Research Article
BibTex RIS Cite

Further Results on (Δ_s^j,f)-Lacunary Statistical Convergence of Double Sequences of order α

Year 2024, Volume: 19 Issue: 2, 86 - 97, 25.11.2024
https://doi.org/10.29233/sdufeffd.1469619

Abstract

This paper defines the space S_(θ_uv)^α (Δ_s^j,f), encompassing all sequences that are (Δ_s^j,f)-lacunary statistically convergent of order α, utilizing an unbounded modulus function f, a double lacunary sequence θ_uv={(k_u,l_v )}, a generalized difference operator Δ_s^j, and a real number α ∈ (0,1]. Additionally, the space ω_(θ_uv)^α (Δ_s^j,f) is introduced to include all sequences that are strongly (Δ_s^j,f)-lacunary summable of order α. The paper investigates properties associated with these spaces, and under specific conditions, inclusion relations between the spaces S_(θ_uv)^α (Δ_s^j,f) and ω_(θ_uv)^α (Δ_s^j,f) are established.

References

  • H. Fast, “Sur la convergence statistique”, Colloquium Mathematicum, 2, 241-244, 1951.
  • A. R. Freedman, J. J. Sember and M. Raphael, “Some Cesàro type summability spaces”, Proceedings of the London Mathematical Society, 37, 508-520, 1978.
  • R. Çolak, “Statistical convergence of order α”, Modern Methods in Analysis and Its Applications, 1, 2010, pp. 121-129.
  • J. A. Fridy and C. Orhan, “Lacunary statistical convergent”, Pacific Journal of Mathematics, 160, 43-51, 1993.
  • H. Şengül and M. Et, “On lacunary statistical convergence of order α”, Acta Mathematica Scientia, 34(2), 473-482, 2014.
  • A. Pringsheim, “Zur theorie der zweifach unendlichen Zahlenfolgen”, Mathematische Annalen, 53, 289-321, 1900.
  • M. Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences”, Journal of Mathematical Analysis and Applications, 288, 223-231, 2003.
  • R. F. Patterson and E. Savaş, “Lacunary statistical convergence of double sequences”, Mathematical Communications, 10, 55-61, 2005.
  • R. Çolak and Y. Altın, “Statistical convergence of double sequences of order α”, Journal of Function Spaces, 2013, 1-5, 2013.
  • H. Kizmaz, “On certain sequence spaces”, Canadian Mathematical Bulletin, 24(2), 169-176, 1981.
  • M. Et and R. Çolak, “On some generalized difference sequence spaces”, Soochow Journal of Mathematics, 21(4), 377-386, 1995.
  • M. Et and A. Esi, “On Köthe-Toeplitz duals of generalized difference sequence spaces”, Bulletin of the Malaysian Mathematical Sciences Society, 23(1), 25-32, 2000.
  • B. C. Tripathy and M. Et, “On generalized difference lacunary statistical convergence”, Studia Universitatis Babeş-Bolyai Mathematica, 50(1), 119-130, 2005.
  • B. C. Tripathy and S. Mahanta, “On a class of generalized lacunary difference sequence spaces defined by Orlicz functions”, Acta Mathematica Sinica, English Series, 20(2), 231-238, 2004.
  • B. C. Tripathy and H. Dutta, “On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆_m^n-statistical convergence”, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Mathematica, 20(1), 417-430, 2012.
  • A. K. Verma and L. K. Singh, “(∆_v^m,f)-lacunary statistical convergence of order α”, Proyecciones, 41(4), 791-804, 2022.
  • M. Et and H. Gidemen, “On ∆_v^m (f)-statistical convergence of order α”, Communications in Statistics-Theory and Methods, 49(14), 3521-3529, 2020.
  • I. J. Maddox, “Sequence spaces defined by a modulus”, Mathematical Proceedings of the Cambridge Philodophical Society, 100, 161-166, 1986.
  • A. Aizpuru, M. C. Listán-García, and F. Rambla-Barreno, “Density by moduli and statistical convergence”, Quaestiones Mathematicae, 37(4), 525-530, 2014.
  • S. Gupta and V. K. Bhardwaj, “On deferred f-statistical convergence”, Kyungpook Mathematical Journal, 58(1), 91-103, 2018.
  • Ş. Şengül and M. Et, “f-lacunary statistical convergence and strong f-lacunary summability of order α”, Filomat, 32(13), 4513-4521, 2018.
  • E. Dündar and N. Akın, “f-asymptotically I_2^σ-equivalence of double sequences of sets”, Afyon Kocatepe University Journal of Science and Engineering, 19(1), 79-86, 2019.
  • E. Dündar and N. Akın, “f-asymptotically Iσ-equivalence of real sequences”, Konuralp Journal of Mathematics, 8(1), 207-210, 2020.
  • E. Dündar and N. Akın, “f-asymptotically I_2^σθ-equivalence for double set sequences”, Karaelmas Science and Engineering Journal, 10(1), 26-31, 2020.
  • E. Dündar and N. Akın, “f-asymptotically I_σθ-equivalence of real sequences”, Journal of Mathematical Sciences and Modelling, 3(1), 32-37, 2020.
  • E. Dündar, N. Akın and U. Ulusu, “Asymptotical invariant and asymptotical lacunary invariant equivalence types for double sequences via ideals using modulus functions”, Honam Mathematical Journal, 43(1), 100-114, 2021.
Year 2024, Volume: 19 Issue: 2, 86 - 97, 25.11.2024
https://doi.org/10.29233/sdufeffd.1469619

Abstract

References

  • H. Fast, “Sur la convergence statistique”, Colloquium Mathematicum, 2, 241-244, 1951.
  • A. R. Freedman, J. J. Sember and M. Raphael, “Some Cesàro type summability spaces”, Proceedings of the London Mathematical Society, 37, 508-520, 1978.
  • R. Çolak, “Statistical convergence of order α”, Modern Methods in Analysis and Its Applications, 1, 2010, pp. 121-129.
  • J. A. Fridy and C. Orhan, “Lacunary statistical convergent”, Pacific Journal of Mathematics, 160, 43-51, 1993.
  • H. Şengül and M. Et, “On lacunary statistical convergence of order α”, Acta Mathematica Scientia, 34(2), 473-482, 2014.
  • A. Pringsheim, “Zur theorie der zweifach unendlichen Zahlenfolgen”, Mathematische Annalen, 53, 289-321, 1900.
  • M. Mursaleen and O. H. H. Edely, “Statistical convergence of double sequences”, Journal of Mathematical Analysis and Applications, 288, 223-231, 2003.
  • R. F. Patterson and E. Savaş, “Lacunary statistical convergence of double sequences”, Mathematical Communications, 10, 55-61, 2005.
  • R. Çolak and Y. Altın, “Statistical convergence of double sequences of order α”, Journal of Function Spaces, 2013, 1-5, 2013.
  • H. Kizmaz, “On certain sequence spaces”, Canadian Mathematical Bulletin, 24(2), 169-176, 1981.
  • M. Et and R. Çolak, “On some generalized difference sequence spaces”, Soochow Journal of Mathematics, 21(4), 377-386, 1995.
  • M. Et and A. Esi, “On Köthe-Toeplitz duals of generalized difference sequence spaces”, Bulletin of the Malaysian Mathematical Sciences Society, 23(1), 25-32, 2000.
  • B. C. Tripathy and M. Et, “On generalized difference lacunary statistical convergence”, Studia Universitatis Babeş-Bolyai Mathematica, 50(1), 119-130, 2005.
  • B. C. Tripathy and S. Mahanta, “On a class of generalized lacunary difference sequence spaces defined by Orlicz functions”, Acta Mathematica Sinica, English Series, 20(2), 231-238, 2004.
  • B. C. Tripathy and H. Dutta, “On some lacunary difference sequence spaces defined by a sequence of Orlicz functions and q-lacunary ∆_m^n-statistical convergence”, Analele Stiintifice ale Universitatii Ovidius Constanta, Seria Mathematica, 20(1), 417-430, 2012.
  • A. K. Verma and L. K. Singh, “(∆_v^m,f)-lacunary statistical convergence of order α”, Proyecciones, 41(4), 791-804, 2022.
  • M. Et and H. Gidemen, “On ∆_v^m (f)-statistical convergence of order α”, Communications in Statistics-Theory and Methods, 49(14), 3521-3529, 2020.
  • I. J. Maddox, “Sequence spaces defined by a modulus”, Mathematical Proceedings of the Cambridge Philodophical Society, 100, 161-166, 1986.
  • A. Aizpuru, M. C. Listán-García, and F. Rambla-Barreno, “Density by moduli and statistical convergence”, Quaestiones Mathematicae, 37(4), 525-530, 2014.
  • S. Gupta and V. K. Bhardwaj, “On deferred f-statistical convergence”, Kyungpook Mathematical Journal, 58(1), 91-103, 2018.
  • Ş. Şengül and M. Et, “f-lacunary statistical convergence and strong f-lacunary summability of order α”, Filomat, 32(13), 4513-4521, 2018.
  • E. Dündar and N. Akın, “f-asymptotically I_2^σ-equivalence of double sequences of sets”, Afyon Kocatepe University Journal of Science and Engineering, 19(1), 79-86, 2019.
  • E. Dündar and N. Akın, “f-asymptotically Iσ-equivalence of real sequences”, Konuralp Journal of Mathematics, 8(1), 207-210, 2020.
  • E. Dündar and N. Akın, “f-asymptotically I_2^σθ-equivalence for double set sequences”, Karaelmas Science and Engineering Journal, 10(1), 26-31, 2020.
  • E. Dündar and N. Akın, “f-asymptotically I_σθ-equivalence of real sequences”, Journal of Mathematical Sciences and Modelling, 3(1), 32-37, 2020.
  • E. Dündar, N. Akın and U. Ulusu, “Asymptotical invariant and asymptotical lacunary invariant equivalence types for double sequences via ideals using modulus functions”, Honam Mathematical Journal, 43(1), 100-114, 2021.
There are 26 citations in total.

Details

Primary Language English
Subjects Operator Algebras and Functional Analysis
Journal Section Articles
Authors

Ömer Kişi 0000-0001-6844-3092

Rümeysa Akbıyık 0009-0004-8751-0325

Mehmet Gürdal 0000-0003-0866-1869

Publication Date November 25, 2024
Submission Date April 17, 2024
Acceptance Date June 10, 2024
Published in Issue Year 2024 Volume: 19 Issue: 2

Cite

IEEE Ö. Kişi, R. Akbıyık, and M. Gürdal, “Further Results on (Δ_s^j,f)-Lacunary Statistical Convergence of Double Sequences of order α”, Süleyman Demirel University Faculty of Arts and Science Journal of Science, vol. 19, no. 2, pp. 86–97, 2024, doi: 10.29233/sdufeffd.1469619.