Araştırma Makalesi
BibTex RIS Kaynak Göster

Combinations of Commercial Bionematicides and Chitosans for Root Knot nematode Control on Tomato

Yıl 2024, , 35 - 41, 27.04.2024
https://doi.org/10.19113/sdufenbed.1284525

Öz

In this study, the effect of combination of three commercial bionematicides, Burkholderia rinojensis A396 strain (Majestene®), Paecilomyces lilacinus 251 strain (Bio nematon®) and Quillaja saponaria (QL-Agri®), with chitosan on gall and egg masses formed by root knot nematode Meloidogyne incognita was investigated on tomato under controlled conditions. The study was carried out in plastic pots with 9 applications of bionematicides alone and together with chitosan. A thousand Meloidogyne incognita second stage juvenile (L2)/1ml was used as nematode inoculum and the recommended doses of bionematicide applications to the field (Majestene® 0.4 ml/l, Bio nematon® 5 ml/l, Velum Prime® 0.16 ml/L, QL- Agri® 0.8 ml/L) with nematode inoculation were applied to the potting soil. Chitosan application was made 5 ml of 1% liquid suspension required for each potting soil. After sixty days, the roots were evaluated according to the index value of 1-9 gall and egg mass. The gall and egg mass index were found to be 4.2 and 3.8, respectively in only chitosan application. While the gall index changed between 3.0-4.8 in only bionematicide applications, it changed between 2.6-3.8 in combination with chitosan. As a result, the application of bionematicides together with chitosan significantly reduced the number of galls and egg masses in the roots of tomato and increased the success in the control against M. incognita.

Destekleyen Kurum

X

Teşekkür

x

Kaynakça

  • [1] Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Perry, R. N. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961.
  • [2] Dong, L., Huang, C., Huang, L., Li, X., Zuo, Y. 2012. Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Protection, 33, 34-39.
  • [3] Kyndt, T., Vieira, P., Gheysen, G., de Almeida-Engler, J. 2013. Nematode feeding sites: unique organs in plant roots. Planta, 238, 807-818.
  • [4] Quentin, M., Abad, P., Favery, B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in plant science, 4:53.
  • [5] Azlay, L., El Boukhari, M. E. M., Mayad, E. H., Barakate, M. 2022. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agriculture, 1-19.
  • [6] Degenkolb, T., Vilcinskas, A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Applied microbiology and biotechnology, 100, 3799-3812.
  • [7] Kumar, K. K., Arthurs, S. 2021. Recent advances in the biological control of citrus nematodes: a review. Biological Control, 157, 104593.
  • [8] Arora, R., Battu, G. S., Ramakrishnan, N. 2000. Microbial pesticides: current status and future outlook. Pesticides and Environment. Commonwealth Publishers, New Delhi, 344-395.
  • [9] Ruiu, L. 2018. Microbial biopesticides in agroecosystems. Agronomy, 8(11), 235.
  • [10] Brand, D., Soccol, C. R., Sabu, A., Roussos, S. 2010. Production of fungal biological control agents through solid state fermentation: a case study on Paecilomyces lilacinus against root-knot nematodes. Micologia Aplicada International, 22(1), 31-48.
  • [11] Sivakumar, T., Renganathan, P. B. P., Sanjeevkumar, K. 2020. Bio efficacy of bio-nematon (Paecilomyces lilacinus 1.15% wp) against root-knot nematode (Meloidogyne incognita) in cucumber crop. Plant Arch, 20(2), 3805-3810.
  • [12] Khan, A., Williams, K. L., Nevalainen, H. K. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological control, 31(3), 346-352.
  • [13] Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., Sivasithamparam, K. 2004. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology, 38(4), 271-276.
  • [14] Yang, J., Zhao, X., Liang, L., Xia, Z., Lei, L., Niu, X., Zhang, K. Q. 2011. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Applied microbiology and biotechnology, 89, 1895-1903.
  • [15] Morgan-Jones, G., White, J. F., Rodriguez-Kabana, R. 1984. Phytonematode pathology: Ultrastructural studies. II. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica, 57-71.
  • [16] Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L., Marrone, P. G. 2013. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Applied and Environmental Microbiology, 79(24), 7669-7678.
  • [17] Vial, L., Groleau, M. C., Dekimpe, V. and Deziel, E. 2007. Burkholderia diversity and versatility: an inventory of the extracellular products. Journal of microbiology and biotechnology, 17(9), 1407-1429.
  • [18] Liu, M., Philp, J., Wang, Y., Hu, J., Wei, Y., Li, J., Yang, H. 2022. Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 12(1), 8381.
  • [19] Kim, J. H., Lee, B. M., Kang, M. K., Park, D. J., Choi, I. S., Park, H. Y., Son, K. H. 2023. Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. Frontiers in Plant Science, 14.
  • [20] Giannakou, I. O. 2011. Efficacy of a formulated product containing Quillaja saponaria plant extracts for the control of root-knot nematodes. European Journal of Plant Pathology, 130, 587-596.
  • [21] San Martín, R., Magunacelaya, J. C. 2005. Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7(4), 577-585.
  • [22] D’Addabbo, T., Curto, G., Greco, P., DiSilvestro, D., Coiro, M. I., Lamberti, F. 2005. Prove preliminari di Lotta contro nematodi galligeni mediante estradi Quillaja saponaria Molina. Nematologia Mediterranea, 33, 29–34.
  • [23] Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Islam, T. 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624.
  • [24] Hirano, S., Nakahira, T.; Nakagawa, M., Kim, S.K. 1999. The preparation and applications of functional fibres from crab shell chitin. Journal of Biotechnology, 70, 373–377.
  • [25] Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., Karthikeyan, G. 2022. Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11(4), 241-245.
  • [26] Kulikov, S.N., Chirkov, S.N., Il’ina, A.V., Lopatin, S.A., Varlamov, V.P. 2006. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prik. Biokhim. Mikrobiology, 42 (2), 224–228.
  • [27] Kalaiarasan, P., Lakshmanan, P., Rajendran, G., Samiyappan, R. 2006. Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Indian Journal of Nematology, 36(2), 181–186.
  • [28] Ladner, D. C., Tchounwou, P. B., Lawrence, G. W. 2008. Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. International Journal of Environmental Research and Public Health, 5(2), 104–110.
  • [29] El-Sayed, S.M., Mahdy, M.E. 2015. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. International Journal of ChemTech Research, 7 (4), 1985-1992.
  • [30] Göze Özdemir, F. G., Tosun, B., Şanlı, A., Karadoğan, T. 2022a. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3), 529-539.
  • [31] Göze Özdemir, F. G. 2022. Management of disease complex of Meloidogyne incognita and Fusarium oxysporum f. sp. radicis lycopersici on tomato using some essential oils. Plant Protection Bulletin, 62(4), 27-36.
  • [32] Kepenekci, I., Oksal, E. 2015. Evaluation of entomopathogenic fungi, Purpureocillium lilacinum TR1 for the control of the root-knot nematodes (Meloidogyne javanica, M. incognita and M. arenaria). Turkish Journal of Entomology, 39(3), 311-318.
  • [33] Göze Özdemir, F. G., Çevik, H., Ndayıragıje, J. C., Özek, T., Karaca, İ. 2022b. Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment. International Journal of Agriculture Environment and Food Sciences, 6(3), 410-416.
  • [34] Mullin, B. A., Abawi, G. S., & Pastor-Corrales, M. A. 1991. Modification of resistance expression of Phaseolus vulgaris to Meloidogyne incognita by elevated soil temperatures. Journal of Nematology, 23(2), 182.
  • [35] Anastasiadis, I. A., Giannakou, I. O., Prophetou-Athanasiadou, D. A., Gowen, S. R. 2008. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Protection, 27(3-5), 352-361.
  • [36] Isaac, G. S., El-Deriny, M. M. and Taha, R. G. 2021. Efficacy of Purpureocillium lilacinum AUMC 10149 as biocontrol agent against root-knot nematode Meloidogyne incognita infecting tomato plant. Brazilian Journal of Biology, 84.
  • [37] Santos B.M. 2017. Performance of the bionematicide MajesteneTM against parasitic nematodes in tomato and strawberries in Florida. Journal of Nematology, 49 (4), 477-541.
  • [38] Argentieri, M. P., D’Addabbo, T., Tava, A., Agostinelli, A., Jurzysta, M., Avato, P. 2008. Evaluation of nematicidal properties of saponins from Medicago spp. European Journal of Plant Pathology, 120, 189-197.
  • [39] Fan, Z., Wang, L., Qin, Y., Li, P. 2023. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers, 120592.
  • [40] Palazzini, J., Reynoso, A., Yerkovich, N., Zachetti, V., Ramirez, M., Chulze, S. 2022. Combination of Bacillus velezensis RC218 and chitosan tocontrol fusarium head blight on bread and durum wheat under greenhouse and field conditions. Toxins (Basel), 14(7), 499.
  • [41] Escudero, N., Ferreira, S. R., Lopez-Moya, F., Naranjo-Ortiz, M. A., Marin-Ortiz, A. I., Thornton, C. R., Lopez-Llorca, L. V. 2016. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology, 120(4), 572–585.
  • [42] Zhan, J., Qin, Y., Gao, K., Fan, Z., Wang, L., Xing, R., Li, P. 2021. Efficacy of a chitinbased water-soluble derivative in inducing Purpureocillium lilacinum against nematode disease (Meloidogyne incognita). International Journal of Molecular Sciences, 22(13), 6870.
  • [43] Kokalis-Burelle, N., Martinez-Ochoa, N., Rodrı´guez-Ka´bana, R., Kloepper, J. W. 2002. Development of multi-component transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicon esculentum). Journal of Nematology, 34(2), 362–369.
  • [44] Mittal, N., Saxena, G., Mukerji, K. G. 1995. Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Protection, 14(8), 647–651.

Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları

Yıl 2024, , 35 - 41, 27.04.2024
https://doi.org/10.19113/sdufenbed.1284525

Öz

Bu çalışmada Burkholderia rinojensis A396 suşu (Majestene®), Paecilomyces lilacinus 251 suşu (Bio nematon®) ve Quillaja saponaria (QL-Agri®)’dan oluşan üç ticari biyonematisitin kitosan ile kombinasyonlarının domateste kök ur nematodu Meloidogyne incognita’nın oluşturduğu gal ve yumurta paketi üzerindeki etkisi araştırılmıştır. Çalışma plastik saksılarda biyonematisitlerin tekli ve kitosan ile birlikte olacak şekilde 9 uygulaması ile yürütülmüştür. Nematod inokulumu olarak 1000 M. incognita L2/1ml kullanılmış ve nematod inokulasyonu ile birlikte biyonematisit uygulamalarının araziye tavsiye edilen dozları saksı toprağına (Majestene® 0.4 ml/l, Bio nematon® 5 ml/l, Velum Prime® 0.16 ml/L, QL-Agri® 0.8 ml/L) uygulanmıştır. Kitosan uygulaması ise her saksı toprağına %1 ‘lik sıvı süspansiyonundan 5 ml gelecek şekilde yapılmıştır. Altmış gün sonra köklerde 1-9 gal ve yumurta paketi indeks değerine göre değerlendirme gerçekleştirilmiştir. Sadece kitosan uygulamasında gal ve yumurta paketi indeksi sırasıyla 4.2 ve 3.8 saptanmıştır. Sadece biyonematisit uygulamalarında ise gal indeks değeri 3.0-4.8 arasında değişirken, kitosan ile kombinasyonlarında 2.6-3.8 arasında değişim göstermiştir. Sonuçta biyonematisitlerin kitosan ile birlikte uygulamalarının köklerde gallenme ve yumurta paketi sayısını önemli oranda azalttığı ve kök ur nematodu ile mücadelede başarıyı artırdığı saptanmıştır.

Kaynakça

  • [1] Jones, J. T., Haegeman, A., Danchin, E. G., Gaur, H. S., Helder, J., Jones, M. G., Perry, R. N. 2013. Top 10 plant‐parasitic nematodes in molecular plant pathology. Molecular plant pathology, 14(9), 946-961.
  • [2] Dong, L., Huang, C., Huang, L., Li, X., Zuo, Y. 2012. Screening plants resistant against Meloidogyne incognita and integrated management of plant resources for nematode control. Crop Protection, 33, 34-39.
  • [3] Kyndt, T., Vieira, P., Gheysen, G., de Almeida-Engler, J. 2013. Nematode feeding sites: unique organs in plant roots. Planta, 238, 807-818.
  • [4] Quentin, M., Abad, P., Favery, B. 2013. Plant parasitic nematode effectors target host defense and nuclear functions to establish feeding cells. Frontiers in plant science, 4:53.
  • [5] Azlay, L., El Boukhari, M. E. M., Mayad, E. H., Barakate, M. 2022. Biological management of root-knot nematodes (Meloidogyne spp.): a review. Organic Agriculture, 1-19.
  • [6] Degenkolb, T., Vilcinskas, A. 2016. Metabolites from nematophagous fungi and nematicidal natural products from fungi as an alternative for biological control. Part I: metabolites from nematophagous ascomycetes. Applied microbiology and biotechnology, 100, 3799-3812.
  • [7] Kumar, K. K., Arthurs, S. 2021. Recent advances in the biological control of citrus nematodes: a review. Biological Control, 157, 104593.
  • [8] Arora, R., Battu, G. S., Ramakrishnan, N. 2000. Microbial pesticides: current status and future outlook. Pesticides and Environment. Commonwealth Publishers, New Delhi, 344-395.
  • [9] Ruiu, L. 2018. Microbial biopesticides in agroecosystems. Agronomy, 8(11), 235.
  • [10] Brand, D., Soccol, C. R., Sabu, A., Roussos, S. 2010. Production of fungal biological control agents through solid state fermentation: a case study on Paecilomyces lilacinus against root-knot nematodes. Micologia Aplicada International, 22(1), 31-48.
  • [11] Sivakumar, T., Renganathan, P. B. P., Sanjeevkumar, K. 2020. Bio efficacy of bio-nematon (Paecilomyces lilacinus 1.15% wp) against root-knot nematode (Meloidogyne incognita) in cucumber crop. Plant Arch, 20(2), 3805-3810.
  • [12] Khan, A., Williams, K. L., Nevalainen, H. K. 2004. Effects of Paecilomyces lilacinus protease and chitinase on the eggshell structures and hatching of Meloidogyne javanica juveniles. Biological control, 31(3), 346-352.
  • [13] Park, J. O., Hargreaves, J. R., McConville, E. J., Stirling, G. R., Ghisalberti, E. L., Sivasithamparam, K. 2004. Production of leucinostatins and nematicidal activity of Australian isolates of Paecilomyces lilacinus (Thom) Samson. Letters in Applied Microbiology, 38(4), 271-276.
  • [14] Yang, J., Zhao, X., Liang, L., Xia, Z., Lei, L., Niu, X., Zhang, K. Q. 2011. Overexpression of a cuticle-degrading protease Ver112 increases the nematicidal activity of Paecilomyces lilacinus. Applied microbiology and biotechnology, 89, 1895-1903.
  • [15] Morgan-Jones, G., White, J. F., Rodriguez-Kabana, R. 1984. Phytonematode pathology: Ultrastructural studies. II. Parasitism of Meloidogyne arenaria eggs and larvae by Paecilomyces lilacinus. Nematropica, 57-71.
  • [16] Cordova-Kreylos, A. L., Fernandez, L. E., Koivunen, M., Yang, A., Flor-Weiler, L., Marrone, P. G. 2013. Isolation and characterization of Burkholderia rinojensis sp. nov., a non-Burkholderia cepacia complex soil bacterium with insecticidal and miticidal activities. Applied and Environmental Microbiology, 79(24), 7669-7678.
  • [17] Vial, L., Groleau, M. C., Dekimpe, V. and Deziel, E. 2007. Burkholderia diversity and versatility: an inventory of the extracellular products. Journal of microbiology and biotechnology, 17(9), 1407-1429.
  • [18] Liu, M., Philp, J., Wang, Y., Hu, J., Wei, Y., Li, J., Yang, H. 2022. Plant growth-promoting rhizobacteria Burkholderia vietnamiensis B418 inhibits root-knot nematode on watermelon by modifying the rhizosphere microbial community. Scientific Reports, 12(1), 8381.
  • [19] Kim, J. H., Lee, B. M., Kang, M. K., Park, D. J., Choi, I. S., Park, H. Y., Son, K. H. 2023. Assessment of nematicidal and plant growth-promoting effects of Burkholderia sp. JB-2 in root-knot nematode-infested soil. Frontiers in Plant Science, 14.
  • [20] Giannakou, I. O. 2011. Efficacy of a formulated product containing Quillaja saponaria plant extracts for the control of root-knot nematodes. European Journal of Plant Pathology, 130, 587-596.
  • [21] San Martín, R., Magunacelaya, J. C. 2005. Control of plant-parasitic nematodes with extracts of Quillaja saponaria. Nematology, 7(4), 577-585.
  • [22] D’Addabbo, T., Curto, G., Greco, P., DiSilvestro, D., Coiro, M. I., Lamberti, F. 2005. Prove preliminari di Lotta contro nematodi galligeni mediante estradi Quillaja saponaria Molina. Nematologia Mediterranea, 33, 29–34.
  • [23] Chakraborty, M., Hasanuzzaman, M., Rahman, M., Khan, M. A. R., Bhowmik, P., Mahmud, N. U., Islam, T. 2020. Mechanism of plant growth promotion and disease suppression by chitosan biopolymer. Agriculture, 10(12), 624.
  • [24] Hirano, S., Nakahira, T.; Nakagawa, M., Kim, S.K. 1999. The preparation and applications of functional fibres from crab shell chitin. Journal of Biotechnology, 70, 373–377.
  • [25] Mouniga, R., Anita, B., Shanthi, A., Lakshmanan, A., Karthikeyan, G. 2022. Phenol and antioxidant enzymatic activity in root knot nematode, Meloidogyne incognita infected tomato plants treated with chitosan nanoparticles. The Pharma Innovation Journal, 11(4), 241-245.
  • [26] Kulikov, S.N., Chirkov, S.N., Il’ina, A.V., Lopatin, S.A., Varlamov, V.P. 2006. Effect of the molecular weight of chitosan on its antiviral activity in plants. Prik. Biokhim. Mikrobiology, 42 (2), 224–228.
  • [27] Kalaiarasan, P., Lakshmanan, P., Rajendran, G., Samiyappan, R. 2006. Chitin and chitinolytic biocontrol agents for the management of root knot nematode, Meloidogyne arenaria in groundnut (Arachis hypogaea L.) cv. Co3. Indian Journal of Nematology, 36(2), 181–186.
  • [28] Ladner, D. C., Tchounwou, P. B., Lawrence, G. W. 2008. Evaluation of the effect of ecologic on root knot nematode, Meloidogyne incognita, and tomato plant, Lycopersicon esculenum. International Journal of Environmental Research and Public Health, 5(2), 104–110.
  • [29] El-Sayed, S.M., Mahdy, M.E. 2015. Effect of chitosan on root-knot nematode, Meloidogyne javanica on tomato plants. International Journal of ChemTech Research, 7 (4), 1985-1992.
  • [30] Göze Özdemir, F. G., Tosun, B., Şanlı, A., Karadoğan, T. 2022a. Bazı Apiaceae uçucu yağlarının Meloidogyne incognita (Kofoid & White, 1919) Chitwood, 1949 (Nematoda: Meloidogynidae)'ya karşı nematoksik etkisi. Ege Üniversitesi Ziraat Fakültesi Dergisi, 59(3), 529-539.
  • [31] Göze Özdemir, F. G. 2022. Management of disease complex of Meloidogyne incognita and Fusarium oxysporum f. sp. radicis lycopersici on tomato using some essential oils. Plant Protection Bulletin, 62(4), 27-36.
  • [32] Kepenekci, I., Oksal, E. 2015. Evaluation of entomopathogenic fungi, Purpureocillium lilacinum TR1 for the control of the root-knot nematodes (Meloidogyne javanica, M. incognita and M. arenaria). Turkish Journal of Entomology, 39(3), 311-318.
  • [33] Göze Özdemir, F. G., Çevik, H., Ndayıragıje, J. C., Özek, T., Karaca, İ. 2022b. Nematicidal effect of chitosan on Meloidogyne incognita in vitro and on tomato in a pot experiment. International Journal of Agriculture Environment and Food Sciences, 6(3), 410-416.
  • [34] Mullin, B. A., Abawi, G. S., & Pastor-Corrales, M. A. 1991. Modification of resistance expression of Phaseolus vulgaris to Meloidogyne incognita by elevated soil temperatures. Journal of Nematology, 23(2), 182.
  • [35] Anastasiadis, I. A., Giannakou, I. O., Prophetou-Athanasiadou, D. A., Gowen, S. R. 2008. The combined effect of the application of a biocontrol agent Paecilomyces lilacinus, with various practices for the control of root-knot nematodes. Crop Protection, 27(3-5), 352-361.
  • [36] Isaac, G. S., El-Deriny, M. M. and Taha, R. G. 2021. Efficacy of Purpureocillium lilacinum AUMC 10149 as biocontrol agent against root-knot nematode Meloidogyne incognita infecting tomato plant. Brazilian Journal of Biology, 84.
  • [37] Santos B.M. 2017. Performance of the bionematicide MajesteneTM against parasitic nematodes in tomato and strawberries in Florida. Journal of Nematology, 49 (4), 477-541.
  • [38] Argentieri, M. P., D’Addabbo, T., Tava, A., Agostinelli, A., Jurzysta, M., Avato, P. 2008. Evaluation of nematicidal properties of saponins from Medicago spp. European Journal of Plant Pathology, 120, 189-197.
  • [39] Fan, Z., Wang, L., Qin, Y., Li, P. 2023. Activity of chitin/chitosan/chitosan oligosaccharide against plant pathogenic nematodes and potential modes of application in agriculture: A review. Carbohydrate Polymers, 120592.
  • [40] Palazzini, J., Reynoso, A., Yerkovich, N., Zachetti, V., Ramirez, M., Chulze, S. 2022. Combination of Bacillus velezensis RC218 and chitosan tocontrol fusarium head blight on bread and durum wheat under greenhouse and field conditions. Toxins (Basel), 14(7), 499.
  • [41] Escudero, N., Ferreira, S. R., Lopez-Moya, F., Naranjo-Ortiz, M. A., Marin-Ortiz, A. I., Thornton, C. R., Lopez-Llorca, L. V. 2016. Chitosan enhances parasitism of Meloidogyne javanica eggs by the nematophagous fungus Pochonia chlamydosporia. Fungal Biology, 120(4), 572–585.
  • [42] Zhan, J., Qin, Y., Gao, K., Fan, Z., Wang, L., Xing, R., Li, P. 2021. Efficacy of a chitinbased water-soluble derivative in inducing Purpureocillium lilacinum against nematode disease (Meloidogyne incognita). International Journal of Molecular Sciences, 22(13), 6870.
  • [43] Kokalis-Burelle, N., Martinez-Ochoa, N., Rodrı´guez-Ka´bana, R., Kloepper, J. W. 2002. Development of multi-component transplant mixes for suppression of Meloidogyne incognita on tomato (Lycopersicon esculentum). Journal of Nematology, 34(2), 362–369.
  • [44] Mittal, N., Saxena, G., Mukerji, K. G. 1995. Integrated control of root-knot disease in three crop plants using chitin and Paecilomyces lilacinus. Crop Protection, 14(8), 647–651.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Fatma Gül Göze Özdemir 0000-0003-1969-4041

Yayımlanma Tarihi 27 Nisan 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Göze Özdemir, F. G. (2024). Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 28(1), 35-41. https://doi.org/10.19113/sdufenbed.1284525
AMA Göze Özdemir FG. Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2024;28(1):35-41. doi:10.19113/sdufenbed.1284525
Chicago Göze Özdemir, Fatma Gül. “Domateste Kök Ur Nematodu Kontrolünde Ticari Biyonematisit Ve Kitosan Kombinasyonları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28, sy. 1 (Nisan 2024): 35-41. https://doi.org/10.19113/sdufenbed.1284525.
EndNote Göze Özdemir FG (01 Nisan 2024) Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28 1 35–41.
IEEE F. G. Göze Özdemir, “Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 28, sy. 1, ss. 35–41, 2024, doi: 10.19113/sdufenbed.1284525.
ISNAD Göze Özdemir, Fatma Gül. “Domateste Kök Ur Nematodu Kontrolünde Ticari Biyonematisit Ve Kitosan Kombinasyonları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 28/1 (Nisan 2024), 35-41. https://doi.org/10.19113/sdufenbed.1284525.
JAMA Göze Özdemir FG. Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28:35–41.
MLA Göze Özdemir, Fatma Gül. “Domateste Kök Ur Nematodu Kontrolünde Ticari Biyonematisit Ve Kitosan Kombinasyonları”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 28, sy. 1, 2024, ss. 35-41, doi:10.19113/sdufenbed.1284525.
Vancouver Göze Özdemir FG. Domateste Kök ur nematodu Kontrolünde Ticari Biyonematisit ve Kitosan Kombinasyonları. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2024;28(1):35-41.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.