Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of Radiation Attenuation Parameters in Aluminum-Based Alloys by Means of Phy-X/PSD

Yıl 2025, Cilt: 29 Sayı: 3, 694 - 704, 25.12.2025
https://doi.org/10.19113/sdufenbed.1812428

Öz

In this study, the interactions of high-aluminum ETIAL series alloys, which possess different weight ratios and a density range of 2.66–2.76 g cm⁻³, with gamma photons were examined using the Phy-X/PSD software over the 10⁻³–10⁵ MeV energy range as well as at selected photon energies (0.059, 0.081, 0.356, 0.662, 1.173, and 1.332 MeV). The mass and linear attenuation coefficients (MAC, LAC), half-value layer (HVL), tenth-value layer (TVL), mean free path (MFP), and effective atomic number (Zeff) were calculated.

At lower photon energies, the dominance of the photoelectric effect led to an increase in MAC, LAC, and Zeff values, while HVL, TVL, and MFP values decreased accordingly. In the intermediate energy region, Compton scattering became the predominant interaction, resulting in decreased MAC and LAC values and increased HVL, TVL, and MFP. At higher photon energies, both Compton scattering and pair production processes became significant, leading to the stabilization of these parameters. Evaluations at selected energies indicate that at low energies, the S5 alloy (0.059 MeV, MAC = 0.3489 cm² g⁻¹, LAC = 93.1595 cm⁻¹) exhibits the highest shielding performance, whereas at medium and high energies, the S2 alloy demonstrates a more balanced absorption capability. The alloy composition and density were found to play a crucial role in determining the gamma-ray attenuation performance. This work represents the first systematic investigation in the literature to comprehensively present the attenuation parameters of these alloys.

Kaynakça

  • [1] Elsafi, M., Almousa, N., Al-Harbi, N., Almutiri, M. N., Yasmin, S., Sayyed, M. I. 2023. Ecofriendly and radiation shielding properties of newly developed epoxy with waste marble and WO₃ nanoparticles. Journal of Materials Research and Technology, 22, 269–277.
  • [2] Pour, H. G., Shojaei, M. R., Soltani, J. 2023. A new approach to calculating the ratio of the Compton to total mass attenuation coefficient. Radiation Physics and Chemistry, 208, 110848.
  • [3] Zare Mehrjardi, A., Gholamzadeh, L., Zafari, F. 2023. Coating of polyester fabrics with micro-particles of Bi₂O₃ and BaO for ionization ray shielding. Applied Radiation and Isotopes, 192, 110573.
  • [4] Geidam, I. G., Matori, K. A., Halimah, M. K., Chan, K. T., Muhammad, F. D., Ishak, M., Umar, S. A. 2022. Oxide ion polarizabilities and gamma radiation shielding features of TeO₂–B₂O₃–SiO₂ glasses containing Bi₂O₃ using Phy-X/PSD software. Materials Today Communications, 31, 103472.
  • [5] Gili, M. B. Z., Jecong, J. F. M. 2023. Radiation shielding properties of ZnO and other glass modifier oxides: BaO, MgO, Na₂O, and TiO₂, using EpiXS software. Arabian Journal for Science and Engineering, 48, 1021–1029.
  • [6] Şahin, M. C., Manisa, K., Bircan, H., Saygılı, S. K. 2024. Experimental, theoretical, and biological investigations on radiation shielding parameters of boron-doped Cerrobend alloys. Matéria (Rio de Janeiro), 29.
  • [7] Dong, M., Zhou, S., Yang, H., Xue, X. 2023. Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites. Nuclear Engineering and Technology, 55(7), 2613–2620.
  • [8] Issa, S. A. M., Tekin, H. O., Elsaman, R., Kilicoglu, O., Saddeek, Y. B., Sayyed, M. I. 2019. Radiation shielding and mechanical properties of Al₂O₃–Na₂O–B₂O₃–Bi₂O₃ glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 223, 209–219.
  • [9] Al-Buriahi, M. S., Sriwunkum, C., Arslan, H., Tonguc, B. T., Bourham, M. A. 2020. Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A, 126.
  • [10] Kilicoglu, O., Akman, H., Agar, O., Kara, U. 2023. Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiation Physics and Chemistry, 204, 110676.
  • [11] Oztürk, H., Avcı Karakurt, D., Onat, F. E., ALMisned, G., Tekin, H. O., Günay, O. 2025. Investigation of gamma ray shielding and transmission properties in B₂O₃-Doped glasses. Radiation Physics and Chemistry, 238, 113199.
  • [12] Zayed, A. M., El-Khayatt, A. M., Mahmoud, K. A., Petrounias, P., Masoud, M. A. 2025. Evaluation of some heavyweight minerals as sustainable neutron and gamma-ray attenuating materials: Comprehensive theoretical and simulation investigations. Arabian Journal for Science and Engineering, 50, 3373–3386.
  • [13] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. 2020. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.
  • [14] Al-Hadeethi, Y., Sayyed, M. I. 2020. A comprehensive study on the effect of TeO₂ on the radiation shielding properties of TeO₂–B₂O₃–Bi₂O₃–LiF–SrCl₂ glass system using Phy-X / PSD software. Ceramics International, 46(5), 6136–6140.
  • [15] Khattari, Z. Y., Al-Buriahi, M. S. 2022. Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiation Physics and Chemistry, 195, 110091.
  • [16] Sabry, N., Yahia, I. S. 2023. Attenuation features of Ag₂ZnSnS₄, Ag₂ZnSnSe₄, ZnS, and Ag₂S compounds against indirect ionizing radiation using Phy-X/PSD software. Physica B: Condensed Matter, 650, 414526.
  • [17] Aygun, Z., Aygün, M. 2023. Evaluation of radiation shielding potentials of Ni‑based alloys, Inconel‑617 and Incoloy‑800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy‑X/PSD codes. Politeknik Dergisi, 26(2), 795‑801.
  • [18] Almuqrin, A. H., Mahmoud, K. A., Rilwan, U., Sayyed, M. I. 2024. Influence of various metal oxides (PbO, Fe₂O₃, MgO, and Al₂O₃) on the mechanical properties and γ-ray attenuation performance of zinc barium borate glasses. Nuclear Engineering and Technology, 56(7), 2711–2717.
  • [19] Issa, S. A. M., Sayyed, M. I., Zaid, M. H. M., Matori, K. A. 2018. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results in Physics, 9, 206–210.
  • [20] Obaid, S. S., Gaikwad, D. K., Pawar, P. P. 2018. Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356–360.
  • [21] El-Agawany, F. I., Ekinci, N., Mahmoud, K. A., Sarıtaş, S., Aygün, B., Ahmed, E. M., Rammah, Y. S. 2021. Gamma-ray shielding capacity of different B₄C-, Re-, and Ni-based superalloys. European Physical Journal Plus, 136, 527.
  • [22] Gaylan, Y., Caglar, S. 2025. Effect of Sm₂O₃ on radiation shielding and mechanical properties of Al-Sm₂O₃ composites. Ceramics International, 51(8), 10133–10142.
  • [23] Kaur, T., Sharma, J., Singh, T. 2019. Review on scope of metallic alloys in gamma rays shield designing. Progress in Nuclear Energy, 113, 95–113.
  • [24] Gharissah, M. S., Ardiansyah, A., Pauziah, S. R., Muhammad, N. A., Rahmat, R., Heryanto, H., Tahir, D. 2022. Composites cement/BaSO₄/Fe₃O₄/CuO for improving X-ray absorption characteristics and structural properties. Scientific Reports, 12, 19169.
  • [25] Subedi, B., Paudel, J., Lamichhane, T. R. 2023. Gamma‑ray, fast neutron and ion shielding characteristics of low‑density and high‑entropy Mg–Al–Ti–V–Cr–Fe–Zr–Nb alloy systems using Phy‑X/PSD and SRIM programs. Heliyon, 9(7), e17725.
  • [26] ETİAL. t.y. Ham Alüminyum Ürünleri / Dökümhane Ürünleri. ETİAL. https://www.etialuminyum.com/urunler/ham-aluminyum-urunler/dokumhane-urunleri/(Erişim Tarihi: 26.10.2025)
  • [27] Liu, Y., Wei, H., Zhu, W., Wang, Y., Yuan, L., Wang, X., Wang, Q., Wang, B. 2025. Fabrication, characterization and optimization design of flexible materials for X-ray shielding with high efficiency. Radiation Physics and Chemistry, 226, 112265.
  • [28] Sayyed, M. I. 2024. PbO–PbF₂–B₂O₃–SiO₂ glasses: Exploring the impact of PbF₂ in modulating radiation shielding characteristics. Silicon, 16, 1321–1328.
  • [29] Kamislioglu, M. 2021. Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results in Physics, 22, 103844.
  • [30] Levet, A. 2024. Investigation of radiation shielding parameters of boron compounds. Radiation Effects and Defects in Solids, 179(3–4), 458–473.
  • [31] Sallam, O. I., Issa, S. A. M., Rashad, M., Madbouly, A. M., Tekin, H. O., Badawi, A., Hamdy, A., Zakaly, H. M. H. 2022. Impact of molybdenum on optical, structure properties and gamma radiation shielding parameters of borophosphate glass: Intensive experiment investigations. Radiation Physics and Chemistry, 198, 110140.
  • [32] Kaky, K. M., Sayyed, M. I. 2024. The radiation shielding parameters of a standard silica glass system. Silicon, 16, 1197–1203.
  • [33] Kanca, M. S., Taşgın, Y., Yılmaz, D., Pathman, A. F., Güler, Ö. 2024. The effect of high entropy oxide on radiation shielding parameters of erbium oxide doped glasses. Ceramics International, 50(9, Part B), 15600–15612.
  • [34] Yılmaz, D., Kılıç, A. D., Kalecik, S. 2023. Radiation shielding parameters and micro-Raman spectral analysis of some pyroclastic rocks. Radiation Physics and Chemistry, 203(Part A), 110596.
  • [35] Turşucu, A., Elmahroug, Y., Yılmaz, D. 2021. Measurement on radiation shielding parameters of FeₓCr₁₋ₓ and FeₓNiₓ alloys. Applied Physics A, 127, 640.
  • [36] Ehab, M., Salama, E., Ashour, A., Attallah, M., Saleh, H. M. 2022. Optical properties and gamma radiation shielding capability of transparent barium borosilicate glass composite. Sustainability, 14(20), 13298.
  • [37] Alrowaili, Z. A., Echeweozo, E. O., Alomairy, S., Hammoud, A., Sriwunkum, C., Alsaiari, N. S., Boukhris, I., Al‑Buriahi, M. S. 2025. Gamma attenuation, buildup factors, and radiation shielding performance of CaO‑borosilicate glasses. Journal of Radiation Research and Applied Sciences, 18(1), 101221.
  • [38] Singh, T., Kaur, A., Sharma, J., Singh, P. S. 2018. Gamma rays’ shielding parameters for some Pb-Cu binary alloys, Engineering Science and Technology, an International Journal, 21( 5), 1078-1085.
  • [39] Abdulazeez, K. M., Sheekhoo, W. A. 2025. Synergistic radiation shielding performance of Cu-based ternary alloys for multifunctional gamma, beta, and neutron radiation protection. The European Physical Journal Plus, 140, 877.
  • [40] Hossain, Md. S., Barman, R. 2026. Study of attenuation parameters of alloy materials for ionizing radiation using phy-X/PSD and EpiXS, Radiation Physics and Chemistry, 238, 113177.
  • [41] Almuqrin, A. H., Jecong, J. F. M., F.C. Hila, F. C., Balderas, C. V., Sayyed, M. I. 2021. Radiation shielding properties of selected alloys using EPICS2017 data library, Progress in Nuclear Energy, 137,103748.
  • [42] Karpuz, N. 2023. Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689.
  • [43] Alan, H. Y., Güler, Ö., Yılmaz, A., Susam, L. A., Kavaz, E., Kılıç, G., Ilik, E., Oktik, S., Akkus, B., AlMisned, G., Tekin, H. O. 2025. Exploring the gamma‑ray shielding performance of boron‑rich high entropy alloys. Radiation Physics and Chemistry, 229, 112512.
  • [44] Niksarlıoğlu, S., Akman, F., Pekdemir, M. E., Kuzu, S. Y., Kaçal, M. R., Yılmaz, M. 2023. An extensive investigation on gamma shielding properties of PLA/Gd₂O₃ nanocomposites. Radiation Physics and Chemistry, 208, 110936.

Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi

Yıl 2025, Cilt: 29 Sayı: 3, 694 - 704, 25.12.2025
https://doi.org/10.19113/sdufenbed.1812428

Öz

Bu çalışmada, farklı ağırlık oranlarına ve 2,66–2,76 g cm⁻³ yoğunluk aralığına sahip yüksek alüminyum içerikli ETİAL serisi alaşımların gama fotonlarıyla etkileşimleri, 10⁻³–10⁵ MeV enerji aralığı boyunca ve seçili foton enerjilerinde (0.059, 0.081, 0.356, 0.662, 1.173 ve 1.332 MeV) Phy-X/PSD yazılımı kullanılarak incelenmiştir. Kütle ve doğrusal zayıflama katsayıları (MAC, LAC), yarı ve ondalık değer kalınlıkları (HVL, TVL), ortalama serbest yol (MFP) ve etkin atom numarası (Zeff) hesaplanmıştır.

Düşük enerji aralığında fotoelektrik etkinin baskın hale gelmesi, MAC, LAC ve Zeff değerlerinin artmasına; buna karşın HVL, TVL ve MFP değerlerinin azalmasına neden olmuştur. Orta enerjilerde Compton saçılması hâkim olup, MAC ve LAC azalmış, HVL, TVL ve MFP artmıştır. Yüksek enerjilerde Compton ve çift oluşum süreçleri belirginleşmiş ve parametreler sabitlenmiştir. Seçili enerjilerde yapılan değerlendirmeler, düşük enerjilerde S5 alaşımının (0,059 MeV’de MAC = 0,3489 cm² g-1, LAC = 93,1595 cm⁻¹) en yüksek zırhlama performansına sahip olduğunu, orta ve yüksek enerjilerde ise S2 alaşımının daha dengeli soğurma kapasitesi sunduğunu göstermektedir. Alaşımların bileşimi ve yoğunluğu, gama ışını zayıflatma performansında belirleyici rol oynamaktadır. Bu çalışma, söz konusu alaşımların zayıflatma parametrelerini literatürde sistematik olarak ortaya koyan ilk araştırmadır.

Etik Beyan

Bu çalışmada, “Yükseköğretim Kurumları Bilimsel Araştırma ve Yayın Etiği Yönergesi” kapsamında uyulması gerekli tüm kurallara uyulduğunu, bahsi geçen yönergenin “Bilimsel Araştırma ve Yayın Etiğine Aykırı Eylemler” başlığı altında belirtilen eylemlerden hiçbirinin gerçekleştirilmediğini taahhüt ederim.

Kaynakça

  • [1] Elsafi, M., Almousa, N., Al-Harbi, N., Almutiri, M. N., Yasmin, S., Sayyed, M. I. 2023. Ecofriendly and radiation shielding properties of newly developed epoxy with waste marble and WO₃ nanoparticles. Journal of Materials Research and Technology, 22, 269–277.
  • [2] Pour, H. G., Shojaei, M. R., Soltani, J. 2023. A new approach to calculating the ratio of the Compton to total mass attenuation coefficient. Radiation Physics and Chemistry, 208, 110848.
  • [3] Zare Mehrjardi, A., Gholamzadeh, L., Zafari, F. 2023. Coating of polyester fabrics with micro-particles of Bi₂O₃ and BaO for ionization ray shielding. Applied Radiation and Isotopes, 192, 110573.
  • [4] Geidam, I. G., Matori, K. A., Halimah, M. K., Chan, K. T., Muhammad, F. D., Ishak, M., Umar, S. A. 2022. Oxide ion polarizabilities and gamma radiation shielding features of TeO₂–B₂O₃–SiO₂ glasses containing Bi₂O₃ using Phy-X/PSD software. Materials Today Communications, 31, 103472.
  • [5] Gili, M. B. Z., Jecong, J. F. M. 2023. Radiation shielding properties of ZnO and other glass modifier oxides: BaO, MgO, Na₂O, and TiO₂, using EpiXS software. Arabian Journal for Science and Engineering, 48, 1021–1029.
  • [6] Şahin, M. C., Manisa, K., Bircan, H., Saygılı, S. K. 2024. Experimental, theoretical, and biological investigations on radiation shielding parameters of boron-doped Cerrobend alloys. Matéria (Rio de Janeiro), 29.
  • [7] Dong, M., Zhou, S., Yang, H., Xue, X. 2023. Gamma ray attenuation behaviors and mechanism of boron rich slag/epoxy resin shielding composites. Nuclear Engineering and Technology, 55(7), 2613–2620.
  • [8] Issa, S. A. M., Tekin, H. O., Elsaman, R., Kilicoglu, O., Saddeek, Y. B., Sayyed, M. I. 2019. Radiation shielding and mechanical properties of Al₂O₃–Na₂O–B₂O₃–Bi₂O₃ glasses using MCNPX Monte Carlo code. Materials Chemistry and Physics, 223, 209–219.
  • [9] Al-Buriahi, M. S., Sriwunkum, C., Arslan, H., Tonguc, B. T., Bourham, M. A. 2020. Investigation of barium borate glasses for radiation shielding applications. Appl. Phys. A, 126.
  • [10] Kilicoglu, O., Akman, H., Agar, O., Kara, U. 2023. Nuclear radiation shielding performance of borosilicate glasses: Numerical simulations and theoretical analyses. Radiation Physics and Chemistry, 204, 110676.
  • [11] Oztürk, H., Avcı Karakurt, D., Onat, F. E., ALMisned, G., Tekin, H. O., Günay, O. 2025. Investigation of gamma ray shielding and transmission properties in B₂O₃-Doped glasses. Radiation Physics and Chemistry, 238, 113199.
  • [12] Zayed, A. M., El-Khayatt, A. M., Mahmoud, K. A., Petrounias, P., Masoud, M. A. 2025. Evaluation of some heavyweight minerals as sustainable neutron and gamma-ray attenuating materials: Comprehensive theoretical and simulation investigations. Arabian Journal for Science and Engineering, 50, 3373–3386.
  • [13] Şakar, E., Özpolat, Ö. F., Alım, B., Sayyed, M. I., Kurudirek, M. 2020. Phy-X / PSD: Development of a user friendly online software for calculation of parameters relevant to radiation shielding and dosimetry. Radiation Physics and Chemistry, 166, 108496.
  • [14] Al-Hadeethi, Y., Sayyed, M. I. 2020. A comprehensive study on the effect of TeO₂ on the radiation shielding properties of TeO₂–B₂O₃–Bi₂O₃–LiF–SrCl₂ glass system using Phy-X / PSD software. Ceramics International, 46(5), 6136–6140.
  • [15] Khattari, Z. Y., Al-Buriahi, M. S. 2022. Monte Carlo simulations and Phy-X/PSD study of radiation shielding effectiveness and elastic properties of barium zinc aluminoborosilicate glasses. Radiation Physics and Chemistry, 195, 110091.
  • [16] Sabry, N., Yahia, I. S. 2023. Attenuation features of Ag₂ZnSnS₄, Ag₂ZnSnSe₄, ZnS, and Ag₂S compounds against indirect ionizing radiation using Phy-X/PSD software. Physica B: Condensed Matter, 650, 414526.
  • [17] Aygun, Z., Aygün, M. 2023. Evaluation of radiation shielding potentials of Ni‑based alloys, Inconel‑617 and Incoloy‑800HT, candidates for high temperature applications especially for nuclear reactors, by EpiXS and Phy‑X/PSD codes. Politeknik Dergisi, 26(2), 795‑801.
  • [18] Almuqrin, A. H., Mahmoud, K. A., Rilwan, U., Sayyed, M. I. 2024. Influence of various metal oxides (PbO, Fe₂O₃, MgO, and Al₂O₃) on the mechanical properties and γ-ray attenuation performance of zinc barium borate glasses. Nuclear Engineering and Technology, 56(7), 2711–2717.
  • [19] Issa, S. A. M., Sayyed, M. I., Zaid, M. H. M., Matori, K. A. 2018. Photon parameters for gamma-rays sensing properties of some oxide of lanthanides. Results in Physics, 9, 206–210.
  • [20] Obaid, S. S., Gaikwad, D. K., Pawar, P. P. 2018. Determination of gamma ray shielding parameters of rocks and concrete. Radiation Physics and Chemistry, 144, 356–360.
  • [21] El-Agawany, F. I., Ekinci, N., Mahmoud, K. A., Sarıtaş, S., Aygün, B., Ahmed, E. M., Rammah, Y. S. 2021. Gamma-ray shielding capacity of different B₄C-, Re-, and Ni-based superalloys. European Physical Journal Plus, 136, 527.
  • [22] Gaylan, Y., Caglar, S. 2025. Effect of Sm₂O₃ on radiation shielding and mechanical properties of Al-Sm₂O₃ composites. Ceramics International, 51(8), 10133–10142.
  • [23] Kaur, T., Sharma, J., Singh, T. 2019. Review on scope of metallic alloys in gamma rays shield designing. Progress in Nuclear Energy, 113, 95–113.
  • [24] Gharissah, M. S., Ardiansyah, A., Pauziah, S. R., Muhammad, N. A., Rahmat, R., Heryanto, H., Tahir, D. 2022. Composites cement/BaSO₄/Fe₃O₄/CuO for improving X-ray absorption characteristics and structural properties. Scientific Reports, 12, 19169.
  • [25] Subedi, B., Paudel, J., Lamichhane, T. R. 2023. Gamma‑ray, fast neutron and ion shielding characteristics of low‑density and high‑entropy Mg–Al–Ti–V–Cr–Fe–Zr–Nb alloy systems using Phy‑X/PSD and SRIM programs. Heliyon, 9(7), e17725.
  • [26] ETİAL. t.y. Ham Alüminyum Ürünleri / Dökümhane Ürünleri. ETİAL. https://www.etialuminyum.com/urunler/ham-aluminyum-urunler/dokumhane-urunleri/(Erişim Tarihi: 26.10.2025)
  • [27] Liu, Y., Wei, H., Zhu, W., Wang, Y., Yuan, L., Wang, X., Wang, Q., Wang, B. 2025. Fabrication, characterization and optimization design of flexible materials for X-ray shielding with high efficiency. Radiation Physics and Chemistry, 226, 112265.
  • [28] Sayyed, M. I. 2024. PbO–PbF₂–B₂O₃–SiO₂ glasses: Exploring the impact of PbF₂ in modulating radiation shielding characteristics. Silicon, 16, 1321–1328.
  • [29] Kamislioglu, M. 2021. Research on the effects of bismuth borate glass system on nuclear radiation shielding parameters. Results in Physics, 22, 103844.
  • [30] Levet, A. 2024. Investigation of radiation shielding parameters of boron compounds. Radiation Effects and Defects in Solids, 179(3–4), 458–473.
  • [31] Sallam, O. I., Issa, S. A. M., Rashad, M., Madbouly, A. M., Tekin, H. O., Badawi, A., Hamdy, A., Zakaly, H. M. H. 2022. Impact of molybdenum on optical, structure properties and gamma radiation shielding parameters of borophosphate glass: Intensive experiment investigations. Radiation Physics and Chemistry, 198, 110140.
  • [32] Kaky, K. M., Sayyed, M. I. 2024. The radiation shielding parameters of a standard silica glass system. Silicon, 16, 1197–1203.
  • [33] Kanca, M. S., Taşgın, Y., Yılmaz, D., Pathman, A. F., Güler, Ö. 2024. The effect of high entropy oxide on radiation shielding parameters of erbium oxide doped glasses. Ceramics International, 50(9, Part B), 15600–15612.
  • [34] Yılmaz, D., Kılıç, A. D., Kalecik, S. 2023. Radiation shielding parameters and micro-Raman spectral analysis of some pyroclastic rocks. Radiation Physics and Chemistry, 203(Part A), 110596.
  • [35] Turşucu, A., Elmahroug, Y., Yılmaz, D. 2021. Measurement on radiation shielding parameters of FeₓCr₁₋ₓ and FeₓNiₓ alloys. Applied Physics A, 127, 640.
  • [36] Ehab, M., Salama, E., Ashour, A., Attallah, M., Saleh, H. M. 2022. Optical properties and gamma radiation shielding capability of transparent barium borosilicate glass composite. Sustainability, 14(20), 13298.
  • [37] Alrowaili, Z. A., Echeweozo, E. O., Alomairy, S., Hammoud, A., Sriwunkum, C., Alsaiari, N. S., Boukhris, I., Al‑Buriahi, M. S. 2025. Gamma attenuation, buildup factors, and radiation shielding performance of CaO‑borosilicate glasses. Journal of Radiation Research and Applied Sciences, 18(1), 101221.
  • [38] Singh, T., Kaur, A., Sharma, J., Singh, P. S. 2018. Gamma rays’ shielding parameters for some Pb-Cu binary alloys, Engineering Science and Technology, an International Journal, 21( 5), 1078-1085.
  • [39] Abdulazeez, K. M., Sheekhoo, W. A. 2025. Synergistic radiation shielding performance of Cu-based ternary alloys for multifunctional gamma, beta, and neutron radiation protection. The European Physical Journal Plus, 140, 877.
  • [40] Hossain, Md. S., Barman, R. 2026. Study of attenuation parameters of alloy materials for ionizing radiation using phy-X/PSD and EpiXS, Radiation Physics and Chemistry, 238, 113177.
  • [41] Almuqrin, A. H., Jecong, J. F. M., F.C. Hila, F. C., Balderas, C. V., Sayyed, M. I. 2021. Radiation shielding properties of selected alloys using EPICS2017 data library, Progress in Nuclear Energy, 137,103748.
  • [42] Karpuz, N. 2023. Radiation shielding properties of glass composition. Journal of Radiation Research and Applied Sciences, 16(4), 100689.
  • [43] Alan, H. Y., Güler, Ö., Yılmaz, A., Susam, L. A., Kavaz, E., Kılıç, G., Ilik, E., Oktik, S., Akkus, B., AlMisned, G., Tekin, H. O. 2025. Exploring the gamma‑ray shielding performance of boron‑rich high entropy alloys. Radiation Physics and Chemistry, 229, 112512.
  • [44] Niksarlıoğlu, S., Akman, F., Pekdemir, M. E., Kuzu, S. Y., Kaçal, M. R., Yılmaz, M. 2023. An extensive investigation on gamma shielding properties of PLA/Gd₂O₃ nanocomposites. Radiation Physics and Chemistry, 208, 110936.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Nükleer Fizik
Bölüm Araştırma Makalesi
Yazarlar

Reyhan Özaydın Özkara 0000-0003-2699-1060

Gönderilme Tarihi 28 Ekim 2025
Kabul Tarihi 3 Aralık 2025
Yayımlanma Tarihi 25 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 29 Sayı: 3

Kaynak Göster

APA Özaydın Özkara, R. (2025). Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 29(3), 694-704. https://doi.org/10.19113/sdufenbed.1812428
AMA Özaydın Özkara R. Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2025;29(3):694-704. doi:10.19113/sdufenbed.1812428
Chicago Özaydın Özkara, Reyhan. “Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29, sy. 3 (Aralık 2025): 694-704. https://doi.org/10.19113/sdufenbed.1812428.
EndNote Özaydın Özkara R (01 Aralık 2025) Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29 3 694–704.
IEEE R. Özaydın Özkara, “Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 29, sy. 3, ss. 694–704, 2025, doi: 10.19113/sdufenbed.1812428.
ISNAD Özaydın Özkara, Reyhan. “Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 29/3 (Aralık2025), 694-704. https://doi.org/10.19113/sdufenbed.1812428.
JAMA Özaydın Özkara R. Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29:694–704.
MLA Özaydın Özkara, Reyhan. “Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 29, sy. 3, 2025, ss. 694-0, doi:10.19113/sdufenbed.1812428.
Vancouver Özaydın Özkara R. Alüminyum Bazlı Alaşımlarda Radyasyon Zayıflama Parametrelerinin Phy-X/PSD ile İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2025;29(3):694-70.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.