Voltammetric Determination of Nickel (II) at Modified Pencil Graphite Electrodes with Dithiophosphate Derivatives
Yıl 2025,
Cilt: 29 Sayı: 3, 538 - 548, 25.12.2025
Çiğdem Yaldiz
,
Esengül Kır
,
Tuğba Sardohan Köseoğlu
,
Ahmet Aydın
,
Berrin Çetinkaya
Öz
In this work, the two modifiers of dithiophosphate derivatives, ammonium diisobutyldithiophosphate (L1) and ammonium diisopropyldithiophosphate (L2) have been used as modifiers for preparing polypyrrole (PPy)-based pencil graphite electrodes (PGE) for the electrochemical determination of Ni(II). Dithiophosphate-modified pencil graphite electrodes are named as PGE/PPy/L1 and PGE/PPy/L2. All parameters such as cycle number, scan rate, pH and dithiophosphate concentration were optimized. After optimization, PGE/PPy/L1 and PGE/PPy/L2 electrodes were used to determine Ni(II) ions by means of differential pulse voltammetry (DPV). PGE/PPy/L1 and PGE/PPy/L2 electrodes showed a linear response between 4-10 mg/L (r2= 0.9944) and 2-9 mg/L (r2= 0.9924), respectively. The limit of detection of PGE/PPy/L1 and PGE/PPy/L2 were found as 0.87 mg/L and 0.96 mg/L (S/N = 3), respectively. The interferent effects of various cations on the determination of Ni(II) were investigated. Finally, the prepared PGE/PPy/L1 and PGE/PPy/L2 electrodes was applied to Ni(II) detection in different water samples.
Proje Numarası
4761-YL1-16
Kaynakça
-
[1] Mishra, A., Tripathi, B.D., Rai, A.K. 2016. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420-428.
-
[2] Danil de Namora, A.F., El Gamouz, A., Frangiea, S., Martineza, V., Valientea, L., Webb, O.A. 2012. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. Journal of Hazardous Materials, 241-242, 14-31.
-
[3] Moino, B.P.A., Costa, C.S.D., da Silva, M.G.C., Vieira, M.G.A. 2020. Reuse of the alginate extraction waste from Sargassum filipendula for Ni(II) biosorption. Chemical Engineering Communications, 207(1), 17-30.
-
[4] Wang, R., Ng, D.H.L., Liu, S. 2019. Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. Journal of Hazardous Materials, 380, 120826.
-
[5] Li, H., Wan, Y., Chen, X., Cheng, L., Yang, X., Xia, W., Xu, S., Zhang, H. 2018. A multiregional survey of nickel in outdoor air particulate matter in China: Implication for human exposure. Chemosphere, 199, 702-708.
-
[6] Ferancová, A., Hattuniemi, M.K., Sesay, A.M., Räty, J.P., Virtanen, V.T. 2016. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water. Journal of Hazardous Materials, 306, 50-57.
-
[7] Khudhair, A.F., Hassan, M.K., Alesary, H.F., Abbas, A.S. 2019. A simple pre-concentration method for the determination of nickel(II) in urine samples using UV-Vis spectrophotonetry and flame atomic absorption spectrometry techniques. Indonesian Journal of Chemistry, 19(3), 638-649.
-
[8] Viana, L.N., Saint’Pierre, T.D. 2019. Direct determination of Cr and Ni in oil samples by isotope dilution and external standard calibration using inductively coupled plasma mass spectrometry. Microchemical Journal, 151, 104219.
-
[9] Sze, K.L., Yeung, W.S.B., Fung, Y.S. 2007. Separation and determination of metal cations in milk and dairy products by CE. Electrophoresis, 28, 4156-4163.
-
[10] Punrat, E., Tutiyasarn, P., Chuanuwatanakul, S., Chailapakul, O. 2017. Determination of nickel(II) by ion-transfer to hydroxide medium using sequential injection-electrochemical analysis (SIECA). Talanta, 168, 286-290.
-
[11] Abbaspour, A., Khajehzadeh, A., Ghaffarinejad, A. 2009. Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. Journal of Electroanalytical Chemistry, 631, 52-57.
-
[12] Prabakar, S.J.R., Narayanan, S.S. 2008. Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. Journal of Electroanaytical Chemistry, 617, 111-120.
-
[13] Yari, A., Azizi, S., Kakanejadifard, A. 2006. An electrochemical Ni(II)-selective sensor-bsased on a newly synthesized dioxime derivative as a neutral ionophore. Sensors & Actuators B: Chemical, 119, 167-173.
-
[14] Gęca, I., Ochab, M., Korolczuk, M. 2016. An adsorptive stripping voltammetry of nickel and cobalt at a solid lead electrode. International Journal of Environmental Analytical Chemistry, 96(13), 1264-1275.
-
[15] Gupta, V.K., Singh, A.K., Pal, M.K. 2008. Ni(II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analytica Chimica Acta, 624, 223-231.
-
[16] Barcelo, C., Serrano, N., Arino, C., Diaz-Cruz, J.M., Esteban, M. 2016. Ex-situ Antimony Screen-printed Carbon Electrode for Voltammetric Determination of Ni(II)-ions in Wastewater. Electroanalysis, 28, 640-644.
-
[17] Ferancova, A., Hattuniemi, M.K., Sesay, A.M., Raty, J.P., Virtanen, V.T. 2016. Electrochemical Monitoring of Nickel(II) in Mine Water. Mine Water and the Environment, 35, 547-552.
-
[18] Shamsipur, M., Kazemi, S.Y. 2000. A PVC-based dibenzodiaza-15-crown-4 membrane potentiometric sensor for Ni(II). Electroanalysis, 12(18), 1472-1475.
-
[19] Mousavi, M.F., Alizadeh, N., Shamsipur, M., Zohari, N. 2000. A new PVC-based 1,10-dibenzyl-1,10-diaza-18-crown-6 selective electrode for detecting nickel(II) ion. Sensors & Actuators B: Chemical, 66, 98-100.
-
[20] Gupta, V.K., Jain, A.K., Singh, L.P., Khurana, U. 1997. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Analytica Chimica Acta, 355, 33-41.
-
[21] Mashhadizadeh, M.H., Sheikhshoaie, I., Saeid-Nia, S. 2003. Nickel(II)-selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sensors & Actuators B: Chemical, 94, 241-246.
-
[22] Kumar, K.G., Poduval, R., John, S., Augustine, P. 2007. A PVC plasticized membrane sensor for nickel ions. Microchimica Acta, 156, 283-287.
-
[23] Otrembska, P., Gega, J. 2016. Separation of nickel(II) and cadmium(II) ions with ion-exchange and membrane processes. Separation and Purification Technology, 51(15-16), 2675-2680.
-
[24] Rao, G.N., Srivastava, S., Srivastava, S.K., Singh, M. 1996. Chelating ion-exchange resin membrane sensor for nickel(II) ions. Talanta, 43, 1821-1825.
-
[25] Sanchez, G., Garcia, J., Meseguer, D.J., Serrano, J.L., Perez, J., Molins, E., Lopez, G. 2004. Organometallic nickel(II) complexes with dithiophosphate, dithiophonate and monothiophosphonate ligands. Inorganica Chimica Acta, 357, 677-683.
-
[26] Alberti, E., Ardizzoia, G.A., Brenna, S., Castelli, F., Galli, S., Maspero, A. 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni(II): A combined NMR and X-ray diffraction study. Polyhedron, 26, 958-966.
-
[27] Mkumbuzi, E., van Zyl, W.E. 2021. Synthesis and structures of zinc and cadmium bis(dithiophosphonate) complexes. Journal of Molecular Structure, 1226, 129338 (1-6).
-
[28] Karakus, M., Kara, I., Celik, O., Orujalipoor, I., Ide, S., Yilmaz, H. 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni(II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163(5), 128-136.
-
[29] Dittert, I. M., Vitali, L., Chaves, E. S., Maranhão, T. A., Borges, D. L., de Fávere, V. T., & Curtius, A. J. 2014.
Dispersive liquid–liquid microextraction using ammonium O, O-diethyl dithiophosphate (DDTP) as chelating agent and graphite furnace atomic absorption spectrometry for the determination of silver in biological samples. Analytical methods, 6(15), 5584-5589.
-
[30] Merino, I. E., Stegmann, E., Aliaga, M. E., Gomez, M., Arancibia, V., & Rojas, C. 2019. Determination of Se (IV) concentration via cathodic stripping voltammetry in the presence of Cu (II) ions and ammonium diethyl dithiophosphate. Analytica chimica acta, 1048, 22-30.
-
[31] Shen, M., Wang, T., Wang, Y., Li, Z., Liu, J., Jin, K., & Yu, H. 2025. Synergy of bismuth and tungsten in Bi2WO6 for PMS activation to enhance degradation of ammonium dibutyl dithiophosphate in flotation wastewater. Journal of Water Process Engineering, 74, 107845.
-
[32] Gill, J. S., Singh, H., & Gupta, C. K. 2000. Studies on supported liquid membrane for simultaneous separation of Fe (III), Cu (II) and Ni (II) from dilute feed. Hydrometallurgy, 55(1), 113-116.
-
[33] Analytical Methods Committee. Recommendations for the Definition, Estimation and Use of the Detection Limit. 1987. Analyst, 112, 199-204.
-
[34] Aragoni, M.C., Arca, M., Demartin, F., Devillanova, F.A., Graiff, C., Isaia, F., Lippolis, V., Tiripicchio,A. and Verani, G. 2000. Ring-Opening of Lawesson’s Reagent: New Syntheses of Phosphono-and Amidophosphono-Dithioato Complexes-Structural and CP-MS 31P-NMR Characterization of [p-CH3OPh(X)PS2]2M (X= MeO, iPrNH; M= NiII, PdII, and PtII . European Journal of Inorganic Chemistry, 2000 (10), 2239-2244.
-
[35] Ferancová, A., Hattuniemi, M. K., Sesay, A. M., Räty, J. P., & Virtanen, V. T. 2016. Rapid and direct electrochemical determination of Ni (II) in industrial discharge water. Journal of Hazardous Materials, 306, 50-57.
-
[36] Saidin, M. I., Isa, I. M., Ahmad, M., Hashim, N., & Ab Ghani, S. 2017. Analysis of trace nickel by square wave stripping voltammetry using chloropalladium (II) complex-modified MWCNTs paste electrode. Sensors and Actuators B: Chemical, 240, 848-856.
-
[37] Yari, A., Azizi, S., & Kakanejadifard, A. 2006. An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sensors and Actuators B: Chemical, 119(1), 167-173.
-
[38] Neodo S, Nie M, Wharton JA, Stokes KR. 2013. Nickel-ion detection on a boron-doped diamond electrode in acidic media. Electrochimica Acta, 88, 718-724.
Ditiyofosfat Türevleri ile Modifiye edilen Kalem Grafit Elektrotlarında Nikel(II)’ nin Voltametrik Tayini
Yıl 2025,
Cilt: 29 Sayı: 3, 538 - 548, 25.12.2025
Çiğdem Yaldiz
,
Esengül Kır
,
Tuğba Sardohan Köseoğlu
,
Ahmet Aydın
,
Berrin Çetinkaya
Öz
Bu çalışmada, ditiyofosfat türevlerinin iki modifiyeri olan amonyum diizobutilditiyofosfat (L1) ve amonyum diizopropilditiyofosfat (L2), Ni(II)'nin elektrokimyasal tayini için polipirol (PPy) bazlı kalem grafit elektrotları (PGE) hazırlamak amacıyla modifiyer olarak kullanılmıştır. Ditiyofosfatla modifiye edilmiş kalem grafit elektrotlar PGE/PPy/L1 ve PGE/PPy/L2 olarak adlandırılmıştır. Döngü sayısı, tarama hızı, pH ve ditiyofosfat konsantrasyonu gibi tüm parametreler optimize edilmiştir. Optimizasyondan sonra, PGE/PPy/L1 ve PGE/PPy/L2 elektrotları diferansiyel puls voltametrisi (DPV) ile Ni(II) iyonlarının tayini için kullanılmıştır. PGE/PPy/L1 ve PGE/PPy/L2 elektrotları sırasıyla 4-10 mg/L (r2= 0.9944) ve 2-9 mg/L (r2= 0.9924) arasında doğrusal bir cevap göstermiştir. PGE/PPy/L1 ve PGE/PPy/L2 elektrotlarının tayin sınırları da sırasıyla 0.87 mg/L ve 0.96 mg/L (S/N = 3) olarak bulunmuştur. Çeşitli katyonların Ni(II) tayini üzerindeki girişim etkileri de ayrıca incelenmiştir. Son olarak, hazırlanan PGE/PPy/L1 ve PGE/PPy/L2 elektrotları farklı su örneklerindeki Ni(II) tayini için kullanılmıştır.
Destekleyen Kurum
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Proje Numarası
4761-YL1-16
Teşekkür
Süleyman Demirel Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimi (BAP)
Kaynakça
-
[1] Mishra, A., Tripathi, B.D., Rai, A.K. 2016. Packed-bed column biosorption of chromium(VI) and nickel(II) onto Fenton modified Hydrilla verticillata dried biomass. Ecotoxicology and Environmental Safety, 132, 420-428.
-
[2] Danil de Namora, A.F., El Gamouz, A., Frangiea, S., Martineza, V., Valientea, L., Webb, O.A. 2012. Turning the volume down on heavy metals using tuned diatomite. A review of diatomite and modified diatomite for the extraction of heavy metals from water. Journal of Hazardous Materials, 241-242, 14-31.
-
[3] Moino, B.P.A., Costa, C.S.D., da Silva, M.G.C., Vieira, M.G.A. 2020. Reuse of the alginate extraction waste from Sargassum filipendula for Ni(II) biosorption. Chemical Engineering Communications, 207(1), 17-30.
-
[4] Wang, R., Ng, D.H.L., Liu, S. 2019. Recovery of nickel ions from wastewater by precipitation approach using silica xerogel. Journal of Hazardous Materials, 380, 120826.
-
[5] Li, H., Wan, Y., Chen, X., Cheng, L., Yang, X., Xia, W., Xu, S., Zhang, H. 2018. A multiregional survey of nickel in outdoor air particulate matter in China: Implication for human exposure. Chemosphere, 199, 702-708.
-
[6] Ferancová, A., Hattuniemi, M.K., Sesay, A.M., Räty, J.P., Virtanen, V.T. 2016. Rapid and direct electrochemical determination of Ni(II) in industrial discharge water. Journal of Hazardous Materials, 306, 50-57.
-
[7] Khudhair, A.F., Hassan, M.K., Alesary, H.F., Abbas, A.S. 2019. A simple pre-concentration method for the determination of nickel(II) in urine samples using UV-Vis spectrophotonetry and flame atomic absorption spectrometry techniques. Indonesian Journal of Chemistry, 19(3), 638-649.
-
[8] Viana, L.N., Saint’Pierre, T.D. 2019. Direct determination of Cr and Ni in oil samples by isotope dilution and external standard calibration using inductively coupled plasma mass spectrometry. Microchemical Journal, 151, 104219.
-
[9] Sze, K.L., Yeung, W.S.B., Fung, Y.S. 2007. Separation and determination of metal cations in milk and dairy products by CE. Electrophoresis, 28, 4156-4163.
-
[10] Punrat, E., Tutiyasarn, P., Chuanuwatanakul, S., Chailapakul, O. 2017. Determination of nickel(II) by ion-transfer to hydroxide medium using sequential injection-electrochemical analysis (SIECA). Talanta, 168, 286-290.
-
[11] Abbaspour, A., Khajehzadeh, A., Ghaffarinejad, A. 2009. Electrocatalytic oxidation and determination of hydrazine on nickel hexacyanoferrate nanoparticles-modified carbon ceramic electrode. Journal of Electroanalytical Chemistry, 631, 52-57.
-
[12] Prabakar, S.J.R., Narayanan, S.S. 2008. Amperometric determination of hydrazine using a surface modified nickel hexacyanoferrate graphite electrode fabricated following a new approach. Journal of Electroanaytical Chemistry, 617, 111-120.
-
[13] Yari, A., Azizi, S., Kakanejadifard, A. 2006. An electrochemical Ni(II)-selective sensor-bsased on a newly synthesized dioxime derivative as a neutral ionophore. Sensors & Actuators B: Chemical, 119, 167-173.
-
[14] Gęca, I., Ochab, M., Korolczuk, M. 2016. An adsorptive stripping voltammetry of nickel and cobalt at a solid lead electrode. International Journal of Environmental Analytical Chemistry, 96(13), 1264-1275.
-
[15] Gupta, V.K., Singh, A.K., Pal, M.K. 2008. Ni(II) selective sensors based on Schiff bases membranes in poly(vinyl chloride). Analytica Chimica Acta, 624, 223-231.
-
[16] Barcelo, C., Serrano, N., Arino, C., Diaz-Cruz, J.M., Esteban, M. 2016. Ex-situ Antimony Screen-printed Carbon Electrode for Voltammetric Determination of Ni(II)-ions in Wastewater. Electroanalysis, 28, 640-644.
-
[17] Ferancova, A., Hattuniemi, M.K., Sesay, A.M., Raty, J.P., Virtanen, V.T. 2016. Electrochemical Monitoring of Nickel(II) in Mine Water. Mine Water and the Environment, 35, 547-552.
-
[18] Shamsipur, M., Kazemi, S.Y. 2000. A PVC-based dibenzodiaza-15-crown-4 membrane potentiometric sensor for Ni(II). Electroanalysis, 12(18), 1472-1475.
-
[19] Mousavi, M.F., Alizadeh, N., Shamsipur, M., Zohari, N. 2000. A new PVC-based 1,10-dibenzyl-1,10-diaza-18-crown-6 selective electrode for detecting nickel(II) ion. Sensors & Actuators B: Chemical, 66, 98-100.
-
[20] Gupta, V.K., Jain, A.K., Singh, L.P., Khurana, U. 1997. Porphyrins as carrier in PVC based membrane potentiometric sensors for nickel(II). Analytica Chimica Acta, 355, 33-41.
-
[21] Mashhadizadeh, M.H., Sheikhshoaie, I., Saeid-Nia, S. 2003. Nickel(II)-selective membrane potentiometric sensor using a recently synthesized Schiff base as neutral carrier. Sensors & Actuators B: Chemical, 94, 241-246.
-
[22] Kumar, K.G., Poduval, R., John, S., Augustine, P. 2007. A PVC plasticized membrane sensor for nickel ions. Microchimica Acta, 156, 283-287.
-
[23] Otrembska, P., Gega, J. 2016. Separation of nickel(II) and cadmium(II) ions with ion-exchange and membrane processes. Separation and Purification Technology, 51(15-16), 2675-2680.
-
[24] Rao, G.N., Srivastava, S., Srivastava, S.K., Singh, M. 1996. Chelating ion-exchange resin membrane sensor for nickel(II) ions. Talanta, 43, 1821-1825.
-
[25] Sanchez, G., Garcia, J., Meseguer, D.J., Serrano, J.L., Perez, J., Molins, E., Lopez, G. 2004. Organometallic nickel(II) complexes with dithiophosphate, dithiophonate and monothiophosphonate ligands. Inorganica Chimica Acta, 357, 677-683.
-
[26] Alberti, E., Ardizzoia, G.A., Brenna, S., Castelli, F., Galli, S., Maspero, A. 2007. The synthesis of a new dithiophosphonic acid and its coordination properties toward Ni(II): A combined NMR and X-ray diffraction study. Polyhedron, 26, 958-966.
-
[27] Mkumbuzi, E., van Zyl, W.E. 2021. Synthesis and structures of zinc and cadmium bis(dithiophosphonate) complexes. Journal of Molecular Structure, 1226, 129338 (1-6).
-
[28] Karakus, M., Kara, I., Celik, O., Orujalipoor, I., Ide, S., Yilmaz, H. 2018. Synthesis, characterization, single crystal structure and theoretical studies of trans-Ni(II)-complex with dithiophosphonate ligand. Journal of Molecular Structure, 1163(5), 128-136.
-
[29] Dittert, I. M., Vitali, L., Chaves, E. S., Maranhão, T. A., Borges, D. L., de Fávere, V. T., & Curtius, A. J. 2014.
Dispersive liquid–liquid microextraction using ammonium O, O-diethyl dithiophosphate (DDTP) as chelating agent and graphite furnace atomic absorption spectrometry for the determination of silver in biological samples. Analytical methods, 6(15), 5584-5589.
-
[30] Merino, I. E., Stegmann, E., Aliaga, M. E., Gomez, M., Arancibia, V., & Rojas, C. 2019. Determination of Se (IV) concentration via cathodic stripping voltammetry in the presence of Cu (II) ions and ammonium diethyl dithiophosphate. Analytica chimica acta, 1048, 22-30.
-
[31] Shen, M., Wang, T., Wang, Y., Li, Z., Liu, J., Jin, K., & Yu, H. 2025. Synergy of bismuth and tungsten in Bi2WO6 for PMS activation to enhance degradation of ammonium dibutyl dithiophosphate in flotation wastewater. Journal of Water Process Engineering, 74, 107845.
-
[32] Gill, J. S., Singh, H., & Gupta, C. K. 2000. Studies on supported liquid membrane for simultaneous separation of Fe (III), Cu (II) and Ni (II) from dilute feed. Hydrometallurgy, 55(1), 113-116.
-
[33] Analytical Methods Committee. Recommendations for the Definition, Estimation and Use of the Detection Limit. 1987. Analyst, 112, 199-204.
-
[34] Aragoni, M.C., Arca, M., Demartin, F., Devillanova, F.A., Graiff, C., Isaia, F., Lippolis, V., Tiripicchio,A. and Verani, G. 2000. Ring-Opening of Lawesson’s Reagent: New Syntheses of Phosphono-and Amidophosphono-Dithioato Complexes-Structural and CP-MS 31P-NMR Characterization of [p-CH3OPh(X)PS2]2M (X= MeO, iPrNH; M= NiII, PdII, and PtII . European Journal of Inorganic Chemistry, 2000 (10), 2239-2244.
-
[35] Ferancová, A., Hattuniemi, M. K., Sesay, A. M., Räty, J. P., & Virtanen, V. T. 2016. Rapid and direct electrochemical determination of Ni (II) in industrial discharge water. Journal of Hazardous Materials, 306, 50-57.
-
[36] Saidin, M. I., Isa, I. M., Ahmad, M., Hashim, N., & Ab Ghani, S. 2017. Analysis of trace nickel by square wave stripping voltammetry using chloropalladium (II) complex-modified MWCNTs paste electrode. Sensors and Actuators B: Chemical, 240, 848-856.
-
[37] Yari, A., Azizi, S., & Kakanejadifard, A. 2006. An electrochemical Ni (II)-selective sensor-based on a newly synthesized dioxime derivative as a neutral ionophore. Sensors and Actuators B: Chemical, 119(1), 167-173.
-
[38] Neodo S, Nie M, Wharton JA, Stokes KR. 2013. Nickel-ion detection on a boron-doped diamond electrode in acidic media. Electrochimica Acta, 88, 718-724.