BibTex RIS Kaynak Göster

The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion

Yıl 2018, Cilt: 22 Sayı: 1, 70 - 74, 16.04.2018

Öz

We investigate mode converters for Si wire to plasmonic slot waveguides at 1550 nm telecom wavelength. The structures are based on a taper geometry. We provide optimal dimensions with more than 90\% power transmission for a range of metal (Au) thicknesses between 30-250 nm. We provide details on how to differentiate between the total power and the power in the main mode of the plasmonic slot waveguide. Our analysis is based on the orthogonality of modes of the slot waveguide subject to a suitable inner product definition. Our results are relevant for lowering the insertion loss and the bit error rate of plasmonic modulators.

Kaynakça

  • [1] Yamada, K. 2011. Silicon PhotonicWireWaveguides: Fundamentals and Applications. Silicon Photonics II: Components and Integration, Springer, Berlin, ss 1–29.
  • [2] Thomson, D., Zilkie, A., Bowers, J. E., Komljenovic, T., Reed, G. T., Vivien, L., Marris-Morini, D., Cassan, E., Virot, L., Fédéli, J.-M., Hartmann, J.-M., Schmid, J. H., Xu, D.-X., Boeuf, F., O’Brien, P., Mashanovich, G. Z., Nedeljkovic, M. 2016. Roadmap on silicon photonics. Journal of Optics, 18(2016), 073003.
  • [3] Melikyan, A., Alloatti, L., Muslija, A., Hillerkuss, D., Schindler, P.C., Li, J., Palmer, R., Korn, D., Muehlbrandt, S., Thourhout, D. V., Chen, B., Dinu, R., Sommer, M., Koos, C., Kohl, M., Freude, W., Leuthold J. 2014. Highspeed plasmonic phase modulators. Nature Photonics, 8(2014), 229–233.
  • [4] Haffner, C., Heni, W., Fedoryshyn, Y., Josten, A., Baeuerle, B., Hoessbacher, C., Salamin, Y., Koch, U., Dordevic, N., Mousel, P., Bonjour, R., Emboras, A., Hillerkuss, D., Leuchtmann, P., Elder, D. L., Dalton, L. R., Hafner, C., Leuthold, J. 2016. Plasmonic organic hybrid modulators—scaling highest speed photonics to the microscale. Proceedings of the IEEE, 104(2016), 2362–2379.
  • [5] Hoessbacher, C., Josten, A., Baeuerle, B., Fedoryshyn, Y., Hettrich, H., Salamin, Y., Heni, W., Haffner, C., Kaiser, C., Schmid, R., Elder, D. L., Hillerkuss, D., Möller, M., Dalton, L. R., Leuthold, J. 2017. Plasmonic modulator with >170 GHz bandwidth demonstrated at 100 GBd NRZ. Optics Express, 25(2017), 1762–1768.
  • [6] Tian, J., Yu, S., Yan, W., Qiu, M. 2009. Broadband high-efficiency surface-plasmon-polariton coupler with silicon-metal interface. Applied Physics Letters, 95(2009), 013504.
  • [7] Han, Z., Elezzabi, A. Y., Van, V. 2010. Experimental realization of subwavelength plasmonic slot waveguides on a silicon platform. Optics Letters, 35(2010), 502–504.
  • [8] Chen, C.-T., Xu, X., Hosseini, A., Pan, Z., Subbaraman, H., Zhang, X., Chen, R. T. 2015. Design of highly efficient hybrid Si-Au taper for dielectric strip waveguide to plasmonic slot waveguide mode converter. Journal of Lightwave Technology, 33(2015), 535–540.
  • [9] Zhu, B. Q., Tsang, H. K. 2016. High coupling efficiency silicon waveguide to metal–insulator–metal waveguide mode converter. Journal of Lightwave Technology, 34(2016), 2467–2472.
  • [10] Ono, M., Taniyama, H., Xu, H., Tsunekawa, M., Kuramochi, E., Nozaki, K., Notomi, M. 2016. Deep-subwavelength plasmonic mode converter with large size reduction for Si-wire waveguide. Optica, 3(2016), 999–1005.
  • [11] Veronis, G., Fan, S. H. 2007. Modes of subwavelength plasmonic slot waveguides. Journal of Lightwave Technology, 25(2007), 2511–2521.
  • [12] Kewes, G., Schoengen, M., Neitzke, O., Lombardi, P., Schönfeld, R.-S., Mazzamuto, G., Schell, A. W., Probst, J., Wolters, J., Löchel, B., Toninelli, C., Benson, O. 2016. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic dielectric waveguide structures. Scientific Reports, 6(2016), 28877.
  • [13] Palik, E. D. 1985. Handbook of optical constants of solids. Vol. 1. Academic Press, London, 804s.
  • [14] Kitamura, R., Pilon, L., Jonasz, M. 2007. Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Applied Optics, 46(2007), 8118–8133.
  • [15] McPeak, K. M., Jayanti, S. V., Kress, S. J. P., Meyer, S., Iotti, S., Rossinelli, A., Norris, D. J. 2015. Plasmonic films can easily be better: Rules and recipes. ACS Photonics, 2(2015), 326–333.
  • [16] Yang, J., Hugonin, J.-P., Lalanne, P. 2016. Near-to-far field transformations for radiative and guided waves. ACS Photonics, 3(2016), 395–402.
  • [17] Ji, X., Barbosa, F. A. S., Roberts, S. P., Dutt, A., Cardenas, J., Okawachi, Y., Bryant, A., Gaeta, A. L., Lipson, M. 2017. Ultra-low-loss on chip resonators with sub-milliwatt parametric oscillation threshold. Optica, 4(2017), 619–624.
  • [18] Veronis G., Fan, S. 2007. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides. Optics Express, 15(2007), 1211–1221.
Toplam 18 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Şükrü Ekin Kocabaş Bu kişi benim

Yayımlanma Tarihi 16 Nisan 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 1

Kaynak Göster

APA Kocabaş, Ş. E. (2018). The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(1), 70-74. https://doi.org/10.19113/sdufbed.88342
AMA Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Nisan 2018;22(1):70-74. doi:10.19113/sdufbed.88342
Chicago Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 1 (Nisan 2018): 70-74. https://doi.org/10.19113/sdufbed.88342.
EndNote Kocabaş ŞE (01 Nisan 2018) The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 1 70–74.
IEEE Ş. E. Kocabaş, “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, sy. 1, ss. 70–74, 2018, doi: 10.19113/sdufbed.88342.
ISNAD Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/1 (Nisan 2018), 70-74. https://doi.org/10.19113/sdufbed.88342.
JAMA Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:70–74.
MLA Kocabaş, Şükrü Ekin. “The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 1, 2018, ss. 70-74, doi:10.19113/sdufbed.88342.
Vancouver Kocabaş ŞE. The Effect of Metal Thickness on Si Wire to Plasmonic Slot Waveguide Mode Conversion. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(1):70-4.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.