Araştırma Makalesi
BibTex RIS Kaynak Göster

The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials

Yıl 2019, , 727 - 737, 25.12.2019
https://doi.org/10.19113/sdufenbed.527602

Öz

In
this study, calcium silicate bioceramic materials of various Ca/Si ratios were
prepared using tetraethyl orthosilicate and calcium nitrate by a hydrothermal
synthesis method, taking into consideration cost-effective and environmentally
friendly, ‘green’, synthesis rules. For comparison purposes, sol-gel synthesis
method was also used. Calcium silicate bioceramic materials produced by both
methods were calcined at 600°C and 950°C. Fourier Transform Infrared
Spectroscopy, Thermogravimetric Thermal Analysis, Field Emission Scanning
Electron Microscopy and X-ray Diffraction methods were used to characterize calcium
silicate bioceramic materials. The characterization results validated the
formation of calcium silicate materials.

Kaynakça

  • [1] Ho, C.-C., Wei, C.-K., Lin, S.-Y., Ding, S.-J. 2016. Calcium silicate cements prepared by hydrothermal synthesis for bone repair. Ceram. Int., 42, 9183-9189.
  • [2] Niu, L., Jiao, K., Wang, T., Zhang, W., Camilleri, J., Bergeron, B.-E., Feng, H., Mao, J., Chen, J., Pashley, D.-H., Tay, F.-R. 2014. A review of the bioactivity of hydraulic calcium silicate cements. J. Dentistry., 42, 517-533.
  • [3] Sun, Y.-S., Li, A.-L., Renb, H.-H., Zhang, X.-P., Wang, C., Qiu, D. 2016 Removal of residual nitrate ion from bioactive calcium silicate through soaking. Chin. Chem. Lett., 27, 579–582.
  • [4] Ding, S.-J., Shie, M.-Y., Wei, C.-K. 2011. In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate–gelatin bone grafts for load-bearing applications. ACS Appl Mater Interfaces., 3, 4142-4153.
  • [5] Giannoulatou, V., Theodorou, G.-S., Zorba, T., Kontonasaki, E., Papadopoulou, L., Kantiranis, N., Paraskevopoulos, K.-M. 2018. Magnesium calcium silicate bioactive glass doped with copper ions; synthesis and in-vitro bioactivity characterization. Journal of Non-Crystalline Solids, 500, 98-109.
  • [6] Chen, L., Deng, C., Li, J., Yao, Q., Chang, J., Wang, L., Wu, C. 2019. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 196, 138-150.
  • [7] Zhang, Q., Chen, L., Chen, B., Chen, C., Chang, J., Xiao, Y., Yan, F. 2019. Lithium-calcium-silicate bioceramics stimulating cementogenic/ osteogenic differentiation of periodontal ligament cells and periodontal regeneration. Applied Materials Today, 16, 375-387.
  • [8] Liu, C.-H., Hung, C.J., Huang, T.H., Lin, C.C., Kao, C.T., Shie, M.Y. 2014. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway, Materials Science and Engineering: C, 43, 359-366.
  • [9] Lu, B.Q., Zhu, Y.J., Ao, H.Y., Qi, C., Chen, F. 2012. Synthesis and Characterization of Magnetic Iron Oxide/Calcium Silicate Mesoporous Nanocomposites as a Promising Vehicle for Drug Delivery, ACS Applied Materials Interfaces, 4, 6969−6974.
  • [10] Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S.C., Kadri, N.A., Osman, N.A.A. 2014. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications, Journal of the Mechanical Behavior of Biomedical Materials, 30, 168-175.
  • [11] Chen, C.C., Ho, C.-C., Lin, S.Y., Ding, S.J. 2015. Green synthesis of calcium silicate bioceramic powders, Ceram. Int., 41, 5445–5453.
  • [12] Li, M., Liang, H. 2004. Formation of micro-porous spherical particles of calcium silicate (xonotlite) in dynamic hydrothermal process. China Particuology, 2, 124-127.
  • [13] Mehrali, M. Shirazi, S.-F.-S. Baradaran, S.; Mehrali, M.; Metselaar, H.-S.-C.; Bin Kadri, N.-A.;Osman, N.-A.-A. 2014. Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason. Sonochem. 21, 735–742.
  • [14] Roosz, C., Gaboreau, S., Grangeon, S., Prêt, D., Montouillout, V., Maubec, N., Ory, S., Blanc, P., Vieillard, P., Henocq, P. 2016. Distribution of water in synthetic calcium silicate hydrates. Langmuir. 32, 6794–6805.
  • [15] Yongjia, H., Xiaogang, Z., Linnu, L., Leslie, S., Shuguang, H. 2011. Effect of C/S Ratio on Morphology and Structure of Hydrothermally Synthesized Calcium Silicate Hydrate. J Wuhan Univ. Technol., 26, 770-773.
  • [16] Hench, L.-L., West, J.-K. 1990. The sol-gel process. Chem. Rev., 90, 33-72.
  • [17] Li, P., De Groot, K. 1994. Better bioactive ceramics through sol-gel process. J. Sol-Gel Sci. Technol., 2, 797-806.
  • [18] Meiszterics, A., Sinkό, K. 2008. Sol-gel derived calcium silicate seramics. Colloids Surf. A Physicochem. Eng. Asp., 319, 143-148.
  • [19] Zhang, N., Liu, W., Zhu, H., Chen, L., Lin, K., Chang, J. 2014. Tailoring Si-substitution level of Si-hydroxy apatite nanowires via regulating Si content of calcium silicates as hydrothermal precursors. Ceram. Int., 40, 11239-11243.
  • [20] Tas, A. -C. 2000. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids. Biomaterials, 21, 1429-1438.
  • [21] Lakshmi, R., Sasikumar, S. 2015. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. Int. J. Nanomedicine., 10, 129-136.
  • [22] Wang, F., Xu, Z., Zhang, Y., Li, J., Nian, S., Zhou, N. 2016. Green synthesis and bioactivity of vaterite-doped beta-dicalcium silicate bone cement. Ceram. Int., 42, 1856-1861.
  • [23] Ciprioti, S.-V., Catauro, M. 2016. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses. J. Therm. Anal. Calorim., 123, 2091–2101.
  • [24] Akat’eva, L.-V., Gladun, V.-D., Khol’kin, A.-I. 2011. Use of Extractants in the Synthesis of Calcium Silicates and Calcium Silicate–Based Materials. Theor. Found. Chem. Eng., 45, 702–712.
  • [25] Lin, K., Chang, J., Chen, G., Ruan, M., Ning, C. 2007. A simple method to synthesize single-crystalline β-wollastonite nanowires. J. Cryst. Growth. 300, 267-271.
  • [26] Chiang, T.-Y., Wei, C.-K., Ding, S.-J. 2013. Effects of Bismuth Oxide on Physicochemical Propertiesand Osteogenic Activity of Dicalcium Silicate Cements. J. Med. Biol. Eng., 34, 30-35.
  • [27] Baciu, D., Simitzis, J. 2007. Synthesis and characterization of a calcium silicate bioactive glass. Optoelectron. Adv. Mat., 9, 3320-3324.
  • [28] Meiszterics, A., Rosta, L., Peterlik, H., Rohonczy, J., Kubuki, S., Henits, P., Sinkó, K. 2010. Structural characterization of gel-derived calcium silicate systems. J. Phys. Chem. A., 114, 10403-10411.
  • [29] Lee, Y.-L., Wang, W.-H., Lin, F.-H., Lin, C.-P. 2017. Hydration behaviors of calcium silicate-based biomaterials. J. Formos. Med. Assoc., 116, 424-431. [30] Lakshmi, R., Sasikumar, S. 2015. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. Int. J Nanomedicine., 10, 129-136.
  • [31] Padilla, S., Roman, J., Carenas, A., Vallet-Regi, M. 2005. The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials., 26, 475-483.
  • [32] Foley, E.-M., Kim, J.-J., Taha, M.-R. 2012. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (CSH) made with 1.5 CaO/SiO2 mixture. Cem. Concr. Res., 42, 1225-1232.
  • [33] Sun, Y.-S., Li, A.-L., Xu, F.-J., Qiu, D. 2013. A low-temperature sol–gel route for the synthesis of bioactive calcium silicates. Chin. Chem. Lett., 24, 170–172.

Sentez Koşullarının Kalsiyum Silikat Biyoseramik Malzemelere Etkisi

Yıl 2019, , 727 - 737, 25.12.2019
https://doi.org/10.19113/sdufenbed.527602

Öz

Bu
çalışmada, çeşitli Ca/Si oranlarındaki kalsiyum silikat biyoseramik
malzemeleri, düşük maliyetli ve çevre dostu "yeşil" sentez kuralları
göz önünde bulundurularak, bir hidrotermal sentez yöntemi ile hazırlanmıştır.
Karşılaştırma amacıyla sol-gel sentez metodu da kullanılmıştır. Başlangıç
materyali olarak tetraetil ortosilikat ve kalsiyum nitrat kullanılmıştır. Her
iki yöntemle üretilen kalsiyum silikat biyoseramik malzemeleri 600 °C ve 950
°C'de kalsine edilmiştir. Fourier Dönüşümü Kızılötesi Spektroskopisi,
Termogravimetrik Termal Analiz, Alan Emisyon Taramalı Elektron Mikroskobu ve X-Işını
Kırınımı metodları kalsiyum silikat biyoseramik malzemeleri karakterize etmek
için kullanılmıştır. Karakterizasyon sonuçları kalsiyum silikat malzemelerinin
oluşumunu doğrulamıştır.

Kaynakça

  • [1] Ho, C.-C., Wei, C.-K., Lin, S.-Y., Ding, S.-J. 2016. Calcium silicate cements prepared by hydrothermal synthesis for bone repair. Ceram. Int., 42, 9183-9189.
  • [2] Niu, L., Jiao, K., Wang, T., Zhang, W., Camilleri, J., Bergeron, B.-E., Feng, H., Mao, J., Chen, J., Pashley, D.-H., Tay, F.-R. 2014. A review of the bioactivity of hydraulic calcium silicate cements. J. Dentistry., 42, 517-533.
  • [3] Sun, Y.-S., Li, A.-L., Renb, H.-H., Zhang, X.-P., Wang, C., Qiu, D. 2016 Removal of residual nitrate ion from bioactive calcium silicate through soaking. Chin. Chem. Lett., 27, 579–582.
  • [4] Ding, S.-J., Shie, M.-Y., Wei, C.-K. 2011. In vitro physicochemical properties, osteogenic activity, and immunocompatibility of calcium silicate–gelatin bone grafts for load-bearing applications. ACS Appl Mater Interfaces., 3, 4142-4153.
  • [5] Giannoulatou, V., Theodorou, G.-S., Zorba, T., Kontonasaki, E., Papadopoulou, L., Kantiranis, N., Paraskevopoulos, K.-M. 2018. Magnesium calcium silicate bioactive glass doped with copper ions; synthesis and in-vitro bioactivity characterization. Journal of Non-Crystalline Solids, 500, 98-109.
  • [6] Chen, L., Deng, C., Li, J., Yao, Q., Chang, J., Wang, L., Wu, C. 2019. 3D printing of a lithium-calcium-silicate crystal bioscaffold with dual bioactivities for osteochondral interface reconstruction. Biomaterials, 196, 138-150.
  • [7] Zhang, Q., Chen, L., Chen, B., Chen, C., Chang, J., Xiao, Y., Yan, F. 2019. Lithium-calcium-silicate bioceramics stimulating cementogenic/ osteogenic differentiation of periodontal ligament cells and periodontal regeneration. Applied Materials Today, 16, 375-387.
  • [8] Liu, C.-H., Hung, C.J., Huang, T.H., Lin, C.C., Kao, C.T., Shie, M.Y. 2014. Odontogenic differentiation of human dental pulp cells by calcium silicate materials stimulating via FGFR/ERK signaling pathway, Materials Science and Engineering: C, 43, 359-366.
  • [9] Lu, B.Q., Zhu, Y.J., Ao, H.Y., Qi, C., Chen, F. 2012. Synthesis and Characterization of Magnetic Iron Oxide/Calcium Silicate Mesoporous Nanocomposites as a Promising Vehicle for Drug Delivery, ACS Applied Materials Interfaces, 4, 6969−6974.
  • [10] Shirazi, F.S., Mehrali, M., Oshkour, A.A., Metselaar, H.S.C., Kadri, N.A., Osman, N.A.A. 2014. Mechanical and physical properties of calcium silicate/alumina composite for biomedical engineering applications, Journal of the Mechanical Behavior of Biomedical Materials, 30, 168-175.
  • [11] Chen, C.C., Ho, C.-C., Lin, S.Y., Ding, S.J. 2015. Green synthesis of calcium silicate bioceramic powders, Ceram. Int., 41, 5445–5453.
  • [12] Li, M., Liang, H. 2004. Formation of micro-porous spherical particles of calcium silicate (xonotlite) in dynamic hydrothermal process. China Particuology, 2, 124-127.
  • [13] Mehrali, M. Shirazi, S.-F.-S. Baradaran, S.; Mehrali, M.; Metselaar, H.-S.-C.; Bin Kadri, N.-A.;Osman, N.-A.-A. 2014. Facile synthesis of calcium silicate hydrate using sodium dodecyl sulfate as a surfactant assisted by ultrasonic irradiation. Ultrason. Sonochem. 21, 735–742.
  • [14] Roosz, C., Gaboreau, S., Grangeon, S., Prêt, D., Montouillout, V., Maubec, N., Ory, S., Blanc, P., Vieillard, P., Henocq, P. 2016. Distribution of water in synthetic calcium silicate hydrates. Langmuir. 32, 6794–6805.
  • [15] Yongjia, H., Xiaogang, Z., Linnu, L., Leslie, S., Shuguang, H. 2011. Effect of C/S Ratio on Morphology and Structure of Hydrothermally Synthesized Calcium Silicate Hydrate. J Wuhan Univ. Technol., 26, 770-773.
  • [16] Hench, L.-L., West, J.-K. 1990. The sol-gel process. Chem. Rev., 90, 33-72.
  • [17] Li, P., De Groot, K. 1994. Better bioactive ceramics through sol-gel process. J. Sol-Gel Sci. Technol., 2, 797-806.
  • [18] Meiszterics, A., Sinkό, K. 2008. Sol-gel derived calcium silicate seramics. Colloids Surf. A Physicochem. Eng. Asp., 319, 143-148.
  • [19] Zhang, N., Liu, W., Zhu, H., Chen, L., Lin, K., Chang, J. 2014. Tailoring Si-substitution level of Si-hydroxy apatite nanowires via regulating Si content of calcium silicates as hydrothermal precursors. Ceram. Int., 40, 11239-11243.
  • [20] Tas, A. -C. 2000. Synthesis of biomimetic Ca-hydroxyapatite powders at 37 C in synthetic body fluids. Biomaterials, 21, 1429-1438.
  • [21] Lakshmi, R., Sasikumar, S. 2015. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. Int. J. Nanomedicine., 10, 129-136.
  • [22] Wang, F., Xu, Z., Zhang, Y., Li, J., Nian, S., Zhou, N. 2016. Green synthesis and bioactivity of vaterite-doped beta-dicalcium silicate bone cement. Ceram. Int., 42, 1856-1861.
  • [23] Ciprioti, S.-V., Catauro, M. 2016. Synthesis, structural and thermal behavior study of four Ca-containing silicate gel-glasses. J. Therm. Anal. Calorim., 123, 2091–2101.
  • [24] Akat’eva, L.-V., Gladun, V.-D., Khol’kin, A.-I. 2011. Use of Extractants in the Synthesis of Calcium Silicates and Calcium Silicate–Based Materials. Theor. Found. Chem. Eng., 45, 702–712.
  • [25] Lin, K., Chang, J., Chen, G., Ruan, M., Ning, C. 2007. A simple method to synthesize single-crystalline β-wollastonite nanowires. J. Cryst. Growth. 300, 267-271.
  • [26] Chiang, T.-Y., Wei, C.-K., Ding, S.-J. 2013. Effects of Bismuth Oxide on Physicochemical Propertiesand Osteogenic Activity of Dicalcium Silicate Cements. J. Med. Biol. Eng., 34, 30-35.
  • [27] Baciu, D., Simitzis, J. 2007. Synthesis and characterization of a calcium silicate bioactive glass. Optoelectron. Adv. Mat., 9, 3320-3324.
  • [28] Meiszterics, A., Rosta, L., Peterlik, H., Rohonczy, J., Kubuki, S., Henits, P., Sinkó, K. 2010. Structural characterization of gel-derived calcium silicate systems. J. Phys. Chem. A., 114, 10403-10411.
  • [29] Lee, Y.-L., Wang, W.-H., Lin, F.-H., Lin, C.-P. 2017. Hydration behaviors of calcium silicate-based biomaterials. J. Formos. Med. Assoc., 116, 424-431. [30] Lakshmi, R., Sasikumar, S. 2015. Influence of needle-like morphology on the bioactivity of nanocrystalline wollastonite–an in vitro study. Int. J Nanomedicine., 10, 129-136.
  • [31] Padilla, S., Roman, J., Carenas, A., Vallet-Regi, M. 2005. The influence of the phosphorus content on the bioactivity of sol–gel glass ceramics. Biomaterials., 26, 475-483.
  • [32] Foley, E.-M., Kim, J.-J., Taha, M.-R. 2012. Synthesis and nano-mechanical characterization of calcium-silicate-hydrate (CSH) made with 1.5 CaO/SiO2 mixture. Cem. Concr. Res., 42, 1225-1232.
  • [33] Sun, Y.-S., Li, A.-L., Xu, F.-J., Qiu, D. 2013. A low-temperature sol–gel route for the synthesis of bioactive calcium silicates. Chin. Chem. Lett., 24, 170–172.
Toplam 32 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Yasin Arslan 0000-0002-3743-5679

Erdal Kenduzler 0000-0002-9457-1503

Vahide Tuğçe Adıgüzel Bu kişi benim 0000-0002-4773-2159

Fatma Tomul 0000-0001-6771-3943

Yayımlanma Tarihi 25 Aralık 2019
Yayımlandığı Sayı Yıl 2019

Kaynak Göster

APA Arslan, Y., Kenduzler, E., Adıgüzel, V. T., Tomul, F. (2019). The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 727-737. https://doi.org/10.19113/sdufenbed.527602
AMA Arslan Y, Kenduzler E, Adıgüzel VT, Tomul F. The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2019;23(3):727-737. doi:10.19113/sdufenbed.527602
Chicago Arslan, Yasin, Erdal Kenduzler, Vahide Tuğçe Adıgüzel, ve Fatma Tomul. “The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 3 (Aralık 2019): 727-37. https://doi.org/10.19113/sdufenbed.527602.
EndNote Arslan Y, Kenduzler E, Adıgüzel VT, Tomul F (01 Aralık 2019) The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 727–737.
IEEE Y. Arslan, E. Kenduzler, V. T. Adıgüzel, ve F. Tomul, “The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 3, ss. 727–737, 2019, doi: 10.19113/sdufenbed.527602.
ISNAD Arslan, Yasin vd. “The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (Aralık 2019), 727-737. https://doi.org/10.19113/sdufenbed.527602.
JAMA Arslan Y, Kenduzler E, Adıgüzel VT, Tomul F. The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:727–737.
MLA Arslan, Yasin vd. “The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 3, 2019, ss. 727-3, doi:10.19113/sdufenbed.527602.
Vancouver Arslan Y, Kenduzler E, Adıgüzel VT, Tomul F. The Effect of Synthesis Conditions on Calcium Silicate Bioceramic Materials. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(3):727-3.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.