Fiber Metal Laminatların Şekillendirilebilme Kabiliyetinin İncelenmesi
Yıl 2020,
, 696 - 701, 25.12.2020
Ali Işıktaş
,
Vedat Taşkın
Öz
Bu çalışmada, havacılık sektöründe kullanılan fiber metal laminatların (FML) şekillendirilebilme kabiliyeti deneysel olarak incelenmiştir. FML numunelerin alt ve üst tabakalarında iki farklı kalınlıkta (0,6 ve 1,2 mm) Al5754-H22 sac levhalar kullanılmıştır. FML numunelerin orta tabakasında prepreg karbon elyaf kumaştan üretilen karbon elyaf plaka bulunmaktadır. FML malzemelerin şekillendirilme kabiliyetini incelemek amacıyla numuneler farklı bükme açılarında şekillendirilmiştir. Deneyler sırasında 0,6 mm Al 5754 kullanılan FML numuneler tüm bükme açılarında şekillendirilirken, 1,2 mm Al 5754 kullanılan FML numunelerin 75° ve 90° bükme testlerinde ise numunelerin dış tarafındaki alüminyum tabakasında yırtılma hasarı görülmüştür. Ayrıca FML numunelerin şekillendirilmesinde, bükme açısı ve alüminyum tabaka kalınlığının artmasıyla bükme kuvveti değerinin arttığı tespit edilmiştir.
Destekleyen Kurum
Bu çalışma Trakya Üniversitesi Bilimsel Araştırma Projeleri Koordinasyon Birimince desteklenmiştir.
Proje Numarası
Proje numarası: 2017/185.
Kaynakça
- [1] Reyes, G., Kang, H. 2007. Mechanical Behavior of Lightweight Thermoplastic Fiber–Metal Laminates. Journal of Materials Processing Technology, 186(1-3), 284-290.
- [2] Keipour, S., Gerdooei, M. 2019. Springback Behavior of Fiber Metal Laminates in Hat-Shaped Draw Bending Process: Experimental and Numerical Evaluation. The International Journal of Advanced Manufacturing Technology, 100(5-8), 1755-1765.
- [3] Şen, İ. 2015. Lay-up optimisation of fibre metal laminates: development of a design methodology for wing structures, Delft University of Technology, PhD Thesis, 61s, The Netherlands.
- [4] Mosse, L., Compston, P., Cantwell, W. J., Cardew-Hall, M., Kalyanasundaram, S. 2006. Stamp Forming of Polypropylene Based Fibre–Metal Laminates: The Effect of Process Variables on Formability. Journal of Materials Processing Technology, 172(2), 163-168.
- [5] Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme. Mühendis ve Makina, 60(697), 262-288.
- [6] Kim, P. 1998. A Comparative Study of The Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials, 5(3), 175-187.
- [7] Huang, Z., Sugiyama, S., Yanagimoto, J. 2013. Hybrid Joining Process for Carbon Fiber Reinforced Thermosetting Plastic and Metallic Thin Sheets by Chemical Bonding and Plastic Deformation. Journal of Materials Processing Technology, 213(11), 1864-1874.
- [8] Alderliesten, R. 2009. On The Development of Hybrid Material Concepts for Aircraft Structures. Recent Patents on Engineering, 3(1), 25-38.
- [9] Rajkumar, G. R., Krishna, M., Narasimhamurthy, H. N., Keshavamurthy, Y. C., Nataraj, J. R. 2014. Investigation of Tensile and Bending Behavior of Aluminum Based Hybrid Fiber Metal Laminates. Procedia Materials Science, 5, 60-68.
- [10] Khalili, S. M. R., Daghigh, V., Eslami Farsani, R. 2011. Mechanical Behavior of Basalt Fiber-Reinforced and Basalt Fiber Metal Laminate Composites under Tensile and Bending Loads. Journal of Reinforced Plastics and Composites, 30(8), 647-659.
- [11] Wang, J., Yu, Y., Fu, C., Xiao, H., Wang, H., Zheng, X. 2020. Experimental Investigation of Clinching CFRP/Aluminum Alloy Sheet with Prepreg Sandwich Structure. Journal of Materials Processing Technology, 277, 116422.
- [12] Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C. 2006. A Review on The Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures. Materials Research, 9(3), 247-256.
- [13] Kim, S. Y., Choi, W. J., Park, S. Y. 2007. Spring-Back Characteristics of Fiber Metal Laminate (GLARE) in Brake Forming Process. The International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451.
- [14] Hahn, M., Ben Khalifa, N., Weddeling, C., Shabaninejad, A. 2016. Springback Behavior of Carbon-Fiber-Reinforced Plastic Laminates with Metal Cover Layers in V-Die Bending. Journal of Manufacturing Science and Engineering, 138(12), 1-10.
- [15] Uriya, Y., Ikeuch, K., Yanagimoto, J. 2014. Cold and Warm V-Bending Test for Carbon-Fiber-Reinforced Plastic Sheet. Procedia Engineering, 81, 1633-1638.
- [16] Urkmez Taskin, N., Taskin, V., Sahin, A. 2016. Kompozit Metal Köpük Malzemelerin Tek Bindirmeli Yapıştırma Bağlantılarının Kesme Dayanımının İncelenmesi. 4th International Conference on Welding Technologies and Exhibition, 11-13 Mayıs, Gaziantep, 1052-1059.
- [17] Işıktaş, A., Taşkın, V. 2020. Alüminyum-Karbon Elyaf Sandviç Kompozit Levhaların V-Bükme İşleminde Bükme Açılarının ve Bükme Yönlerinin Geri Esneme Üzerindeki Etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 281-290.
- [18] Urkmez Taskin, N., Sahin, A. 2019. Effect of Aging Time at High Temperature on the Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints. The Journal of Adhesion, 95(4), 308-324.
- [19] Uriya, Y., Yanagimoto, J. 2016. Suitable Structure of Thermosetting CFRP Sheet for Cold/Warm Forming. International Journal of Material Forming, 9(2), 243-252.
- [20] Yanagimoto, J., Ikeuchi, K. 2012. Sheet Forming Process of Carbon Fiber Reinforced Plastics for Lightweight Parts. CIRP annals, 61(1), 247-250.
Investigation on Formability of Fiber Metal Laminates
Yıl 2020,
, 696 - 701, 25.12.2020
Ali Işıktaş
,
Vedat Taşkın
Öz
In this study, the formability of fiber metal laminates (FML) used in aerospace industry were experimentally examined. Al5754-H22 sheets in two different thicknesses (0.6 and 1.2 mm) were used in top and bottom layers of FML specimens. Carbon fiber plates made of prepreg carbon fiber fabrics were placed in the middle layer of FML specimens. In order to examine the formability of FML materials, the specimens were formed in different bending angles. While all FML specimens with 0.6 mm Al 5754 were formed in all bending angles throughout the experiments, crack failures were observed in outer aluminum layer of the FML specimens with 1.2 mm Al 5754 at 75° and 90° bending angles. It was also reported in forming of FML specimens that the bending force value increased as the bending angle and the thickness of aluminum layer increased.
Proje Numarası
Proje numarası: 2017/185.
Kaynakça
- [1] Reyes, G., Kang, H. 2007. Mechanical Behavior of Lightweight Thermoplastic Fiber–Metal Laminates. Journal of Materials Processing Technology, 186(1-3), 284-290.
- [2] Keipour, S., Gerdooei, M. 2019. Springback Behavior of Fiber Metal Laminates in Hat-Shaped Draw Bending Process: Experimental and Numerical Evaluation. The International Journal of Advanced Manufacturing Technology, 100(5-8), 1755-1765.
- [3] Şen, İ. 2015. Lay-up optimisation of fibre metal laminates: development of a design methodology for wing structures, Delft University of Technology, PhD Thesis, 61s, The Netherlands.
- [4] Mosse, L., Compston, P., Cantwell, W. J., Cardew-Hall, M., Kalyanasundaram, S. 2006. Stamp Forming of Polypropylene Based Fibre–Metal Laminates: The Effect of Process Variables on Formability. Journal of Materials Processing Technology, 172(2), 163-168.
- [5] Gülcan, O., Tekkanat, K., Çetinkaya, B. 2019. Fiber Metal Laminatlar ve Uçak Sanayiinde Kullanımı Üzerine Bir İnceleme. Mühendis ve Makina, 60(697), 262-288.
- [6] Kim, P. 1998. A Comparative Study of The Mechanical Performance and Cost of Metal, FRP, and Hybrid Beams. Applied Composite Materials, 5(3), 175-187.
- [7] Huang, Z., Sugiyama, S., Yanagimoto, J. 2013. Hybrid Joining Process for Carbon Fiber Reinforced Thermosetting Plastic and Metallic Thin Sheets by Chemical Bonding and Plastic Deformation. Journal of Materials Processing Technology, 213(11), 1864-1874.
- [8] Alderliesten, R. 2009. On The Development of Hybrid Material Concepts for Aircraft Structures. Recent Patents on Engineering, 3(1), 25-38.
- [9] Rajkumar, G. R., Krishna, M., Narasimhamurthy, H. N., Keshavamurthy, Y. C., Nataraj, J. R. 2014. Investigation of Tensile and Bending Behavior of Aluminum Based Hybrid Fiber Metal Laminates. Procedia Materials Science, 5, 60-68.
- [10] Khalili, S. M. R., Daghigh, V., Eslami Farsani, R. 2011. Mechanical Behavior of Basalt Fiber-Reinforced and Basalt Fiber Metal Laminate Composites under Tensile and Bending Loads. Journal of Reinforced Plastics and Composites, 30(8), 647-659.
- [11] Wang, J., Yu, Y., Fu, C., Xiao, H., Wang, H., Zheng, X. 2020. Experimental Investigation of Clinching CFRP/Aluminum Alloy Sheet with Prepreg Sandwich Structure. Journal of Materials Processing Technology, 277, 116422.
- [12] Botelho, E. C., Silva, R. A., Pardini, L. C., Rezende, M. C. 2006. A Review on The Development and Properties of Continuous Fiber/Epoxy/Aluminum Hybrid Composites for Aircraft Structures. Materials Research, 9(3), 247-256.
- [13] Kim, S. Y., Choi, W. J., Park, S. Y. 2007. Spring-Back Characteristics of Fiber Metal Laminate (GLARE) in Brake Forming Process. The International Journal of Advanced Manufacturing Technology, 32(5-6), 445-451.
- [14] Hahn, M., Ben Khalifa, N., Weddeling, C., Shabaninejad, A. 2016. Springback Behavior of Carbon-Fiber-Reinforced Plastic Laminates with Metal Cover Layers in V-Die Bending. Journal of Manufacturing Science and Engineering, 138(12), 1-10.
- [15] Uriya, Y., Ikeuch, K., Yanagimoto, J. 2014. Cold and Warm V-Bending Test for Carbon-Fiber-Reinforced Plastic Sheet. Procedia Engineering, 81, 1633-1638.
- [16] Urkmez Taskin, N., Taskin, V., Sahin, A. 2016. Kompozit Metal Köpük Malzemelerin Tek Bindirmeli Yapıştırma Bağlantılarının Kesme Dayanımının İncelenmesi. 4th International Conference on Welding Technologies and Exhibition, 11-13 Mayıs, Gaziantep, 1052-1059.
- [17] Işıktaş, A., Taşkın, V. 2020. Alüminyum-Karbon Elyaf Sandviç Kompozit Levhaların V-Bükme İşleminde Bükme Açılarının ve Bükme Yönlerinin Geri Esneme Üzerindeki Etkisi. Balıkesir Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 281-290.
- [18] Urkmez Taskin, N., Sahin, A. 2019. Effect of Aging Time at High Temperature on the Shear Strength of Adhesively Bonded Aluminum Composite Foam Joints. The Journal of Adhesion, 95(4), 308-324.
- [19] Uriya, Y., Yanagimoto, J. 2016. Suitable Structure of Thermosetting CFRP Sheet for Cold/Warm Forming. International Journal of Material Forming, 9(2), 243-252.
- [20] Yanagimoto, J., Ikeuchi, K. 2012. Sheet Forming Process of Carbon Fiber Reinforced Plastics for Lightweight Parts. CIRP annals, 61(1), 247-250.