BibTex RIS Kaynak Göster

Ab-<i>initio</i> Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite

Yıl 2018, Cilt: 22 Sayı: 1, 13 - 23, 16.04.2018

Öz

Ab-initio total energy calculations have been performed utilizing the Density Functional Theory (DFT) inside the generalized gradient approximation (GGA) parameterized by Perdew-Burke-Ernzerhof (PBE). Interactions of the ions and electrons with each other’s was characterized via PAW potential within the valance electron configurations Ga-4s24p1 and N-2p22p3 to investigate the physical properties in the rocksalt B1 and wurtzite B4 phases. The equilibrium transition pressure (Pt) from B4 to B1 was estimated at about 33.66 GPa by using the common tangent construction. The DFT calculations indicate that the upper bands of wurtzite B4 between -0.256 eV and the Fermi level were mostly owing to N-p states. The lowest conduction bands were consisted of a mixture of N-s and Ga-s states. The valance band maximum and the conduction band minimum occured at the Γ symmetry point. Concordantly, B4 phase of GaN had a direct band gap at Γ-point, which calculated as 1.702 eV. The highest valance band of rocksalt B1 were consisted of with a major contribution of N-2p states. Although, the indirect band gap of the rocksalt B1 phase has been reported from the valance band maximum at the L-point to the conduction band minimum along the X direction [7], we observed the indirect energy band gap from the valance band maximum at the L-point to the conduction band minimum along the Γ direction. Our calculated value of indirect energy band gap for the rocksalt B1 phase was 0.777 eV and it was lower than the previous calculations.

Kaynakça

  • [1] Achour, H., Louhibi-Fasla, S., Mana, F. 2014. Theoretical Investigation of GaN. Physics Procedia, 55 (2014), 17-23.
  • [2] Yao, Y., Klug, D.D. 2013. B4-B1 phase transition of GaN under isotropic and uniaxial compression. Physical Review, B 88 (2013), 014113.
  • [3] Zhou, Y., Wang, S., Wang, R. , Jiang, N. 2013. Ab ignition calculation of the thermodynamic properties and phase diagram of gallium nitride. Physica, B 431(2013), 115-119.
  • [4] Qian, G.R., Dong, X., Zhou, X.F., Tian, Y., Oganov, A.R., Wang, H. T. 2013. Variable cell nudged elastic band method for studying solid-solid structural phase transitions. Computer Physics Communications, 184 (2013), 2111-2118.
  • [5] Saoud, F.S., Plenet, J.C., Louail, L., Maouche, D. 2011. Mechanism of the phase transition in GaN under pressure up to 100 GPa. Computational and Theoretical Chemistry, 964 (2011), 65-71.
  • [6] Xiao, H.Y., Jiang, X.D., Duan, G., Gao, F., Zu, X.T., Weber, W.J. 2010. First-principles calculations of pressure-induced phase transformations in AlN and GaN. Computational Materials Science, 48 (2010), 768-772.
  • [7] Arbouche, O., Belgoumene, B., Soudini, B., Driz, M. 2009. First principles study of the relative stability and the electronic properties of GaN. Computational Materials Science, 47 (2009), 432-438.
  • [8] Cai, J., Chen, N. 2007. Microscopic mechanism of the wurtize-to-rocksalt phase transition of the group-III nitrides from first principles. Physics Review, B, 75 (2007), 134109.
  • [9] Saib, S., Bouarissa, N. 2007. Structural phase transformations of GaN and InN under high pressure. Physica, B, 387 (2007), 377-372.
  • [10] Zapol, P., Pandey, R., Gale, J.D. 1997. An interatomic potential study of the properties of gallium nitride. Journal of Physics: Condensed Matter, 9 (1997), 9517-9525.
  • [11] Polian, A., Grimsditch, M., Grzegory, I. 1996. Elastic constants of gallium nitride. Journal Applied Physics, 79 (1996), 3343-3344.
  • [12] Zoroddu, A., Bernardini, F., Ruggerone, P. 2001. First-principles prediction of structure, energetics, formation enthalpy, elastic constants, polarization, and piezoelectric constants of AlN, GaN, and InN: Comparison of local and gradient-corrected density-functional theory. Physics Review B, 64 (2001), 045208.
  • [13] Perdew, J.P., Burke, K., Ernzerhof, M. 1996. Generalized gradient approximation made simple. Physics Review Letter, 77 (1996), 3865.
  • [14] Hohenberg, P., Kohn, W. 1964. Inhomogeneous electron gas. Physics Review, B 136 (1964), 864.
  • [15] Kohn, W., Sham, L.J. 1965. Self-consistent equations ıncluding exchange and correlation effects. Physics Review, A 140 (1965), 1133.
  • [16] Kohn, W., Becke, A.D., Parr, R.G. 1996. Density functional theory of electronic structure. Journal Physics Chemistry, 100 (1996), 12974-12980.
  • [17] Kresse, G., Furthmuller, J. 1996. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Material Science, 6 (1996), 15-50.
  • [18] Kresse, G., Furthmuller, J. 1996. Efficient iterative schemes for an initio total-energy calculations using a plane-wave basis set. Physics Review, B 54 (1996), 11169.
  • [19] Hafner, J. 2007. Materials simulations using VASP- a quantum perspective to materials science. Computer Physics Communications, 177 (2007), 6-13.
  • [20] Kresse, G., Hafner, J. 1993. An –initio molecular dynamics for liquid metals. Physics Review, B 47 (1993), 558.
  • [21] Kresse, G., Hafner, J. 1994. Norm-conserving and ultrasoft pseudopotentials for first-row and transition elements. Journal Physics: Condensed Matter, 6 (1994), 8245-8257.
  • [22] Blöchl, P.E. 1994. Projector augmented-wave method. Physics Review, B 50 (1994), 17953.
  • [23] Monkhorst, H.J., Pack, J.D. 1976. Special points for Brillouin-zone integrations. Physics Review, B 13 (1976), 5188.
  • [24] Birch, F. 1947. Finite elastic strain of cubic crystals. Physics Review, B 71 (1947), 809.
  • [25] Le Page, Y., Saxe, P. 2002. Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations od stress. Physics Review, B 65 (2002), 104104.
  • [26] Wu, X., Vanderbilt, D., Hamann, D.R. 2005. Systematic treatment of displacements, strains, and electric fields in density-functional perturbation theory. Physics Review, B 72 (2005), 035105.
  • [27] Ueno, M., Yoshiba, M., Onodera, A., Shimomura, O., Takemura, K. 1994. Stability of the wurtzite-type structure under high pressure: GaN and InN. Physics Review, B 49 (1994), 14.
  • [28] Perdew, J.P., Zunger, A. 1981. Self-interaction correction to density-functional approximations for many-electron systems. Physics Review B, 23 (1981), 5048.
  • [29] Hamann, D.R., Schluter, M., Chiang, C. 1979. Norm-conserving pseudopotentials. Physics Review Letter 43, (1979), 1494.
  • [30] Perlin, P., Carillon, C.J., Itie, J.P., Miguel, A.S., Grzegory, I., Polian, A. 1992. Raman scattering and x-ray-absorption spectroscopy in gallium nitride under high pressure. Physics Review B, 45 (1992), 83.
  • [31] Xia, H., Xia, Q., Ruoff, A.L. 1993. High-pressure structure of gallium nitride: Wurtzite-to-rocksalt phase transition. Physics Review B, 47 (1993), 12925.
  • [32] Rinke, P., Winkeınkemper, M. Oteish, A., Neugebauer, J., Schefler, M. 2008. Consistent set of band parameters for the group-III nitrides AlN. Physics Review, B 77 (2008), 075202.
  • [33] Serrano, J., Rubio, A., Hernandez, E., Munoz, A., Mujica, A. 2000. Theoretical study of the relative stability of structural phases in group-III nitrides at high pressures. Physics Review, B 62 (2000), 16612.
  • [34] Kim, K., Lambrecht, W.R.L., Segall, B. 1996. Elastic constants and related properties of tetrahedrally bonded BN, AlN, GaN, and InN. Physics Review, B 53 (1996), 16310.
  • [35] Stamp, C., Van de Walle, C.G. 1999. Density-functional calculations for III-V nitrides using the local-density approximation and the generalized gradient approximation. Physics Review, B 59 (1999), 5521.
  • [36] Wright, A.F., Nelson, J.S. 1995. Consistent structural properties for AlN, GaN, and InN. Physics Review B, 51 (1995), 7866.
  • [37] Karzel, H., Potzel, W., Koferlein, M., Schiessl, W., Hiller, U., Kalvius, G.M., Mitchell, D.W., Das, T.P., Blaha, P., Schwarz, K., Pasternak, M.P. 1996. Lattice dynamics and hyperfine interactions in ZnO and ZnSe at high external pressures. Physics Review B, 53 (1996), 11425.
  • [38] Desgreniers, S. 1998. High-density phases of ZnO: Structural and compressive parameters. Physics Review B, 58 (1998), 14102.
  • [39] Nardelli, M.B., Rapcewicz, K., Bernholc, L. 1997. Strain effects on the interface properties of nitride semiconductors. Physics Review B, 55 (1999), R7323(R).
  • [40] Sarasamak, K., Kulkarni, A.J., Zhou, M., Limpijumnong, S. 2008. Stability of wurtzite, unbuckled wurtzite, and rocksalt phases of SiC, GaN, InN, ZnO, and CdSe under loading of different triaxialities. Physics Review B, 77 (2008), 024104.
  • [41] Van Camp, P.E., Van Doren, V.E., Devreese, J.T. 1992. High pressure structural phase transformation in gallium nitride. Solid State Communications 81, (1992), 23-26.
  • [42] Pandey, R., Jaffe, J.E., Harrison, N.M. 1994. Ab initio study og high pressure phase transition in GaN. Journal Physics Chemistry Solids 55 (1994), 1357-1361.
  • [43] Pandey, R., Causa, M., Harrison, N.M., Sell, M. 1996. The high-pressure phase transitions of silicon and gallium nitride: a comparative study of Hartree-Fock and density functional calculations. Journal Physics: Condensed Matter 8 (1996), 3993-4000.
  • [44] Xie, Y., Qian, Y., Zhang, S., Wang, W., Lui, X., Zang, Y. 1996. Coexistence of wurtzite GaN with zincblende and rocksalt studied by x-ray power diffraction and high-resolution transmission electron microscopy. Applied Physics Letter 69, (1996), 334.
  • [45] Limpijumnong, S., Lambrecht, W. R. L. 2001. Theoretical study of the relative stability of wurtzite and rocksalt phases in MgO and GaN. Physics Review B, 63 (2001) 104103.
  • [46] Uehara, S., Masamoto, T., Onodera, A., Ueno, M., Shimomura, O., Takemura, K. 1997. Equation of state of the rocksalt phase of III-V nitrides to 72 GPa or higher. Journal Physics Chemistry Solids 58 (1997), 2093-2099.
  • [47] Vollstadt, H., Ito, E., Akaishi, M., Akimono, S., Fukunaga, O. 1996. High pressure synthesis of rocksalt type of AlN. Proc. Jpn. Acad. Ser. B Phys. Biol. Sci. 66, (1996), 7.
  • [48] Munoz, A., Kunc, K. 1991. High-pressure phase of gallium nitride. Physics Review B, 44 (1991), 10372.
  • [49] Gorezyca, I., Christensen, N.E. 1991. Band structure and high-pressure phase transition in GaN. Solid State Communications 80, (1991), 335-338.
  • [50] Munoz, A., Kunc, K. 1994. New phases and physical properties of the semiconducting nitrides: AlN, GaN, InN. Computational Materials Science 2 (1994), 400-412.
  • [51] Kim, K., Lambrecht, W.R.L., Segall, B. 1994. Electronic structure of GaN with strain and phonon distortions. Physics Review, B 50 (1994), 1502.
  • [52] Mouhat, F., Counder, F.X. 2014. Necessary and sufficient elastic stability conditions in various crystal systems. Physics Review B, 90 (2014), 224104.
  • [53] Rubio, A., Corkill, J.L., Cohen, M.L., Shirley, E.L., Louie, S.G. 1993. Quasiparticle band structure of AlN and GaN. Physics Review B, 48 (1993) 11810.
  • [54] Vogel, D., Krueger, P., Pollmann, J. 1997. Structural and electronic properties of group-III nitrides. Physics Review B, 55 (1997) 12836
  • [55] Vurgaftmana, I., Meyer, J.R., Ram-Mohan, L.R. 2001. Band parameters for III-V compound semiconductors and their alloys. Journal Applied Physics 89 (2001), 5815-5875.
  • [56] Ahmed, R., Akbarzadeh, H. 2005. A first principle study of band structure of III-nitride compounds. Physica B, 370 (2005) 52-60.
  • [57] Savastenko, V.A., Sheleg, A.U. 1978. Study of the elastic properties of gallium nitride. Physica Status Solidi, A (1978), K135-139.
  • [58] Vurgaftmana, I., Meyer, J.R. 2003. Band parameters of nitrogen-containing semiconductors. Journal Applied Physics 94 (2003), 3675-3696.
  • [59] Gao, G.Y., Yao, K.L., Lui, Z.L., Li, Y.L., Li, Y.C., Lui, Q.M. 2006. Ab initio pseudopotential studies of the pressure dependences of structural, electronic and optical properties for GaN. Solid State Communications 138 (2006), 494-497.
Toplam 59 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Cengiz Soykan Bu kişi benim

Yayımlanma Tarihi 16 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 1

Kaynak Göster

APA Soykan, C. (2018). Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 13-23. https://doi.org/10.19113/sdufbed.38099
AMA Soykan C. Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite. SDÜ Fen Bil Enst Der. Nisan 2018;22(1):13-23. doi:10.19113/sdufbed.38099
Chicago Soykan, Cengiz. “Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 1 (Nisan 2018): 13-23. https://doi.org/10.19113/sdufbed.38099.
EndNote Soykan C (01 Nisan 2018) Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 13–23.
IEEE C. Soykan, “Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite”, SDÜ Fen Bil Enst Der, c. 22, sy. 1, ss. 13–23, 2018, doi: 10.19113/sdufbed.38099.
ISNAD Soykan, Cengiz. “Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (Nisan 2018), 13-23. https://doi.org/10.19113/sdufbed.38099.
JAMA Soykan C. Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite. SDÜ Fen Bil Enst Der. 2018;22:13–23.
MLA Soykan, Cengiz. “Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 1, 2018, ss. 13-23, doi:10.19113/sdufbed.38099.
Vancouver Soykan C. Ab-initio Calculations of the Physical Properties in Gallium Nitride at Equilibrium Phases: Rocksalt and Wurtzite. SDÜ Fen Bil Enst Der. 2018;22(1):13-2.

e-ISSN: 1308-6529