Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparison of Blood Flow Restriction Training With Classical Hypertrophy Training in Terms of Muscle Strength and Thickness

Yıl 2019, , 158 - 167, 07.01.2020
https://doi.org/10.17644/sbd.486982

Öz

The aim of this study was to investigate the effects of low intensity
strength training with blood flow restriction (BFR) and modarate intensity
strength training on elbow flexion strength and muscle thickness. 22 subjects
were included in the study. Eleven of the subjects practiced moderate intensity
(classical hypertrophy, CH) and eleven of the subjects practiced low intensity
training with blood flow restriction. Biceps brachii muscle strength and biceps
brachii thickness of the subjects were measured before and after 8 weeks of
exercise. Wilcoxon and Mann Whitney U test were used to evaluate the results of
the subjects. P values of less than 0.05 were considered statistically
significant. At the end of 8 weeks, muscle strength and muscle thickness were
increased in both groups (p <0.05). In addition, there was no difference
between groups in terms of strength and thickness (p> 0.05). Low intensity
strength training with blood flow restriction increased strength and thickness.
BFR training has similar results with classical hypertrophy training and may
alternatively be used to replace hypertrophy training.

Kaynakça

  • 1. Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG. (2012). Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging, 32, 247–252.
  • 2. American College of Sport Medicine. (2002). Position stand: progression models in resistance training for healthy adults. Med Sci Sport Exercs, 3, 364-380.
  • 3. American College of Sports Medicine. (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41, 687-708.
  • 4. Baikoglu, S, Kaldirimci M. (2019). Effect of ıschemıc pre-condıtıonıng on lactate and anaerobıc performance. Acta Medica Mediterranea, 35(1), 159-164.
  • 5. Centner C, Wiegel P, Gollhofer A, König D. (2019). Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Medicine, 49(1), 95-108.
  • 6. Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. (2012). Methodological considerations for blood flow restricted resistance exercise. J Trainol, 1(1), 14-22
  • 7. Fleck SJ, Kreamer WJ. (1997). Designing Resistance Training Programs (2nd ed.) Champaign, IL: Human Kinetics.
  • 8. Folland JP, Williams AG. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med, 37,145-168.
  • 9. Goto K, Ishii N, Kizuka T, Takamatsu K. (2005). The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc, 37, 955-963.
  • 10. Gozubuyuk OB, Tahirbegolli B, Akkoc O, Akman M, Bayraktar B. (2016). The reliability of ultrasonographic measurement of biceps brachii muscle thickness and stiffness. In Acta Physıologıca, Vol. 218, pp. 45-46.
  • 11. Karabulut M, Abe T, Sato Y, Bemben MG. (2010). The effects of lowintensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol, 108, 147-155.
  • 12. Kim D, Loenneke Jp, Ye X, Bemben Da. (2017). Low-load resıstance traınıng wıth low relatıve pressure produces muscular changes sımılar to hıgh-load resıstance traınıng. Muscle Nerve, 56, E126-E133.
  • 13. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS ve diğ. (2002). American college of sports medicine position stand. progression models in resistance training for healthy adults. Med Sci Sports Exerc, 34(2), 364-380.
  • 14. Kraemer WJ, Ratamess NA. (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc, 36, 674-688.
  • 15. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves Jr M. ve diğ. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44(3), 406-12.
  • 16. Lemos Muller CH, Ramis TR, Ribeiro JL. (2019). Effects of low-load resistance training with blood flow restriction on the perceived exertion, muscular resistance and endurance in healthy young adults. Sport Sciences for Health, 1-8.
  • 17. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. (2012). The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses, 78, 151-154.
  • 18. Loenneke JP, Fahs CA, Wilson JM, Bemben MG. (2011). Blood flow restriction: The metabolite/volume threshold theory. Med Hypotheses, 77, 748–752, 2011
  • 19. Loenneke JP, Pujol, TJ. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond J, 31, 77–84.
  • 20. Lowery RP, Joy JM, Loenneke JP, Souza EO, Machado M, Dudeck JE ve diğ. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging, 34, 317-321.
  • 21. Nakajima T, Kurano M, Iida H, Takano H, Oonuma H, Morita T ve diğ. (2006). Use and safety of Kaatsu training: Results of a national survey. Int. J. Kaatsu Training Res. 2, 5-13.
  • 22. Nitzsche N, Schulze R, Weigand F, Hummer N, Schulz H. (2018). Comparison of an Acute Resistance Training on the Lactate Concentration with and without Blood Flow Restriction at Different Loads.
  • 23. Pant G, Bhutia UD. (2017). Effect of restricted blood flow on muscle hypotrophy & O2 saturation level on weight training. International Journal of Physical Education, Sports and Health, 4(2), 316-317.
  • 24. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. (2004). Control of the size of the human muscle mass. Annu Rev Physiol, 66, 799-828.
  • 25. Rodrigues R, Ferraz RB, Kurimori CO, Guedes LK, Lima FR, Sá‐Pinto AL. ve diğ. (2019). Low‐load resistance training with blood flow restriction increases muscle function, mass and functionality in women with rheumatoid arthritis. Arthritis care research.
  • 26. Sale DG. (1988). Neural adaptation to resistance training. Med Sci Sports Exerc, 20, 135-145.
  • 27. Sato Y. (1998). The history and future of Kaatsu training. Int J Kaatsu Train Res, 1, 1-5.
  • 28. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M. ve diğ. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol, 106, 1119–1124.
  • 29. Sugaya M, Yasuda T, Suga T, Okita K, Abe T. (2011). Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging, 31(5), 411–413.
  • 30. Takano H, Morita T, Iida H, Asada KI, Kato M, Uno K. Ve diğ. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European journal of applied physiology, 95(1), 65-73.
  • 31. Takarada Y, Tsuruta T, and Ishii N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54: 585–592.
  • 32. Takarada Y,Takazawa H, Sato Y, Takenoshita S, Tanaka Y, Ishii N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol, 88, 2097-2106.
  • 33. Vinícius Letieri R, Eustáquio Furtado G, Nogueira Barros PM, Farias MJA, Fernandes Antunez B, Branquinho Gomes B. Ve diğ. (2019). Effect of 16-week blood flow restriction exercise on functional fitness in sarcopenic women: a randomized controlled trial. International Journal of Morphology, 37(1).
  • 34. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. The Journal of Strength & Conditioning Research, 27(11), 3068-3075.
  • 35. Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T. (2009). Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci, 27, 479-489.
  • 36. Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. (2010). Effects of low‐intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clinical physiology and functional imaging, 30(5), 338-343.
  • 37. Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T. (2011). Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. European journal of applied physiology, 111(10), 2525-2533.

Klasik Hipertrofi İle Kan Akışı Sınırlandırılarak Yapılan Antrenmanların Kas Kuvveti Ve Kalınlığı Açısından Karşılaştırılması

Yıl 2019, , 158 - 167, 07.01.2020
https://doi.org/10.17644/sbd.486982

Öz

Bu çalışmanın amacı, kan
akışı sınırlandırılarak yapılan düşük şiddette kuvvet egzersizleri ve orta
şiddetteki kuvvet egzersizlerinin kas kuvveti ve kas kalınlığına etkisini
araştırmaktır. Çalışmaya 22 denek katılmıştır. Deneklerin 11’i kan akışı
sınırlandırarak (KAS), 11’i klasik hipertrofi (KH) antrenmanı yapmıştır. 8
hafta uygulanan kuvvet egzersizlerinden önce ve sonra deneklerin biseps braki
kas kuvveti ve biseps braki kas kalınlığı ölçülmüştür. Katılımcıların
sonuçlarını değerlendirmek için Wilcoxon ve Man Whitney U testi kullanılmış,
anlamlılık p<0,05 kabul edilmiştir. 8 hafta uygulanan kuvvet antrenmanı
sonunda kas kuvveti ve kas kalınlığı her iki grupta da artmış (p<0,05),
ayrıca kuvvet ve kalınlık bakımından gruplar arası fark bulunamamıştır
(p>0,05). Kan akışı sınırlandırılarak yapılan düşük şiddetteki kuvvet
antrenmanı (KAS), kuvveti ve kalınlığını arttırmıştır. KAS antrenmanı klasik
hipertrofi (KH) antrenmanı ile benzer sonuçlar vermiştir ve hipertrofi
antrenmanına alternatif olarak kullanılabilir.

Kaynakça

  • 1. Abe T, Loenneke JP, Fahs CA, Rossow LM, Thiebaud RS, Bemben MG. (2012). Exercise intensity and muscle hypertrophy in blood flow-restricted limbs and non-restricted muscles: a brief review. Clin Physiol Funct Imaging, 32, 247–252.
  • 2. American College of Sport Medicine. (2002). Position stand: progression models in resistance training for healthy adults. Med Sci Sport Exercs, 3, 364-380.
  • 3. American College of Sports Medicine. (2009). American college of sports medicine position stand. Progression models in resistance training for healthy adults. Med Sci Sports Exerc, 41, 687-708.
  • 4. Baikoglu, S, Kaldirimci M. (2019). Effect of ıschemıc pre-condıtıonıng on lactate and anaerobıc performance. Acta Medica Mediterranea, 35(1), 159-164.
  • 5. Centner C, Wiegel P, Gollhofer A, König D. (2019). Effects of blood flow restriction training on muscular strength and hypertrophy in older individuals: a systematic review and meta-analysis. Sports Medicine, 49(1), 95-108.
  • 6. Fahs CA, Loenneke JP, Rossow LM, Thiebaud RS, Bemben MG. (2012). Methodological considerations for blood flow restricted resistance exercise. J Trainol, 1(1), 14-22
  • 7. Fleck SJ, Kreamer WJ. (1997). Designing Resistance Training Programs (2nd ed.) Champaign, IL: Human Kinetics.
  • 8. Folland JP, Williams AG. (2007). The adaptations to strength training: morphological and neurological contributions to increased strength. Sports Med, 37,145-168.
  • 9. Goto K, Ishii N, Kizuka T, Takamatsu K. (2005). The impact of metabolic stress on hormonal responses and muscular adaptations. Med Sci Sports Exerc, 37, 955-963.
  • 10. Gozubuyuk OB, Tahirbegolli B, Akkoc O, Akman M, Bayraktar B. (2016). The reliability of ultrasonographic measurement of biceps brachii muscle thickness and stiffness. In Acta Physıologıca, Vol. 218, pp. 45-46.
  • 11. Karabulut M, Abe T, Sato Y, Bemben MG. (2010). The effects of lowintensity resistance training with vascular restriction on leg muscle strength in older men. Eur J Appl Physiol, 108, 147-155.
  • 12. Kim D, Loenneke Jp, Ye X, Bemben Da. (2017). Low-load resıstance traınıng wıth low relatıve pressure produces muscular changes sımılar to hıgh-load resıstance traınıng. Muscle Nerve, 56, E126-E133.
  • 13. Kraemer WJ, Adams K, Cafarelli E, Dudley GA, Dooly C, Feigenbaum MS ve diğ. (2002). American college of sports medicine position stand. progression models in resistance training for healthy adults. Med Sci Sports Exerc, 34(2), 364-380.
  • 14. Kraemer WJ, Ratamess NA. (2004) Fundamentals of resistance training: progression and exercise prescription. Med Sci Sports Exerc, 36, 674-688.
  • 15. Laurentino GC, Ugrinowitsch C, Roschel H, Aoki MS, Soares AG, Neves Jr M. ve diğ. (2012). Strength training with blood flow restriction diminishes myostatin gene expression. Med Sci Sports Exerc, 44(3), 406-12.
  • 16. Lemos Muller CH, Ramis TR, Ribeiro JL. (2019). Effects of low-load resistance training with blood flow restriction on the perceived exertion, muscular resistance and endurance in healthy young adults. Sport Sciences for Health, 1-8.
  • 17. Loenneke JP, Fahs CA, Rossow LM, Abe T, Bemben MG. (2012). The anabolic benefits of venous blood flow restriction training may be induced by muscle cell swelling. Med Hypotheses, 78, 151-154.
  • 18. Loenneke JP, Fahs CA, Wilson JM, Bemben MG. (2011). Blood flow restriction: The metabolite/volume threshold theory. Med Hypotheses, 77, 748–752, 2011
  • 19. Loenneke JP, Pujol, TJ. (2009). The use of occlusion training to produce muscle hypertrophy. Strength Cond J, 31, 77–84.
  • 20. Lowery RP, Joy JM, Loenneke JP, Souza EO, Machado M, Dudeck JE ve diğ. (2014). Practical blood flow restriction training increases muscle hypertrophy during a periodized resistance training programme. Clin Physiol Funct Imaging, 34, 317-321.
  • 21. Nakajima T, Kurano M, Iida H, Takano H, Oonuma H, Morita T ve diğ. (2006). Use and safety of Kaatsu training: Results of a national survey. Int. J. Kaatsu Training Res. 2, 5-13.
  • 22. Nitzsche N, Schulze R, Weigand F, Hummer N, Schulz H. (2018). Comparison of an Acute Resistance Training on the Lactate Concentration with and without Blood Flow Restriction at Different Loads.
  • 23. Pant G, Bhutia UD. (2017). Effect of restricted blood flow on muscle hypotrophy & O2 saturation level on weight training. International Journal of Physical Education, Sports and Health, 4(2), 316-317.
  • 24. Rennie MJ, Wackerhage H, Spangenburg EE, Booth FW. (2004). Control of the size of the human muscle mass. Annu Rev Physiol, 66, 799-828.
  • 25. Rodrigues R, Ferraz RB, Kurimori CO, Guedes LK, Lima FR, Sá‐Pinto AL. ve diğ. (2019). Low‐load resistance training with blood flow restriction increases muscle function, mass and functionality in women with rheumatoid arthritis. Arthritis care research.
  • 26. Sale DG. (1988). Neural adaptation to resistance training. Med Sci Sports Exerc, 20, 135-145.
  • 27. Sato Y. (1998). The history and future of Kaatsu training. Int J Kaatsu Train Res, 1, 1-5.
  • 28. Suga T, Okita K, Morita N, Yokota T, Hirabayashi K, Horiuchi M. ve diğ. (2009). Intramuscular metabolism during low-intensity resistance exercise with blood flow restriction. J Appl Physiol, 106, 1119–1124.
  • 29. Sugaya M, Yasuda T, Suga T, Okita K, Abe T. (2011). Change in intramuscular inorganic phosphate during multiple sets of blood flow-restricted low-intensity exercise. Clin Physiol Funct Imaging, 31(5), 411–413.
  • 30. Takano H, Morita T, Iida H, Asada KI, Kato M, Uno K. Ve diğ. (2005). Hemodynamic and hormonal responses to a short-term low-intensity resistance exercise with the reduction of muscle blood flow. European journal of applied physiology, 95(1), 65-73.
  • 31. Takarada Y, Tsuruta T, and Ishii N. (2004). Cooperative effects of exercise and occlusive stimuli on muscular function in low-intensity resistance exercise with moderate vascular occlusion. Jpn J Physiol 54: 585–592.
  • 32. Takarada Y,Takazawa H, Sato Y, Takenoshita S, Tanaka Y, Ishii N. (2000). Effects of resistance exercise combined with moderate vascular occlusion on muscular function in humans. J Appl Physiol, 88, 2097-2106.
  • 33. Vinícius Letieri R, Eustáquio Furtado G, Nogueira Barros PM, Farias MJA, Fernandes Antunez B, Branquinho Gomes B. Ve diğ. (2019). Effect of 16-week blood flow restriction exercise on functional fitness in sarcopenic women: a randomized controlled trial. International Journal of Morphology, 37(1).
  • 34. Wilson JM, Lowery RP, Joy JM, Loenneke JP, Naimo MA. (2013). Practical blood flow restriction training increases acute determinants of hypertrophy without increasing indices of muscle damage. The Journal of Strength & Conditioning Research, 27(11), 3068-3075.
  • 35. Yasuda T, Brechue WF, Fujita T, Shirakawa J, Sato Y, Abe T. (2009). Muscle activation during low-intensity muscle contractions with restricted blood flow. J Sports Sci, 27, 479-489.
  • 36. Yasuda T, Fujita S, Ogasawara R, Sato Y, Abe T. (2010). Effects of low‐intensity bench press training with restricted arm muscle blood flow on chest muscle hypertrophy: a pilot study. Clinical physiology and functional imaging, 30(5), 338-343.
  • 37. Yasuda T, Ogasawara R, Sakamaki M, Ozaki H, Sato Y, Abe T. (2011). Combined effects of low-intensity blood flow restriction training and high-intensity resistance training on muscle strength and size. European journal of applied physiology, 111(10), 2525-2533.
Toplam 37 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Spor Hekimliği
Bölüm Makaleler
Yazarlar

Orkun Akkoç 0000-0003-0718-6883

Ömer Batın Gözübüyük

Yayımlanma Tarihi 7 Ocak 2020
Gönderilme Tarihi 23 Kasım 2018
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Akkoç, O., & Gözübüyük, Ö. B. (2020). Klasik Hipertrofi İle Kan Akışı Sınırlandırılarak Yapılan Antrenmanların Kas Kuvveti Ve Kalınlığı Açısından Karşılaştırılması. Spor Bilimleri Dergisi, 30(4), 158-167. https://doi.org/10.17644/sbd.486982

9551


SPOR BİLİMLERİ DERGİSİ


Yayın hakkı © Hacettepe Üniversitesi Spor Bilimleri Fakültesi