BibTex RIS Kaynak Göster

On the Quaternionic Focal Curves

Yıl 2017, Cilt: 21 Sayı: 2, 357 - 366, 13.06.2017
https://izlik.org/JA74NY39NL

Öz

In this study, a brief summary about quaternions and quaternionic curves are firstly presented. Also, the definition of focal curve is given. The focal curve of a smooth curve consists of the centers of its osculating hypersphere.  By using this definition and the quaternionic osculating hyperspheres of these curves, the quaternionic focal curves in the spaces $\Q$ and $\Q_\nu$ with index $\nu=\{1,2\}$ are discussed. Some relations about spatial semi-real quaternionic curves and semi-real quaternionic curves are examined by using focal curvatures and "scalar Frenet equations" between the focal curvatures. Then, the notions: such as vertex, flattenings, a symmetry point are defined for these curves. Moreover, the relation between the Frenet apparatus of a quaternionic curve and the Frenet apparatus of its quaternionic focal curve are presented.

Kaynakça

  • [1] Ward, J. P. 1997. Quaternions and Cayley Numbers, Kluwer Academic Publishers, Boston/London.
  • [2] Bharathi, K. and Nagaraj, M. 1987. Quaternion Valued Function of a Real Variable Serret-Frenet Formulae, Indian Journal of Pure and Applied Mathematics. 18 (6), 507–511.
  • [3] Tuna, A. 2002. Serret Frenet formulae for Quaternionic Curves in Semi Euclidean Space. Master Thesis, Süleyman Demirel University, Graduate School of Natural and Applied Science, Isparta, Turkey.
  • [4] Çöken, A. C. and Tuna, A. 2004. On the quaternionic inclined curves in the semi-Euclidean space E42, Applied Mathematics and Computation. 155 (2), 373–389.
  • [5] Kahraman, F., Gök, İ. and Hacısalihoğlu, H. H. 2012. On the quaternionic B2 slant helices in the semi- Euclidean space E42, Applied Mathematics and Computation. 218(11) , 6391–6400.
  • [6] Hacısalihoğlu, H. H. 1993. Diferensiyel Geometri, Faculty of Sciences University of Ankara Press.
  • [7] Sabuncuoğlu, A. 2010. Diferensiyel Geometri. Nobel Press.
  • [8] Struik, D. J. 2012. Lectures on Classical Differential Geometry. Second edition, Addison-Wesley Publishing Company, Inc., Reading, Massachusetts.
  • [9] Sağlam, D. 2012. On the Osculating Spheres of a Real Quaternionic Curve in the Euclidean Space E4, International Journal of Mathematical Combinatorics. 3, 46–53.
  • [10] Soytürk, E., İlarslan, K. and Sağlam, D. 2005. Osculating spheres and osculating circles of a curve in semi-Reimannian space, Communications, Faculty of Science. University of Ankara Series A1. 54 (2), 39–48.
  • [11] Bekta¸s, Ö., (Bayrak) Gürses, N. and Yüce, S. 2014. Osculating Spheres of a Semi Real Quaternionic Curves in E42, European Journal of Pure and Applied Mathematics. 7 (1), 86–96.
  • [12] Uribe-Vargas, R. 2005. On vertices, focal curvatures and differential geometry of space curves, Bull. Brazilian Math. Soc. 36 (3), 285–307.
  • [13] Özdemir, M. 2004. On the Focal Curvatures of Nonlightlike Curves in Minkowski (m+1)-Space, Fırat Üniversitesi Fen ve Mühendislik Bilimleri Dergisi. 16 (3), 401–409.
  • [14] Öztürk, G. and Arslan, K. 2016. On focal curves in Euclidean n-space Rn, Novi Sad Journal of Mathematics, 46 (1), 35-44.
  • [15] Şimşek, H. 2016. Focal curves and focal surfaces in finite dimensional minkowski space, Phd Thesis, Akdeniz University, 119 pages.
  • [16] Wang, Z., Pei, D., Chen, L., Kong, L. and Han, Q. 2012. Singularities of focal surfaces of null Cartan curves in Minkowski 3-space, Abstract and Applied Analysis, 1-20.
  • [17] Liu, X. and Wang, Z. 2015. On lightlike hypersurfaces and lightlike focal sets of null Cartan curves in Lorentz-Minkowski spacetime, Journal of Nonlinear Science and Applications, 8(5): 628-639.
  • [18] Şimşek, H. 2017. On focal curves of null Cartan curves, Turkish Journal of Mathematics, DOI: 10.3906/mat-1604-79.
  • [19] Asil, V., Ba¸s, S. and Körpınar, T. 2013. On Construction of D-Focal Curves in Euclidean 3-Space M3, Bol. Soc. Paran. Mat., (3s.) v. 31, 273-277.
  • [20] Körpınar, T., Turhan, E. and Bonilla, JL. 2014. Focal Curves of Bıharmonıc Curves in the SL R 2, International Journal of Mathematical Engineering and Science ISSN : 2277-6982 1(2).
  • [21] Körpınar, T. and Turhan, E. 2011. New representations of focal curves in the special Ricci Symmetric Para-Sasakian Manifold P, Revista Notas de Matemática, Vol.7(2), No. 320, 195-201.
  • [22] Tuna Aksoy, A. and Çöken, A. C. 2015. Serret-Frenet Formulae for Null Quaternionic Curves in Semi Euclidean 4-Space R41, Acta Physica Polonica A. 128 (2-B).
  • [23] Lopez, R. 2014. Differential Geometry of Curves and Surfaces in Lorentz-Minkowski Space, International Electronic Journal of Geometry, 7(1), 44–107.
Toplam 23 adet kaynakça vardır.

Kaynak Göster

APA (bayrak) Gürses, N., Bektaş, Ö., & Yüce, S. (2017). On the Quaternionic Focal Curves. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 21(2), 357-366. https://doi.org/10.19113/sdufbed.14005
AMA 1.(bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2017;21(2):357-366. doi:10.19113/sdufbed.14005
Chicago (bayrak) Gürses, Nurten, Özcan Bektaş, ve Salim Yüce. 2017. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 (2): 357-66. https://doi.org/10.19113/sdufbed.14005.
EndNote (bayrak) Gürses N, Bektaş Ö, Yüce S (01 Ağustos 2017) On the Quaternionic Focal Curves. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21 2 357–366.
IEEE [1]N. (bayrak) Gürses, Ö. Bektaş, ve S. Yüce, “On the Quaternionic Focal Curves”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 21, sy 2, ss. 357–366, Ağu. 2017, doi: 10.19113/sdufbed.14005.
ISNAD (bayrak) Gürses, Nurten - Bektaş, Özcan - Yüce, Salim. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 21/2 (01 Ağustos 2017): 357-366. https://doi.org/10.19113/sdufbed.14005.
JAMA 1.(bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2017;21:357–366.
MLA (bayrak) Gürses, Nurten, vd. “On the Quaternionic Focal Curves”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 21, sy 2, Ağustos 2017, ss. 357-66, doi:10.19113/sdufbed.14005.
Vancouver 1.(bayrak) Gürses N, Bektaş Ö, Yüce S. On the Quaternionic Focal Curves. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. [Internet]. 01 Ağustos 2017;21(2):357-66. Erişim adresi: https://izlik.org/JA74NY39NL

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.