polystyrene/expanded graphite nanocomposites”, J. Appl. Polym. Sci., vol. 111 pp. 2071, 2009.
  • K. Chen, K. Harris, S. Vyazovkin, “Tacticity as a Factor Contributing to the Thermal Stability of Polystyrene”, Macromol. Chem. Phys., vol. 208 pp. 2525, 2007.
  • C. Shin, “Filtration application from recycled expanded polystyrene”. J. Colloid Interface Sci., vol. 302 pp. 267, 2006.
  • D. Aussawasathien, S. Sahasithiwat, L. Menbangpung, “Electrospun camphorsulfonic acid doped poly(o-toluidine)–polystyrene composite fibers: Chemical vapor sensing”, Synth. Met., vol. 158 pp. 259, 2008.
  • J.Y. Lee, V. Kumar, X.W. Tang, D.J. Lee, “Mechanical and electrical behavior of rubber nanocomposites under static and cyclic strain”, Compos. Sci. Technol., vol. 142 pp. 1, 2017.
  • G. Albrecht, S. Heuser, C. Keil, D. Schlettwein, “Strategy for preparation of transparent organic thin film transistors with PEDOT:PSS electrodes and a polymeric gate dielectric”, Mater. Sci. Semicond. Process., vol. 40 pp. 772, 2015.
  • J.G. Tait, B.J. Worfolk, S.A. Maloney, T.C. Hauger, A.L. Elias, J.M. Buriak, K.D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells”, Sol. Energy Mater. Sol. Cells, vol. 110 pp. 98, 2013.
  • Z. Chen, B. Cotterell, W. Wang, E. Guenther, S.J. Chua, “A mechanical assessment of flexible optoelectronic devices”, Thin Solid Films., vol. 394 pp. 201, 2001.
  • J. Veres, S. Ogier, G. Lloyd, Gate “Insulators in Organic Field-Effect Transistors”, Chem. Mater., vol. 16 pp. 4543, 2004.
  • T.W. Kelley, L.D. Boardman, T.D. Dunbar, D.V. Muyres, M.J. Pellerite, T.P. Smith, “High-Performance OTFTs Using Surface-Modified Alumina Dielectrics”, J. Phys. Chem. B, vol. 107 pp. 5877, 2003.
  • P. Mittal, B. Kumar, Y.S. Negi, B.K. Kaushik, R.K. Singh, “Channel length variation effect on performance parameters of organic field effect transistors”, Microelectron. J., vol. 43 pp. 985, 2012.
  • Y. Yan, L.B. Huang, Y. Zhou, S.T. Han, L. Zhou, J. Zhuang, Z.X. Xu, V.A.L. Roy, “Self-aligned, full solution process polymer field-effect transistor on flexible substrates”, Sci. Rep., vol. 5 pp. 15770, 2015.
  • A. Demir, O. Köysal, “Investigation of photo-induced change of electro-optical performance in a liquid crystal-organic field effect transistor (LC-OFET”, Philos. Mag., vol. 96 pp. 2362, 2016.
  • A. Demir, A. Atahan, S. Bağcı, M. Aslan, M.S Islam, “Organic/inorganic interfaced field-effect transistor properties with a novel organic semiconducting material”, Philos. Mag., vol. 96 pp. 274, 2016.
  • L. Herlogsson, X. Crispin, N.D. Robinson, M. Sandberg, O.J Hagel, G. Gustafsson, M. Berggren, “Low-Voltage Polymer Field-Effect Transistors Gated via a Proton Conductor”, Adv. Mater., vol. 19 pp. 97, 2007.
  • F Bordi1, C Cametti, R.H. Colby, “Dielectric spectroscopy and conductivity of polyelectrolyte solutions”, J. Phys.: Condens. Matter, vol. 16 pp. R1423 2004.
  • Y. Sun, Y. Liu, D. Zhu, “Advances in organic field-effect transistors”, J. Mater. Chem., vol. 15 pp. 53, 2005.
  • B.C. Shekar, J. Lee, S.W. Rhee, “Organic thin film transistors: Materials, processes and devices”, Korean J. Chem. Eng., vol. 21 pp. 267, 2004.
  • G. Xu, Z. Bao, J.T. Groves, “Langmuir−Blodgett Films of Regioregular Poly(3-hexylthiophene) as Field-Effect Transistors”, Langmuir, vol. 16 pp. 1834, 2000.
  • A. Demir, S. Bağci, S.E. San, Z. Doğruyol, “Pentacene-Based Organic Thin Film Transistor With SiO2 Gate Dielectric”, Surf. Rev. Lett., vol. 22 pp. 1550038, 2015.
Toplam 42 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Metroloji,Uygulamalı ve Endüstriyel Fizik, Mühendislik, Malzeme Üretim Teknolojileri
Bölüm Araştırma Makalesi
Yazarlar

Ahmet Demir

Yayımlanma Tarihi 1 Aralık 2018
Gönderilme Tarihi 13 Ekim 2017
Kabul Tarihi 16 Kasım 2017
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 6

Kaynak Göster

APA Demir, A. (2018). Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode. Sakarya University Journal of Science, 22(6), 1493-1499. https://doi.org/10.16984/saufenbilder.343272
AMA Demir A. Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode. SAUJS. Aralık 2018;22(6):1493-1499. doi:10.16984/saufenbilder.343272
Chicago Demir, Ahmet. “Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode”. Sakarya University Journal of Science 22, sy. 6 (Aralık 2018): 1493-99. https://doi.org/10.16984/saufenbilder.343272.
EndNote Demir A (01 Aralık 2018) Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode. Sakarya University Journal of Science 22 6 1493–1499.
IEEE A. Demir, “Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode”, SAUJS, c. 22, sy. 6, ss. 1493–1499, 2018, doi: 10.16984/saufenbilder.343272.
ISNAD Demir, Ahmet. “Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode”. Sakarya University Journal of Science 22/6 (Aralık 2018), 1493-1499. https://doi.org/10.16984/saufenbilder.343272.
JAMA Demir A. Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode. SAUJS. 2018;22:1493–1499.
MLA Demir, Ahmet. “Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode”. Sakarya University Journal of Science, c. 22, sy. 6, 2018, ss. 1493-9, doi:10.16984/saufenbilder.343272.
Vancouver Demir A. Channel Length Modulation in a Polystyrene Insulated Organic Field Effect Transistor Using PEDOT: PSS Composite Electrode. SAUJS. 2018;22(6):1493-9.

30930 This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.