Araştırma Makalesi
BibTex RIS Kaynak Göster

Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi

Yıl 2020, , 696 - 701, 25.12.2020
https://doi.org/10.19113/sdufenbed.688757

Öz

Bu çalışmada, havacılık sektöründe kullanılan fiber metal laminatların (FML) şekillendirilebilme kabiliyeti deneysel olarak incelenmiştir. FML numunelerin alt ve üst tabakalarında iki farklı kalınlıkta (0,6 ve 1,2 mm) Al5754-H22 sac levhalar kullanılmıştır. FML numunelerin orta tabakasında prepreg karbon elyaf kumaştan üretilen karbon elyaf plaka bulunmaktadır. FML malzemelerin şekillendirilme kabiliyetini incelemek amacıyla numuneler farklı bükme açılarında şekillendirilmiştir. Deneyler sırasında 0,6 mm Al 5754 kullanılan FML numuneler tüm bükme açılarında şekillendirilirken, 1,2 mm Al 5754 kullanılan FML numunelerin 75° ve 90° bükme testlerinde ise numunelerin dış tarafındaki alüminyum tabakasında yırtılma hasarı görülmüştür. Ayrıca FML numunelerin şekillendirilmesinde, bükme açısı ve alüminyum tabaka kalınlığının artmasıyla bükme kuvveti değerinin arttığı tespit edilmiştir.

Destekleyen Kurum

Bu çalışma Trakya Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir.

Proje Numarası

Proje numarası: 2017/185.

Kaynakça

  • [1] Reyes, G., Kang, H. 2007. Mechanical Behavior of Lightweight Thermoplastic Fiber–Metal Laminates. Journal of Materials Processing Technology, 186(1-3), 284-290.
  • [2] Keipour, S., Gerdooei, M. 2019. Springback Behavior of Fiber Metal Laminates in Hat-Shaped Draw Bending Process: Experimental and Numerical Evaluation. The International Journal of Advanced Manufacturing Technology, 100(5-8), 1755-1765.
  • [3] Şen, İ. 2015. Lay-up optimisation of fibre metal laminates: development of a design methodology for wing structures, Delft University of Technology, PhD Thesis, 61s, The Netherlands.
  • [4] Mosse, L., Compston, P., Cantwell, W. J., Cardew-Hall, M., Kalyanasundaram, S. 2006. Stamp Forming of Polypropylene Based Fibre–Metal Laminates: The Effect of Process Variables on Formability. Journal of Materials Processing Technology, 172(2), 163-168.
  • [5] Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme. Mühendis ve Makina, 60(697), 262-288.
  • [6] Kim, P. 1998. A Comparative Study of The Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials, 5(3), 175-187.
  • [7] Huang, Z., Sugiyama, S., Yanagimoto, J. 2013. Hybrid Joining Process for Carbon Fiber Reinforced Thermosetting Plastic and Metallic Thin Sheets by Chemical Bonding and Plastic Deformation. Journal of Materials Processing Technology, 213(11), 1864-1874.
  • [8] Alderliesten, R. 2009. On The Development of Hybrid Material Concepts for Aircraft Structures. Recent Patents on Engineering, 3(1), 25-38.
  • [9] Rajkumar, G. R., Krishna, M., Narasimhamurthy, H. N., Keshavamurthy, Y. C., Nataraj, J. R. 2014. Investigation of Tensile and Bending Behavior of Aluminum Based Hybrid Fiber Metal Laminates. Procedia Materials Science, 5, 60-68.
  • [10] Khalili, S. M. R., Daghigh, V., Eslami Farsani, R. 2011. Mechanical Behavior of Basalt Fiber-Reinforced and Basalt Fiber Metal Laminate Composites under Tensile and Bending Loads. Journal of Reinforced Plastics and Composites, 30(8), 647-659.
  • [11] Wang, J., Yu, Y., Fu, C., Xiao, H., Wang, H., Zheng, X. 2020. Experimental Investigation of Clinching CFRP/Aluminum Alloy Sheet with Prepreg Sandwich Structure. Journal of Materials Processing Technology, 277, 116422.
  • [12] Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C. 2006. A Review on The Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures. Materials Research, 9(3), 247-256.
  • [13] Kim, S. Y., Choi, W. J., Park, S. Y. 2007. Spring-Back Characteristics of Fiber Metal Laminate (GLARE) in Brake Forming Process. The International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451.
  • [14] Hahn, M., Ben Khalifa, N., Weddeling, C., Shabaninejad, A. 2016. Springback Behavior of Carbon-Fiber-Reinforced Plastic Laminates with Metal Cover Layers in V-Die Bending. Journal of Manufacturing Science and Engineering, 138(12), 1-10.
  • [15] Uriya, Y., Ikeuch, K., Yanagimoto, J. 2014. Cold and Warm V-Bending Test for Carbon-Fiber-Reinforced Plastic Sheet. Procedia Engineering, 81, 1633-1638.
  • [16] Urkmez Taskin, N., Taskin, V., Sahin, A. 2016. Kompozit Metal Köpük Malzemelerin Tek Bindirmeli Yapıştırma Bağlantılarının Kesme Dayanımının İncelenmesi. 4th International Conference on Welding Technologies and Exhibition, 11-13 Mayıs, Gaziantep, 1052-1059.
  • [17] Işıktaş, A., Taşkın, V. 2020. Alüminyum-Karbon Elyaf Sandviç Kompozit Levhaların V-Bükme İşleminde Bükme Açılarının ve Bükme Yönlerinin Geri Esneme Üzerindeki Etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 281-290.
  • [18] Urkmez Taskin, N., Sahin, A. 2019. Effect of Aging Time at High Temperature on the Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints. The Journal of Adhesion, 95(4), 308-324.
  • [19] Uriya, Y., Yanagimoto, J. 2016. Suitable Structure of Thermosetting CFRP Sheet for Cold/Warm Forming. International Journal of Material Forming, 9(2), 243-252.
  • [20] Yanagimoto, J., Ikeuchi, K. 2012. Sheet Forming Process of Carbon Fiber Reinforced Plastics for Lightweight Parts. CIRP annals, 61(1), 247-250.

Investigation on Formability of Fiber Metal Laminates

Yıl 2020, , 696 - 701, 25.12.2020
https://doi.org/10.19113/sdufenbed.688757

Öz

In this study, the formability of fiber metal laminates (FML) used in aerospace industry were experimentally examined. Al5754-H22 sheets in two different thicknesses (0.6 and 1.2 mm) were used in top and bottom layers of FML specimens. Carbon fiber plates made of prepreg carbon fiber fabrics were placed in the middle layer of FML specimens. In order to examine the formability of FML materials, the specimens were formed in different bending angles. While all FML specimens with 0.6 mm Al 5754 were formed in all bending angles throughout the experiments, crack failures were observed in outer aluminum layer of the FML specimens with 1.2 mm Al 5754 at 75° and 90° bending angles. It was also reported in forming of FML specimens that the bending force value increased as the bending angle and the thickness of aluminum layer increased.

Proje Numarası

Proje numarası: 2017/185.

Kaynakça

  • [1] Reyes, G., Kang, H. 2007. Mechanical Behavior of Lightweight Thermoplastic Fiber–Metal Laminates. Journal of Materials Processing Technology, 186(1-3), 284-290.
  • [2] Keipour, S., Gerdooei, M. 2019. Springback Behavior of Fiber Metal Laminates in Hat-Shaped Draw Bending Process: Experimental and Numerical Evaluation. The International Journal of Advanced Manufacturing Technology, 100(5-8), 1755-1765.
  • [3] Şen, İ. 2015. Lay-up optimisation of fibre metal laminates: development of a design methodology for wing structures, Delft University of Technology, PhD Thesis, 61s, The Netherlands.
  • [4] Mosse, L., Compston, P., Cantwell, W. J., Cardew-Hall, M., Kalyanasundaram, S. 2006. Stamp Forming of Polypropylene Based Fibre–Metal Laminates: The Effect of Process Variables on Formability. Journal of Materials Processing Technology, 172(2), 163-168.
  • [5] Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme. Mühendis ve Makina, 60(697), 262-288.
  • [6] Kim, P. 1998. A Comparative Study of The Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials, 5(3), 175-187.
  • [7] Huang, Z., Sugiyama, S., Yanagimoto, J. 2013. Hybrid Joining Process for Carbon Fiber Reinforced Thermosetting Plastic and Metallic Thin Sheets by Chemical Bonding and Plastic Deformation. Journal of Materials Processing Technology, 213(11), 1864-1874.
  • [8] Alderliesten, R. 2009. On The Development of Hybrid Material Concepts for Aircraft Structures. Recent Patents on Engineering, 3(1), 25-38.
  • [9] Rajkumar, G. R., Krishna, M., Narasimhamurthy, H. N., Keshavamurthy, Y. C., Nataraj, J. R. 2014. Investigation of Tensile and Bending Behavior of Aluminum Based Hybrid Fiber Metal Laminates. Procedia Materials Science, 5, 60-68.
  • [10] Khalili, S. M. R., Daghigh, V., Eslami Farsani, R. 2011. Mechanical Behavior of Basalt Fiber-Reinforced and Basalt Fiber Metal Laminate Composites under Tensile and Bending Loads. Journal of Reinforced Plastics and Composites, 30(8), 647-659.
  • [11] Wang, J., Yu, Y., Fu, C., Xiao, H., Wang, H., Zheng, X. 2020. Experimental Investigation of Clinching CFRP/Aluminum Alloy Sheet with Prepreg Sandwich Structure. Journal of Materials Processing Technology, 277, 116422.
  • [12] Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C. 2006. A Review on The Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures. Materials Research, 9(3), 247-256.
  • [13] Kim, S. Y., Choi, W. J., Park, S. Y. 2007. Spring-Back Characteristics of Fiber Metal Laminate (GLARE) in Brake Forming Process. The International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451.
  • [14] Hahn, M., Ben Khalifa, N., Weddeling, C., Shabaninejad, A. 2016. Springback Behavior of Carbon-Fiber-Reinforced Plastic Laminates with Metal Cover Layers in V-Die Bending. Journal of Manufacturing Science and Engineering, 138(12), 1-10.
  • [15] Uriya, Y., Ikeuch, K., Yanagimoto, J. 2014. Cold and Warm V-Bending Test for Carbon-Fiber-Reinforced Plastic Sheet. Procedia Engineering, 81, 1633-1638.
  • [16] Urkmez Taskin, N., Taskin, V., Sahin, A. 2016. Kompozit Metal Köpük Malzemelerin Tek Bindirmeli Yapıştırma Bağlantılarının Kesme Dayanımının İncelenmesi. 4th International Conference on Welding Technologies and Exhibition, 11-13 Mayıs, Gaziantep, 1052-1059.
  • [17] Işıktaş, A., Taşkın, V. 2020. Alüminyum-Karbon Elyaf Sandviç Kompozit Levhaların V-Bükme İşleminde Bükme Açılarının ve Bükme Yönlerinin Geri Esneme Üzerindeki Etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 281-290.
  • [18] Urkmez Taskin, N., Sahin, A. 2019. Effect of Aging Time at High Temperature on the Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints. The Journal of Adhesion, 95(4), 308-324.
  • [19] Uriya, Y., Yanagimoto, J. 2016. Suitable Structure of Thermosetting CFRP Sheet for Cold/Warm Forming. International Journal of Material Forming, 9(2), 243-252.
  • [20] Yanagimoto, J., Ikeuchi, K. 2012. Sheet Forming Process of Carbon Fiber Reinforced Plastics for Lightweight Parts. CIRP annals, 61(1), 247-250.
Toplam 20 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ali Işıktaş 0000-0003-1532-4465

Vedat Taşkın 0000-0002-3013-2317

Proje Numarası Proje numarası: 2017/185.
Yayımlanma Tarihi 25 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Işıktaş, A., & Taşkın, V. (2020). Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 24(3), 696-701. https://doi.org/10.19113/sdufenbed.688757
AMA Işıktaş A, Taşkın V. Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2020;24(3):696-701. doi:10.19113/sdufenbed.688757
Chicago Işıktaş, Ali, ve Vedat Taşkın. “Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24, sy. 3 (Aralık 2020): 696-701. https://doi.org/10.19113/sdufenbed.688757.
EndNote Işıktaş A, Taşkın V (01 Aralık 2020) Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24 3 696–701.
IEEE A. Işıktaş ve V. Taşkın, “Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 24, sy. 3, ss. 696–701, 2020, doi: 10.19113/sdufenbed.688757.
ISNAD Işıktaş, Ali - Taşkın, Vedat. “Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 24/3 (Aralık 2020), 696-701. https://doi.org/10.19113/sdufenbed.688757.
JAMA Işıktaş A, Taşkın V. Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24:696–701.
MLA Işıktaş, Ali ve Vedat Taşkın. “Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 24, sy. 3, 2020, ss. 696-01, doi:10.19113/sdufenbed.688757.
Vancouver Işıktaş A, Taşkın V. Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2020;24(3):696-701.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.