Araştırma Makalesi
BibTex RIS Kaynak Göster

XGBoost Tabanlı Derin Öğrenme Algoritması ile Açıklanabilir Yapay Zeka Modellerinin Kullanımı: Çürük Meyvelerin Tespiti

Yıl 2025, Cilt: 29 Sayı: 1, 124 - 133, 25.04.2025
https://doi.org/10.19113/sdufenbed.1575098

Öz

Görüntü işleme alanında yüksek doğruluk oranlarına ulaşmak, çoğu zaman tek bir modelin sınırlarını aşar. Bu nedenle XGBoost ve derin öğrenme modellerinin hibritlenmesi, daha doğru ve güvenilir sonuçlar elde etmek için yaygın bir yaklaşımdır. Derin öğrenme modelleri görüntülerden karmaşık ve anlamlı özellikler çıkarma konusunda oldukça yeteneklidir. Ancak, bu özelliklerin etkin bir şekilde sınıflandırılması için XGBoost gibi güçlü bir makine öğrenmesi algoritmasının kullanılması, performansı daha da artırır. Hibrit modeller, her iki modelin en iyi özelliklerini birleştirerek tek başına kullanıldıklarında elde edemeyecekleri yüksek doğruluk oranlarına ulaşabilirler. Yüksek doğruluk oranı modelin güvenirliğini ve uygulamadaki etkinliğini artırır, böylece yanlış sınıflandırmanın önüne geçilir ve genel performans iyileştirilir. Bu nedenle modellerin hibritlenmesi daha iyi sonuç elde etmek için gereklidir. Bu makalede XGBoost modelini kullanırken çıkarılan özellikleri düzleştirdikten sonra XGBoost karar ağaçları tabanlı bir model eğitilerek model oluşturulmuş ve oluşturulan model üzerinde test verileri 98.813 yüzde ile doğruluk göstermiştir. Bu modelin açıklanmasında SHAP, XAI lime gibi açıklanabilir modeller kullanılmıştır. Çıkarılan özelliklerin ağırlık değerlerine göre modeli olumlu ya da olumsuz etkilemesi veya özelliklerin kararların alınmasında nasıl etkilediği grafik olarak verilmiş.

Kaynakça

  • [1] Food Losses and Waste (FAO) Inventory and management at each stage in the food chain, 2016. https://openknowledge.fao.org/server/api/core/bitstreams/36cb45bc-392c-41fb-97f1-90ca1f16ee7f/content (Access date: 25.12.2024)
  • [2] Bhattiprolu, S. 2021. XGBoost for image classification using VGG16. https://github.com/bnsreenu/python_for_microscopists/blob/master/195_xgboost_for_image_classification_using_VGG16.py (Access date: 26.03.2024)
  • [3] Kaggle, 2018, Fruits Fresh and Rotten for Classification, https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification (Access date: 26.02.2024)
  • [4] Mendeley Data, 2022, Fresh and Rotten Fruits Dataset for Machine-Based Evaluation of Fruit Quality, https://data.mendeley.com/datasets/bdd69gyhv8/1 (Access date: 25.12.2024)
  • [5] Mehedi, H., Moinul, H. 2021. Fresh and Rotten Fruit Classification Using Deep Learning. Daffodil International University. Computer Science and Engineering.
  • [6] Ayşin, B. 2022. Determining the Freshness of Fruits with Deep Learning Methods. Tekirdağ Namık Kemal Üniversitesi. Bilgisayar Mühendisliği Anabilim Dalı. Yüksek Lisans Tezi. Tekirdağ.
  • [7] Hithesh Kumar, C.M., Vikash, VArun, Dyamanagouda, P. 2021. Detection of Quality of Fruits Usıng AI. International Research Journal of Modernization in Engineering Technology and Science, 3(7).
  • [8] Sohel, M., Tayeeba, T., Mirajul., I., Mumenunnesa, K., Riazue, R., Syed, A.H. 2021. An Advanced Method of Identification Fresh and Rotten Fruits using Different Convolutional Neural Networks. International Conference on Computing Communication and Networking Technologies (ICCCNT) 12th
  • [9] Amin, U.; Shahzad, M.I.; Shahzad, A.; Shahzad, M.; Khan, U.; Mahmood, Z. Automatic Fruits Freshness Classification Using CNN and Transfer Learning. Appl. Sci. 2023, 13, 8087.
  • [10] Tapia-Mendez, E.; Cruz-Albarran, I.A.; Tovar-Arriaga, S.; Morales-Hernandez, L.A. Deep Learning-Based Method for Classification and Ripeness Assessment of Fruits and Vegetables. Appl. Sci. 2023, 13, 12504
  • [11] Deyner Julian, N. O., Silvia Alejandra, M. L. (2022). Automatic Identification of banana quality with Deep Neural Network Classification. ISSN online 2344-9217
  • [12] Sai Sudhan, S.P., Venkata Rami, R.C., Yakobu, D., Suneetha B. 2020. Fresh and Rotten Fruits Classification Using CNN and Transfer Learning. Revue d'Intelligence Artificielle 34(5), pp. 617-622
  • [13] Florence, S., Nur Shabira, B. 2023. Hyperparameter Tuning of Convolutional Neural Network for Fresh and Rotten Fruit Recognition. 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)

Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models

Yıl 2025, Cilt: 29 Sayı: 1, 124 - 133, 25.04.2025
https://doi.org/10.19113/sdufenbed.1575098

Öz

Abstract: Achieving high accuracy rates in the field of image processing often exceeds the limits of a single model. Therefore, hybridizing XGBoost and deep learning models is a common approach to obtaining more accurate and reliable results. Deep learning models are highly capable of extracting complex and meaningful features from images. However, to effectively classify these features, the use of a powerful machine learning algorithm like XGBoost can further enhance performance. Hybrid models combine the best features of both models, allowing them to achieve higher accuracy rates that would not be possible if used individually. High accuracy improves the model's reliability and effectiveness in application, thereby preventing misclassification and improving overall performance. Therefore, hybridization of models is essential for better results. In this paper, after flattening the extracted features, an XGBoost-based model was trained by utilizing decision trees, and the model achieved an accuracy of 98.813% on the test data. SHAP and XAI LIME were employed to explain the model, providing visualizations of how the features impacted the model's decisions positively or negatively based on their weight values, and demonstrating how these features influenced the decision-making process.

Kaynakça

  • [1] Food Losses and Waste (FAO) Inventory and management at each stage in the food chain, 2016. https://openknowledge.fao.org/server/api/core/bitstreams/36cb45bc-392c-41fb-97f1-90ca1f16ee7f/content (Access date: 25.12.2024)
  • [2] Bhattiprolu, S. 2021. XGBoost for image classification using VGG16. https://github.com/bnsreenu/python_for_microscopists/blob/master/195_xgboost_for_image_classification_using_VGG16.py (Access date: 26.03.2024)
  • [3] Kaggle, 2018, Fruits Fresh and Rotten for Classification, https://www.kaggle.com/datasets/sriramr/fruits-fresh-and-rotten-for-classification (Access date: 26.02.2024)
  • [4] Mendeley Data, 2022, Fresh and Rotten Fruits Dataset for Machine-Based Evaluation of Fruit Quality, https://data.mendeley.com/datasets/bdd69gyhv8/1 (Access date: 25.12.2024)
  • [5] Mehedi, H., Moinul, H. 2021. Fresh and Rotten Fruit Classification Using Deep Learning. Daffodil International University. Computer Science and Engineering.
  • [6] Ayşin, B. 2022. Determining the Freshness of Fruits with Deep Learning Methods. Tekirdağ Namık Kemal Üniversitesi. Bilgisayar Mühendisliği Anabilim Dalı. Yüksek Lisans Tezi. Tekirdağ.
  • [7] Hithesh Kumar, C.M., Vikash, VArun, Dyamanagouda, P. 2021. Detection of Quality of Fruits Usıng AI. International Research Journal of Modernization in Engineering Technology and Science, 3(7).
  • [8] Sohel, M., Tayeeba, T., Mirajul., I., Mumenunnesa, K., Riazue, R., Syed, A.H. 2021. An Advanced Method of Identification Fresh and Rotten Fruits using Different Convolutional Neural Networks. International Conference on Computing Communication and Networking Technologies (ICCCNT) 12th
  • [9] Amin, U.; Shahzad, M.I.; Shahzad, A.; Shahzad, M.; Khan, U.; Mahmood, Z. Automatic Fruits Freshness Classification Using CNN and Transfer Learning. Appl. Sci. 2023, 13, 8087.
  • [10] Tapia-Mendez, E.; Cruz-Albarran, I.A.; Tovar-Arriaga, S.; Morales-Hernandez, L.A. Deep Learning-Based Method for Classification and Ripeness Assessment of Fruits and Vegetables. Appl. Sci. 2023, 13, 12504
  • [11] Deyner Julian, N. O., Silvia Alejandra, M. L. (2022). Automatic Identification of banana quality with Deep Neural Network Classification. ISSN online 2344-9217
  • [12] Sai Sudhan, S.P., Venkata Rami, R.C., Yakobu, D., Suneetha B. 2020. Fresh and Rotten Fruits Classification Using CNN and Transfer Learning. Revue d'Intelligence Artificielle 34(5), pp. 617-622
  • [13] Florence, S., Nur Shabira, B. 2023. Hyperparameter Tuning of Convolutional Neural Network for Fresh and Rotten Fruit Recognition. 2023 IEEE International Conference on Artificial Intelligence in Engineering and Technology (IICAIET)
Toplam 13 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Kuantum Mühendislik Sistemleri (Bilgisayar ve İletişim Dahil)
Bölüm Makaleler
Yazarlar

Nilgün Şengöz 0000-0001-5651-8173

Harun Köroğlu 0009-0007-5371-4153

Beyza Nur Kırıktaş 0009-0002-9141-1667

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 30 Ekim 2024
Kabul Tarihi 12 Mart 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Şengöz, N., Köroğlu, H., & Kırıktaş, B. N. (2025). Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 124-133. https://doi.org/10.19113/sdufenbed.1575098
AMA Şengöz N, Köroğlu H, Kırıktaş BN. Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):124-133. doi:10.19113/sdufenbed.1575098
Chicago Şengöz, Nilgün, Harun Köroğlu, ve Beyza Nur Kırıktaş. “Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 124-33. https://doi.org/10.19113/sdufenbed.1575098.
EndNote Şengöz N, Köroğlu H, Kırıktaş BN (01 Nisan 2025) Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 124–133.
IEEE N. Şengöz, H. Köroğlu, ve B. N. Kırıktaş, “Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 124–133, 2025, doi: 10.19113/sdufenbed.1575098.
ISNAD Şengöz, Nilgün vd. “Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan2025), 124-133. https://doi.org/10.19113/sdufenbed.1575098.
JAMA Şengöz N, Köroğlu H, Kırıktaş BN. Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:124–133.
MLA Şengöz, Nilgün vd. “Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 124-33, doi:10.19113/sdufenbed.1575098.
Vancouver Şengöz N, Köroğlu H, Kırıktaş BN. Detection of Rotten Fruits Using XGBoost-Based Deep Learning Algorithm with Explainable Artificial Intelligence Models. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):124-33.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.