Araştırma Makalesi
BibTex RIS Kaynak Göster

Kuersetin ve sabinenin model böcek Drosophila melanogaster'in (Diptera: Drosophilidae) antioksidan ve detoksifikasyon enzimleri üzerindeki etkileri: Moleküler kenetlenme araştırması

Yıl 2025, Cilt: 29 Sayı: 1, 21 - 34, 25.04.2025
https://doi.org/10.19113/sdufenbed.1581318

Öz

Lepidoptera ve Diptera takımındaki tarım zararlısı böcekler ürün ve ekonomik kayıplara yol açar. Kimyasal böcek öldürücüler giderek daha yaygın hale geldikçe, hedef dışı türler ve çevre üzerindeki zararlı etkilerine ilişkin endişeler artmakta ve daha az toksik alternatif kimyasallara ihtiyaç duyulmaktadır. Bu çalışmada, biyolojik araştırmalarda model organizma olarak kullanılan Drosophila melanogaster'de, iki doğal bileşik olan kuersetin ve sabinenin, önemli antioksidan ve detoksifikasyon enzimleriyle moleküler etkileşimleri araştırılmaktadır. Bu çalışmada, kuersetin ve sabinenin sitokrom P450 (CYP450), glutatyon S-transferaz (GST), süperoksit dismutaz (SOD), katalaz (CAT) ve glutamat-sistein ligaz (GCL) gibi enzimlerle bağlanma afiniteleri moleküler yerleştirme teknikleri kullanılarak değerlendirilmiştir. Sonuçlar, kuersetin'in sabinene kıyasla tüm enzimlerle daha güçlü etkileşimler sergilediğini, kuersetin ve CAT (-10,7 kcal/mol) arasında en yüksek bağlanma enerjisinin gözlemlendiğini ortaya koydu. Bu bulgular, kuersetin'in D. melanogaster'in antioksidan ve detoksifikasyon sistemlerini önemli ölçüde etkilediğini ve potansiyel olarak oksidatif stresi artırdığını göstermektedir. Sabinen, tüm enzimlerde daha zayıf bağlanma afinitesi gösterdi ve bu da daha az etki olduğunu göstermektedir. Bu çalışma, kuersetin ve sabinenin zararlı kontrol stratejilerinde ajan olarak potansiyeline ilişkin önemli sonuçlar sunmaktadır.

Kaynakça

  • [1] Manosathiyadevan, M., Bhuvaneshwari, V., & Latha, R. 2017. Impact of insects and pests in loss of crop production: a review. Sustainable agriculture towards food security, 57-67.
  • [2] Kenis, M. 2023. Prospects for classical biological control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in invaded areas using parasitoids from the Americas. Journal of Economic Entomology, 116(2), 331-341.
  • [3] Güneş, E and Büyükgüzel E. 2017. Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turkish Journal of Entomology 41.
  • [4] Dias, N. P., Montoya, P., & Nava, D. E. 2022. A 30‐year systematic review reveals success in tephritid fruit fly biological control research. Entomologia experimentalis et Applicata, 170(5), 370-384.
  • [5] Zhou, W., Arcot, Y., Medina, R. F., Bernal, J., Cisneros-Zevallos, L., & Akbulut, M. E. 2024. Integrated pest management: an update on the sustainability approach to crop protection. ACS omega, 9(40), 41130-41147.
  • [6] Zhang, Y., Zhu, W., Wang, Y., Li, X., Lv, J., Luo, J., & Yang, M. 2024. Insight of neonicotinoid insecticides: Exploring Exposure, Mechanisms in Non-Target Organisms, and Removal Technologies. Pharmacological Research, 107415.
  • [7] Chagnon, M., Kreutzweiser, D., Mitchell, E. A., Morrissey, C. A., Noome, D. A., & Van der Sluijs, J. P. 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental science and pollution research, 22, 119-134.
  • [8] Slobodian, M. R., Petahtegoose J. D., Wallis A. L., Levesque D. C., and Merritt T. J. 2021. The effects of essential and non-essential metal toxicity in the Drosophila melanogaster insect model: A Review. Toxics 9: 269.
  • [9] Dow, J. A., Simons M., and Romero M. F. 2022. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nature Reviews Nephrology 18: 417–434.
  • [10] Wang Q., Xu P., Sanchez S., Duran P., Andreazza F., Isaacs R., and Dong K. 2021. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. Pest Management Science 77: 3698–3705.
  • [11] Ramírez-Camejo, L. A., Bayman P., and Mejía L. C. 2022. Drosophila melanogaster as an emerging model host for entomopathogenic fungi. Fungal Biology Reviews 42: 85–97.
  • [12] Sokolova, I. 2021. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. Journal of Experimental Biology 224: jeb236802.
  • [13] Lu, K., Song Y., and Zeng R. 2021. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science 43: 103–107.
  • [14] Amezian, D., Nauen, R., and Le Goff G. 2021. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. Pesticide Biochemistry and Physiology 174: 104822.
  • [15] Ye, M., Nayak B., Xiong L., Xie C., Dong Y, You M., Yuchi Z., and You S. 2022. The role of insect Cytochrome P450s in mediating insecticide resistance. Agriculture 12: 53.
  • [16] Li, S., Li H., Wang J., Chen C., and Hao D. 2023. Hormetic response and co-expression of cytochrome P450 and cuticular protein reveal the tolerance to host-specific terpenoid defences in an emerging insect pest, Pagiophloeus tsushimanus (Coleoptera: Curculionidae). Journal of Pest Science 96: 141–160.
  • [17] Sonu K. B. K., Moural T., and Zhu F. 2022. Functional and structural diversity of insect Glutathione S-transferases in xenobiotic adaptation. International Journal of Biological Sciences 18: 5713–5723.
  • [18] Vaish, S., Gupta D., Mehrotra R., Mehrotra S., and Basantani M. KP. 2020. Glutathione S-transferase: a versatile protein family. 3 Biotech 10: 321.
  • [19] Mazari, A. M., Zhang, L., Ye, Z. W., Zhang, J., Tew, K. D., & Townsend, D. M. 2023. The multifaceted role of glutathione S-transferases in health and disease. Biomolecules, 13(4), 688..
  • [20] Vašková, J., Kočan, L., Vaško, L., & Perjési, P. 2023. Glutathione-related enzymes and proteins: a review. Molecules, 28(3), 1447.
  • [21] Islam, M. N., Rauf, A., Fahad, F. I., Emran, T. B., Mitra, S., Olatunde, A., ... & Mubarak, M. S. 2022. Superoxide dismutase: an updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition, 62(26), 7282-7300.
  • [22] Gusti, A. M., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. 2021. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. Antioxidants, 10(4), 595.
  • [23] Vincent, A., Thauvin, M., Quévrain, E., Mathieu, E., Layani, S., Seksik, P., ... & Delsuc, N. 2021. Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. Journal of inorganic biochemistry, 219, 111431.
  • [24] Kang, Y. P., Mockabee-Macias, A., Jiang, C., Falzone, A., Prieto-Farigua, N., Stone, E., ... & DeNicola, G. M. 2021. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell metabolism, 33(1), 174-189.
  • [25] Cen, Y., Zou, X., Li, L., Chen, S., Lin, Y., Liu, L., & Zheng, S. 2020. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. Pesticide Biochemistry and Physiology, 168, 104632.
  • [26] Afrin, W., Furuya, S., & Yamamoto, K. 2023. Characterization of a glutamate-cysteine ligase in Bombyx mori. Molecular biology reports, 50(3), 2623-2631.
  • [27] Kim, K., Gao, H., Li, C., & Li, B. 2024. The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum. Pest Management Science, 80(6), 2698-2709.
  • [28] Trott, O., and Arthur J. Olson. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31: 455–461.
  • [29] Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845-858.
  • [30] Sertçelik, M., Sugeçti, S., Öztürkkan, F. E., & Hökelek, T. (2023). Synthesis, characterization and effects on biochemical parameters of model organism Galleria mellonella L.(Lepidoptera: Pyralidae) of Cu (II) 4-cyanobenzoate with 4-cyanopyridine complex. Chemical Papers, 77(9), 5331-5342.
  • [31] Sugeçti, S., Kepekçi, A. B., & Büyükgüzel, K. (2023). Effects of midazolam on antioxidant levels, biochemical and metabolic parameters in Eurygaster integriceps Puton (Hemiptera: Scutelleridae) eggs parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). Bulletin of Environmental Contamination and Toxicology, 110(1), 4.
  • [32] Kaleeswaran, G., Firake, D. M., Sanjukta, R., Behere, G. T., & Ngachan, S. V. (2018). Bamboo-Leaf Prickly Ash extract: A potential bio-pesticide against oriental leaf worm, Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Journal of environmental management, 208, 46-55.
  • [33] Ramaroson, M. L., Koutouan, C., Helesbeux, J. J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. 2022. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules, 27(23), 8371.
  • [34] Yang, F., Zhang, X., Shen, H., Xue, H., Tian, T., Zhang, Q., ... & Su, Q. 2023. Flavonoid‐producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. Insect Science, 30(1), 173-184.
  • [35] Sugeçti, S. (2024). Bazı Flavonoidlerin Leptin ve Resisitin Proteinleri ile Etkileşimlerinin Moleküler Kenetlenme (Docking) Yöntemiyle İncelenmesi. International Anatolia Academic Online Journal Health Sciences, 10(2), 335-348.
  • [36] Pereira, V., Figueira, O., & Castilho, P. C. 2024. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants, 13(6), 776.
  • [37] Abolaji, A. O., Babalola, O. V., Adegoke, A. K., & Farombi, E. O. 2017. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster. Environmental toxicology and pharmacology, 55, 202-207.
  • [38] Sugecti, S., Büyükgüzel, K. 2022. Effects of Ni (II) p-hydroxybenzoate with caffeine on metabolic, antioxidant, andbiochemical parameters of model insect Galleria mellonella L.(Lepidoptera: Pyralidae). Turkish Journal of Zoology, 46(1), 167-174.
  • [39] Saraiva, M. A., da Rosa Ávila, E., da Silva, G. F., Macedo, G. E., Rodrigues, N. R., de Brum Vieira, P., ... & Posser, T. 2018. Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and modulates Nrf2 and HSP70/83. Oxidative Medicine and Cellular Longevity, 2018(1), 5456928.
  • [40] Ercan, F. S., Baş, H., & Azarkan, S. Y. 2022. In silico detection of Cucurbitacin-E on antioxidant enzymes of model organism Galleria mellonella L.(Lepidoptera: Pyralidae) and variation of antioxidant enzyme activities and lipid peroxidation in treated larvae. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-17.
  • [41] Herrera-Mayorga, V., Guerrero-Sánchez, J. A., Méndez-Álvarez, D., Paredes-Sánchez, F. A., Rodríguez-Duran, L. V., Niño-García, N., ... & Rivera, G. 2022. Insecticidal activity of organic extracts of Solidago graminifolia and its main metabolites (quercetin and chlorogenic acid) against Spodoptera frugiperda: an in vitro and in silico approach. Molecules, 27(10), 3325.
  • [42] Ku, P., Wu, X., Nie, X., Ou, R., Wang, L., Su, T., & Li, Y. (2014). Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 166, 105-114.
  • [43] Venthur, H., Lizana, P., Manosalva, L., Rojas, V., Godoy, R., Rocha, A., ... & Mutis, A. 2022. Analysis of glutathione-S-transferases from larvae of Galleria mellonella (Lepidoptera, Pyralidae) with potential alkaloid detoxification function. Frontiers in Physiology, 13, 989006.
  • [44] Aslan, N., Büyükgüzel, E., & Büyükgüzel, K. 2019. Oxidative effects of gemifloxacin on some biological traits of Drosophila melanogaster (Diptera: Drosophilidae). Environmental entomology, 48(3), 667-673.
  • [45] Tunçsoy, B., Sugeçti, S., Büyükgüzel, E., Özalp, P., & Büyükgüzel, K. (2021). Effects of copper oxide nanoparticles on immune and metabolic parameters of Galleria mellonella L. Bulletin of environmental contamination and toxicology, 107(3), 412-420.
  • [46] Sugeçti, S., Tunçsoy, B., Büyükgüzel, E., Özalp, P., & Büyükgüzel, K. (2021). Ecotoxicological effects of dietary titanium dioxide nanoparticles on metabolic and biochemical parameters of model organism Galleria mellonella (Lepidoptera: Pyralidae). Journal of Environmental Science and Health, Part C, 39(4), 423-434.

Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation

Yıl 2025, Cilt: 29 Sayı: 1, 21 - 34, 25.04.2025
https://doi.org/10.19113/sdufenbed.1581318

Öz

Agricultural pest insects, particularly those within the Lepidoptera and Diptera orders, are responsible for significant crop damage, leading to economic losses. As chemical insecticides become increasingly prevalent, concerns over their detrimental impact on non-target species and the environment grow, emphasizing the need for less toxic alternatives. This study investigates the molecular interactions of quercetin and sabinene - two naturally occurring compounds - with key antioxidant and detoxification enzymes in Drosophila melanogaster, a model organism in biological research. In this study, the binding affinities of quercetin and sabinene with enzymes such as cytochrome P450 (CYP450), glutathione S-transferase (GST), superoxide dismutase (SOD), catalase (CAT) and glutamate-cysteine ligase (GCL) were evaluated using molecular docking techniques. The results revealed that quercetin exhibits stronger interactions with all enzymes compared to sabinene, with the highest binding energy observed between quercetin and CAT (-10.7 kcal/mol). These findings suggest that quercetin significantly affects the antioxidant and detoxification systems of D. melanogaster, potentially enhancing oxidative stress. Sabinene demonstrated weaker binding across all enzymes, indicating a lesser impact. The study contributes valuable insights into the potential of quercetin and sabinene as agents in pest control strategies by targeting insect biochemical pathways.

Kaynakça

  • [1] Manosathiyadevan, M., Bhuvaneshwari, V., & Latha, R. 2017. Impact of insects and pests in loss of crop production: a review. Sustainable agriculture towards food security, 57-67.
  • [2] Kenis, M. 2023. Prospects for classical biological control of Spodoptera frugiperda (Lepidoptera: Noctuidae) in invaded areas using parasitoids from the Americas. Journal of Economic Entomology, 116(2), 331-341.
  • [3] Güneş, E and Büyükgüzel E. 2017. Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turkish Journal of Entomology 41.
  • [4] Dias, N. P., Montoya, P., & Nava, D. E. 2022. A 30‐year systematic review reveals success in tephritid fruit fly biological control research. Entomologia experimentalis et Applicata, 170(5), 370-384.
  • [5] Zhou, W., Arcot, Y., Medina, R. F., Bernal, J., Cisneros-Zevallos, L., & Akbulut, M. E. 2024. Integrated pest management: an update on the sustainability approach to crop protection. ACS omega, 9(40), 41130-41147.
  • [6] Zhang, Y., Zhu, W., Wang, Y., Li, X., Lv, J., Luo, J., & Yang, M. 2024. Insight of neonicotinoid insecticides: Exploring Exposure, Mechanisms in Non-Target Organisms, and Removal Technologies. Pharmacological Research, 107415.
  • [7] Chagnon, M., Kreutzweiser, D., Mitchell, E. A., Morrissey, C. A., Noome, D. A., & Van der Sluijs, J. P. 2015. Risks of large-scale use of systemic insecticides to ecosystem functioning and services. Environmental science and pollution research, 22, 119-134.
  • [8] Slobodian, M. R., Petahtegoose J. D., Wallis A. L., Levesque D. C., and Merritt T. J. 2021. The effects of essential and non-essential metal toxicity in the Drosophila melanogaster insect model: A Review. Toxics 9: 269.
  • [9] Dow, J. A., Simons M., and Romero M. F. 2022. Drosophila melanogaster: a simple genetic model of kidney structure, function and disease. Nature Reviews Nephrology 18: 417–434.
  • [10] Wang Q., Xu P., Sanchez S., Duran P., Andreazza F., Isaacs R., and Dong K. 2021. Behavioral and physiological responses of Drosophila melanogaster and D. suzukii to volatiles from plant essential oils. Pest Management Science 77: 3698–3705.
  • [11] Ramírez-Camejo, L. A., Bayman P., and Mejía L. C. 2022. Drosophila melanogaster as an emerging model host for entomopathogenic fungi. Fungal Biology Reviews 42: 85–97.
  • [12] Sokolova, I. 2021. Bioenergetics in environmental adaptation and stress tolerance of aquatic ectotherms: linking physiology and ecology in a multi-stressor landscape. Journal of Experimental Biology 224: jeb236802.
  • [13] Lu, K., Song Y., and Zeng R. 2021. The role of cytochrome P450-mediated detoxification in insect adaptation to xenobiotics. Current Opinion in Insect Science 43: 103–107.
  • [14] Amezian, D., Nauen, R., and Le Goff G. 2021. Transcriptional regulation of xenobiotic detoxification genes in insects - An overview. Pesticide Biochemistry and Physiology 174: 104822.
  • [15] Ye, M., Nayak B., Xiong L., Xie C., Dong Y, You M., Yuchi Z., and You S. 2022. The role of insect Cytochrome P450s in mediating insecticide resistance. Agriculture 12: 53.
  • [16] Li, S., Li H., Wang J., Chen C., and Hao D. 2023. Hormetic response and co-expression of cytochrome P450 and cuticular protein reveal the tolerance to host-specific terpenoid defences in an emerging insect pest, Pagiophloeus tsushimanus (Coleoptera: Curculionidae). Journal of Pest Science 96: 141–160.
  • [17] Sonu K. B. K., Moural T., and Zhu F. 2022. Functional and structural diversity of insect Glutathione S-transferases in xenobiotic adaptation. International Journal of Biological Sciences 18: 5713–5723.
  • [18] Vaish, S., Gupta D., Mehrotra R., Mehrotra S., and Basantani M. KP. 2020. Glutathione S-transferase: a versatile protein family. 3 Biotech 10: 321.
  • [19] Mazari, A. M., Zhang, L., Ye, Z. W., Zhang, J., Tew, K. D., & Townsend, D. M. 2023. The multifaceted role of glutathione S-transferases in health and disease. Biomolecules, 13(4), 688..
  • [20] Vašková, J., Kočan, L., Vaško, L., & Perjési, P. 2023. Glutathione-related enzymes and proteins: a review. Molecules, 28(3), 1447.
  • [21] Islam, M. N., Rauf, A., Fahad, F. I., Emran, T. B., Mitra, S., Olatunde, A., ... & Mubarak, M. S. 2022. Superoxide dismutase: an updated review on its health benefits and industrial applications. Critical Reviews in Food Science and Nutrition, 62(26), 7282-7300.
  • [22] Gusti, A. M., Qusti, S. Y., Alshammari, E. M., Toraih, E. A., & Fawzy, M. S. 2021. Antioxidants-related superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPX), glutathione-S-transferase (GST), and nitric oxide synthase (NOS) gene variants analysis in an obese population: a preliminary case-control study. Antioxidants, 10(4), 595.
  • [23] Vincent, A., Thauvin, M., Quévrain, E., Mathieu, E., Layani, S., Seksik, P., ... & Delsuc, N. 2021. Evaluation of the compounds commonly known as superoxide dismutase and catalase mimics in cellular models. Journal of inorganic biochemistry, 219, 111431.
  • [24] Kang, Y. P., Mockabee-Macias, A., Jiang, C., Falzone, A., Prieto-Farigua, N., Stone, E., ... & DeNicola, G. M. 2021. Non-canonical glutamate-cysteine ligase activity protects against ferroptosis. Cell metabolism, 33(1), 174-189.
  • [25] Cen, Y., Zou, X., Li, L., Chen, S., Lin, Y., Liu, L., & Zheng, S. 2020. Inhibition of the glutathione biosynthetic pathway increases phytochemical toxicity to Spodoptera litura and Nilaparvata lugens. Pesticide Biochemistry and Physiology, 168, 104632.
  • [26] Afrin, W., Furuya, S., & Yamamoto, K. 2023. Characterization of a glutamate-cysteine ligase in Bombyx mori. Molecular biology reports, 50(3), 2623-2631.
  • [27] Kim, K., Gao, H., Li, C., & Li, B. 2024. The glutathione biosynthesis is involved in metamorphosis, antioxidant function, and insecticide resistance in Tribolium castaneum. Pest Management Science, 80(6), 2698-2709.
  • [28] Trott, O., and Arthur J. Olson. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry 31: 455–461.
  • [29] Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N., & Sternberg, M. J. 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nature protocols, 10(6), 845-858.
  • [30] Sertçelik, M., Sugeçti, S., Öztürkkan, F. E., & Hökelek, T. (2023). Synthesis, characterization and effects on biochemical parameters of model organism Galleria mellonella L.(Lepidoptera: Pyralidae) of Cu (II) 4-cyanobenzoate with 4-cyanopyridine complex. Chemical Papers, 77(9), 5331-5342.
  • [31] Sugeçti, S., Kepekçi, A. B., & Büyükgüzel, K. (2023). Effects of midazolam on antioxidant levels, biochemical and metabolic parameters in Eurygaster integriceps Puton (Hemiptera: Scutelleridae) eggs parasitized by Trissolcus semistriatus Nees (Hymenoptera: Scelionidae). Bulletin of Environmental Contamination and Toxicology, 110(1), 4.
  • [32] Kaleeswaran, G., Firake, D. M., Sanjukta, R., Behere, G. T., & Ngachan, S. V. (2018). Bamboo-Leaf Prickly Ash extract: A potential bio-pesticide against oriental leaf worm, Spodoptera litura (Fabricius)(Lepidoptera: Noctuidae). Journal of environmental management, 208, 46-55.
  • [33] Ramaroson, M. L., Koutouan, C., Helesbeux, J. J., Le Clerc, V., Hamama, L., Geoffriau, E., & Briard, M. 2022. Role of phenylpropanoids and flavonoids in plant resistance to pests and diseases. Molecules, 27(23), 8371.
  • [34] Yang, F., Zhang, X., Shen, H., Xue, H., Tian, T., Zhang, Q., ... & Su, Q. 2023. Flavonoid‐producing tomato plants have a direct negative effect on the zoophytophagous biological control agent Orius sauteri. Insect Science, 30(1), 173-184.
  • [35] Sugeçti, S. (2024). Bazı Flavonoidlerin Leptin ve Resisitin Proteinleri ile Etkileşimlerinin Moleküler Kenetlenme (Docking) Yöntemiyle İncelenmesi. International Anatolia Academic Online Journal Health Sciences, 10(2), 335-348.
  • [36] Pereira, V., Figueira, O., & Castilho, P. C. 2024. Flavonoids as Insecticides in Crop Protection—A Review of Current Research and Future Prospects. Plants, 13(6), 776.
  • [37] Abolaji, A. O., Babalola, O. V., Adegoke, A. K., & Farombi, E. O. 2017. Hesperidin, a citrus bioflavonoid, alleviates trichloroethylene-induced oxidative stress in Drosophila melanogaster. Environmental toxicology and pharmacology, 55, 202-207.
  • [38] Sugecti, S., Büyükgüzel, K. 2022. Effects of Ni (II) p-hydroxybenzoate with caffeine on metabolic, antioxidant, andbiochemical parameters of model insect Galleria mellonella L.(Lepidoptera: Pyralidae). Turkish Journal of Zoology, 46(1), 167-174.
  • [39] Saraiva, M. A., da Rosa Ávila, E., da Silva, G. F., Macedo, G. E., Rodrigues, N. R., de Brum Vieira, P., ... & Posser, T. 2018. Exposure of Drosophila melanogaster to mancozeb induces oxidative damage and modulates Nrf2 and HSP70/83. Oxidative Medicine and Cellular Longevity, 2018(1), 5456928.
  • [40] Ercan, F. S., Baş, H., & Azarkan, S. Y. 2022. In silico detection of Cucurbitacin-E on antioxidant enzymes of model organism Galleria mellonella L.(Lepidoptera: Pyralidae) and variation of antioxidant enzyme activities and lipid peroxidation in treated larvae. Beni-Suef University Journal of Basic and Applied Sciences, 11(1), 1-17.
  • [41] Herrera-Mayorga, V., Guerrero-Sánchez, J. A., Méndez-Álvarez, D., Paredes-Sánchez, F. A., Rodríguez-Duran, L. V., Niño-García, N., ... & Rivera, G. 2022. Insecticidal activity of organic extracts of Solidago graminifolia and its main metabolites (quercetin and chlorogenic acid) against Spodoptera frugiperda: an in vitro and in silico approach. Molecules, 27(10), 3325.
  • [42] Ku, P., Wu, X., Nie, X., Ou, R., Wang, L., Su, T., & Li, Y. (2014). Effects of triclosan on the detoxification system in the yellow catfish (Pelteobagrus fulvidraco): expressions of CYP and GST genes and corresponding enzyme activity in phase I, II and antioxidant system. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 166, 105-114.
  • [43] Venthur, H., Lizana, P., Manosalva, L., Rojas, V., Godoy, R., Rocha, A., ... & Mutis, A. 2022. Analysis of glutathione-S-transferases from larvae of Galleria mellonella (Lepidoptera, Pyralidae) with potential alkaloid detoxification function. Frontiers in Physiology, 13, 989006.
  • [44] Aslan, N., Büyükgüzel, E., & Büyükgüzel, K. 2019. Oxidative effects of gemifloxacin on some biological traits of Drosophila melanogaster (Diptera: Drosophilidae). Environmental entomology, 48(3), 667-673.
  • [45] Tunçsoy, B., Sugeçti, S., Büyükgüzel, E., Özalp, P., & Büyükgüzel, K. (2021). Effects of copper oxide nanoparticles on immune and metabolic parameters of Galleria mellonella L. Bulletin of environmental contamination and toxicology, 107(3), 412-420.
  • [46] Sugeçti, S., Tunçsoy, B., Büyükgüzel, E., Özalp, P., & Büyükgüzel, K. (2021). Ecotoxicological effects of dietary titanium dioxide nanoparticles on metabolic and biochemical parameters of model organism Galleria mellonella (Lepidoptera: Pyralidae). Journal of Environmental Science and Health, Part C, 39(4), 423-434.
Toplam 46 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Ekotoksikoloji
Bölüm Makaleler
Yazarlar

Serkan Sugeçti 0000-0003-3412-2367

Yayımlanma Tarihi 25 Nisan 2025
Gönderilme Tarihi 7 Kasım 2024
Kabul Tarihi 5 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 1

Kaynak Göster

APA Sugeçti, S. (2025). Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(1), 21-34. https://doi.org/10.19113/sdufenbed.1581318
AMA Sugeçti S. Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2025;29(1):21-34. doi:10.19113/sdufenbed.1581318
Chicago Sugeçti, Serkan. “Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 1 (Nisan 2025): 21-34. https://doi.org/10.19113/sdufenbed.1581318.
EndNote Sugeçti S (01 Nisan 2025) Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 1 21–34.
IEEE S. Sugeçti, “Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 1, ss. 21–34, 2025, doi: 10.19113/sdufenbed.1581318.
ISNAD Sugeçti, Serkan. “Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/1 (Nisan2025), 21-34. https://doi.org/10.19113/sdufenbed.1581318.
JAMA Sugeçti S. Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:21–34.
MLA Sugeçti, Serkan. “Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 1, 2025, ss. 21-34, doi:10.19113/sdufenbed.1581318.
Vancouver Sugeçti S. Effects of quercetin and sabinene on antioxidant and detoxification enzymes of model pest Drosophila melanogaster (Diptera: Drosophilidae): Molecular docking investigation. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(1):21-34.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.