BibTex RIS Kaynak Göster

EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü

Yıl 2012, Cilt: 16 Sayı: 1, 48 - 55, 14.07.2014

Öz

Bu çalışmada lineer olmayan kısmi türevli Equal Width (EW) denkleminin konum ayrıştırması yapılarak radial basis
fonksiyon collocation yöntemi ile sayısal çözümü yapılmıştır. Hesaplamalarda farklı standart radial basis fonksiyonlar kullanılmıştır.
Metodun geçerliliğini göstermek için tek solitary dalga hareketi, iki ve üç solitary dalga etkileşimi ile Maxwell başlangıç koşulu
içeren test problemleri kullanılmış ve her bir test problemi için dalga hareketlerinin grafikleri gösterilmiştir. Analitik sonucu bilinen
tek solitary dalga hareketi test problemi için hata normları ile her bir test problemi için kütle, enerji ve momentum korunumlarının
değerleri hesaplanmıştır. Elde edilen sonuçlar analitik sonuçlar ve literatürde yer alan diğer sayısal sonuçlarla karşılaştırılmıştır.

Kaynakça

  • Dereli, Y., Schaback, R. 2010. The Meshless Kernel-Based Method of Lines for Solving the Equal Width Equation. Georg-August Göttingen University Institut für Numerische und Angewandte Mathematik Preprint-Serie, Number: 2010-27.
  • Doğan, A. 2005. Application of Galerkin's metod to equal width wave equation. Appl. Math. and Comput, 160, 65-76.
  • Esen, A. 2005. A numerical solution of the equal width wave equation by a lumped Galerkin method. Appl. Math. and Comput., 168, 270-282.
  • Gardner, L.R.T., Gardner, G.A. 1992. Solitary waves of the equal width wave equation. J. Comput. Phys., 101, 218-223.
  • Hardy, R.L. 1971. Multiquadric equations of topography and other irregular surfaces. J. Geophys. Res., 76, 1905-1915.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-I surface approximations and partial derivative estimates. Comput. Math. Appl., 19, 127-145.
  • Kansa, E.J. 1990. Multiquadrics-A scattered data approximation scheme with applications to computational fluid-dynamics-II solutions to parabolic, hyperbolic and elliptic partial differential equations. Comput. Math. Appl., 19, 146-161.
  • Morrison, P.J., Meiss, J.D., Carey, J.R. 1984. Scattering of RLW solitary waves. Physica, 11D, 324-336.
  • Olver, P.J. 1979. Euler operators and conservation laws of the BBM equation. Math. Proc. Camb. Phil. Soc., 85, 143-159.
  • Raslan, K.R. 2004. A computational method for the equal width equation. Int. J. Comp. Math., 81, 63-72.
  • Rubin, S.G., Graves, R.A. 1975. Cubic spline approximation for problems in fluid mechanics. Nasa TR R-436, Washington, DC.
  • Saka, B. 2006. A finite element method for equal width equation. Appl. Math. and Comput., 175, 730747.
  • Saka, B., Dağ, İ., Dereli, Y., Korkmaz, A. 2008. Three different methods for numericalsolution of the EW equation. Engineering Analysis with Boundary Elements, 32, 556-566.
  • Zaki, S.I. 2000. A least-squares finite element scheme fort he EW equation. Comput. Methods Appl. Mech. Eng., 189, 587-594.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Bölüm MÜHENDİSLİK ve MİMARLIK BİLİMLERİ
Yazarlar

Ayşe Kaplan Bu kişi benim

Yılmaz Dereli Bu kişi benim

Yayımlanma Tarihi 14 Temmuz 2014
Yayımlandığı Sayı Yıl 2012 Cilt: 16 Sayı: 1

Kaynak Göster

APA Kaplan, A., & Dereli, Y. (2014). EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 16(1), 48-55. https://doi.org/10.19113/sdufbed.94750
AMA Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Mart 2014;16(1):48-55. doi:10.19113/sdufbed.94750
Chicago Kaplan, Ayşe, ve Yılmaz Dereli. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16, sy. 1 (Mart 2014): 48-55. https://doi.org/10.19113/sdufbed.94750.
EndNote Kaplan A, Dereli Y (01 Mart 2014) EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16 1 48–55.
IEEE A. Kaplan ve Y. Dereli, “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 16, sy. 1, ss. 48–55, 2014, doi: 10.19113/sdufbed.94750.
ISNAD Kaplan, Ayşe - Dereli, Yılmaz. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 16/1 (Mart 2014), 48-55. https://doi.org/10.19113/sdufbed.94750.
JAMA Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2014;16:48–55.
MLA Kaplan, Ayşe ve Yılmaz Dereli. “EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 16, sy. 1, 2014, ss. 48-55, doi:10.19113/sdufbed.94750.
Vancouver Kaplan A, Dereli Y. EW Denkleminin Radial Basis Fonksiyon Collocation Metodu İle Sayısal Çözümü. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2014;16(1):48-55.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.