BibTex RIS Kaynak Göster

Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100

Yıl 2018, Cilt: 22 Sayı: 2, 545 - 551, 15.08.2018

Öz

In this study, we informed a systematic approach to obtain CuO films with and without TX-100 surfactant by the SILAR procedure. Morphological, structural and optical features of the CuO films were researched by metallurgical microscope, scanning electron microscopy, X-ray diffraction analysis and ultraviolet–visible spectrophotometry respectively with respect to concentrations of TX-100 agent. Metallurgical and scanning electron microscope photographs displayed that the morphology of the film surface was impressed by surfactant TX-100. X-ray diffraction patterns verified that all CuO films have monoclinic crystal lattice structure with preferential orientations of ( 11) and (111) planes. Ultraviolet–visible spectra demonstrated that the optical bandgap and transmittance values of the films were altered with TX-100 content.

Kaynakça

  • [1] Iqbal, T., Aziz, A., Khan, M.A., Andleeb, S., Mahmood, H., Khan, A. A., Khan, R., Shafique M. 2018. Surfactant assisted synthesis of ZnO nanostructures using atmospheric pressure microplasma electrochemical process with antibacterial applications. Materials Science & Engineering B, 228 (2018), 153–159.
  • [2] Balmuri, S. R., Selvaraj, U., Kumar, V. V., Anthony, S. P., Tsatsakis, A. M., Golokhvast, K. S., Raman T. 2017. Effect of surfactant in mitigating cadmium oxide nanoparticle toxicity: Implications for mitigating cadmium toxicity in environment. Environmental Research, 152 (2017), 141–149.
  • [3] Hu, J., Li, H., Muhammad, S., Wu, Q., Zhao, Y., Jiao Q. 2017. Surfactant-assisted hydrothermal synthesis of TiO2/reduced graphene oxide nanocomposites and their photocatalytic performances. Journal of Solid State Chemistry, 253 (2017), 113–120.
  • [4] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties, and applications. Progress in Materials Science, 60 (2014), 208–337.
  • [5] Yathisha, R. O., Nayaka, Y. A. 2018. Structural, optical and electrical properties of zinc incorporated copper oxide nanoparticles: doping effect of Zn. J Mater Sci, 53(2018), 678–691.
  • [6] Gopalakrishnan, N., Balakrishnan, L., Arunkumar, B., Gowrishankar S. 2014. Optimization of CuO Ultra Thin Film for Gas Sensor Application by RF Magnetron Sputtering. J. Nanoelectron. Optoelectron., 9:4 (2014), 1-6.
  • [7] Sharma, J. K., Akhtar, M. S., Ameen, S., Srivastava, P., Singh, G. 2015. Green synthesis of CuO nanoparticles with leaf extract of Calotropis gigantea and its dye-sensitized solar cells applications. Journal of Alloys and Compounds, 632 (2015), 321–325.
  • [8] Huang, J., Fu, G., Shi, C., Wang, X., Zhai, M. 2014. Novel porous CuO microrods: synthesis, characterization, and their photocatalysis property. Journal of Physics and Chemistry of Solids, 75 (2014), 1011–1016.
  • [9] Hameed, M. U., Khan, Y., Ali, S., Wu, Z., Dar, S. U., Song, H., Ahmad, A., Chen, Y. 2017. Tween-80 guided CuO nanostructures: Morphology-dependent performance for lithium ion batteries. Ceramics International, 43 (2017), 741–748.
  • [10] Sahin, B., Alomari, M., Kaya,T., Hydration Detection through use of artificial sweat in doped- and partially-doped nanostructured CuO films. Ceramics International 41 (2015) 8002–8007 .
  • [11] Wu, J., Hui, K. S., Hui, K. N., Li, L., Chun, H. H., Cho, Y. R. 2016. Characterization of Sn-doped CuO thin films prepared by a sol–gel method. J Mater Sci: Mater Electron, 27(2016), 1719–1724.
  • [12] Wang, Y., Jiang, T., Meng, D., Wang, D., Yu, M. 2015. Synthesis and enhanced photocatalytic property of feather-like Cd-doped CuO nanostructures by hydrothermal method. Applied Surface Science, 355 (2015), 191–196.
  • [13] Jan, T., Iqbal, J., Farooq, U., Gul, A., Abbasi, R., Ahmad, I., Malik, M. 2015. Structural, Raman and optical characteristics of Sn doped CuO nanostructures: A novel anticancer agent. Ceramics International, 41 (2015), 13074–13079.
  • [14] Lai, M., Mubeen, S., Chartuprayoon, N., Mulchandani, A., Deshusses, M. A., Myung, N. V. 2010. Synthesis of Sn doped CuO nanotubes from core–shell Cu/SnO2 nanowires by the Kirkendall effect. Nanotechnology, 21 (2010), 295601, 1-5.
  • [15] Wanjala, K. S., Njoroge, W. K., Makori, N. E., Ngaruiya, J. M. 2016. Optical and Electrical Characterization of CuO Thin Films as Absorber Material for Solar Cell Applications. American Journal of Condensed Matter Physics, 6(1) 2016, 1-6.
  • [16] Mitzi, D. B. 2009. Solution processing of inorganic materials. 1st Edition. John Wiley & Sons, Inc., Publication, 501p.
  • [17] Shei, S. C., Lee, P. Y., Chang, S. J. 2012. Effect of temperature on the deposition of ZnO thin films by successive ionic layer adsorption and reaction. Applied Surface Science, 258 (2012), 8109– 8116.
  • [18] Sahin, B., Physical Properties of Nanostructured CdO Films from Alkaline Baths Containing Saccharin as Additive, The Scientific World Journal (2013) 1-5.
  • [19] Singh, I., Kaur, G., Bedi, R. K. 2011. CTAB assisted growth and characterization of nanocrystalline CuO films by ultrasonic spray pyrolysis technique. Applied Surface Science, 257 (2011), 9546– 9554.
  • [20] Siddiqui, H., Qureshi, M. S., Haque, F. Z. 2016. Surfactant assisted wet chemical synthesis of copper oxide (CuO) nanostructures and their spectroscopic analysis. Optik, 127 (2016), 2740–2747.
  • [21] Hosseini, S. R., Ghasemi, S., Ghasemi, S. A. 2016. Effect of surfactants on electrocatalytic performance of copper nanoparticles for hydrogen evolution reaction. Journal of Molecular Liquids, 222 (2016), 1068–1075.
  • [22] Muiva, C. M., Juma, A. O., Lepodise, L. M., Maabong, K., Letsholathebe, D. 2017. Surfactant assisted chemical bath deposition based synthesis of 1-D nanostructured CuO thin films from alkaline baths. Materials Science in Semiconductor Processing, 67 (2017), 69–74.
  • [23] Khalili, E., Tabrizi, S. A. H. 2017. ZnO–CdO nanocomposite: microemulsion synthesis and dye removal ability. J Sol-Gel Sci Technol, 81(2017), 475–482.
  • [24] Andronic, l. 2013. Investigation of the effect of surfactant on dip-coating TiO2 photocatalyst. Bulletin of the Transilvania University of Braşov Series I: Engineering Sciences, 6:55 No.1(2013), 39-44.
  • [25] Selvakumar, D., Dharmaraj, N., Kadirvelu, K., Kumar, N. S., Padaki, V. C. 2014. Effect of sintering temperature on structural and optical properties of indium(III) oxide nanoparticles prepared with Triton X-100 by hydrothermal method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 133 (2014), 335–339.
  • [26] Sanguanruang, S., Leotphayakkarat, R., Fangern, N., Koonsaeng, N., Chawengkijwanich, C. 2011. Preparation and Characterization of Thin Films TiO2 Prepared by Various Amount of Triton X-100 Surfactant for Photodegradation of a Dye Pollutant. Advanced Materials Research Vols. 233-235 (2011), 2863-2870.
  • [27] Hajra, P., Shyamal, S., Bera, A., Mandal, H., Sariket, D., Kundu, M., Pande, S., Bhattacharya, C. 2015. Optimization of Triton-X 100 surfactant in the development of Bismuth Oxide thin film semiconductor for improved photoelectrochemical water oxidation behavior. Electrochimica Acta, 185 (2015), 229–235.
  • [28] Aydin, R., Şahin, B. 2017. The role of Triton X-100 as a surfactant on the CdO nanostructures grown by the SILAR method. Journal of Alloys and Compounds, 705 (2017), 9-13.
  • [29] Novikova, A. A., Moiseeva, D. Y., Karyukov, E. V., Kalinichenko, A. A. 2016. Facile prepation photocatalytically active CuO plate-like nanoparticles from brochantite. Materials Letters, 167 (2016), 165-169.
  • [30] Zhang, Q., Zhang, K., Xu, D., Yang, G., Huang, H., Nie, F., Liu, C., Yang, S. 2014. CuO nanostructures: Synthesis, characterization, growth mechanisms, fundamental properties and applications. Progress in Materials Science, 60 (2014), 208-337.
  • [31] Saien, J., Asadabadi, S. 2011. Synergistic adsorption Triton X-100 and CTAB surfactants at the toluene + water interface. Fluid Phase Equilibria, 307(2011), 16-23
  • [32] Barry, F. J., Cunnane V. J. 2002. Synergistic effects of organic additives on the discharge, nucleation and growth mechanisms of tin at polycrystalline copper electrodes. Journal of Electroanalytical Chemistry, 537 (2002), 151-163.
  • [33] Gürbüz, E., Aydin, R., Şahin, B. 2018. A study of influences of transition metal (Mn, Ni) co-doping on the morphological, structural and optical properties of nanostructured CdO films. J Mater Sci: Mater Electron, 29(2018), 1823-1831.
  • [34] Ganesan K. P., Anadhan, N., Dharuman, V. , Sami, P., Pannerselvam, R., Marimuthu, T. 2017. Electrochemically modified crystal orientation, surface morphology and optical properties using CTAB on Cu2O thin films. Results in Physics, 7(2017), 82-86.
  • [35] Afzal, M., Naik, P. S., Nadaf, L. I., Shaikh, I. N. 2016. SnO2-Surfactant Composite Films for Superior Gas Sensitivity. SSRG International Journal of Applied Physics (SSRG-IJAP), 3:5 (2016), 1-5.
  • [36] Farahmandjou, M. 2010. Effect of LABS and Triton X-100 surfactants on the particle size of nanocrystalline ITO powder. Optoelectronics And Advanced Materials – Rapid Communications, 4:7(2010), 986-988
  • [37] Suwanchawalit, C., Buddee, S., Wongnawa, S. 2017. Triton X-100 induced cuboid-like BiVO4 microsphere with high photocatalytic performance. Journal Of Environmental Sciences, 55 (2017) 257 – 265
  • [38] Gupta, R. K., Serbetci, Z., Yakuphanoglu, F. 2012. Bandgap variation in size controlled nanostructured Li–Ni co-doped CdO thin films. Journal of Alloys and Compounds, 515 (2012), 96–100.
  • [39] Marotti, R.E., Giorgi, P., Machado, G., Dalchiele, E.A. 2006. Crystallite size dependence of band gap energy for electrodeposited ZnO grown at different temperatures, Solar Energy Materials & Solar Cells, 90 (2006), 2356–2361.
Toplam 39 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Raşit Aydın

Bünyamin Şahin

Yayımlanma Tarihi 15 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Aydın, R., & Şahin, B. (2018). Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 545-551.
AMA Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ağustos 2018;22(2):545-551.
Chicago Aydın, Raşit, ve Bünyamin Şahin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 2 (Ağustos 2018): 545-51.
EndNote Aydın R, Şahin B (01 Ağustos 2018) Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 545–551.
IEEE R. Aydın ve B. Şahin, “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, sy. 2, ss. 545–551, 2018.
ISNAD Aydın, Raşit - Şahin, Bünyamin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (Ağustos 2018), 545-551.
JAMA Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:545–551.
MLA Aydın, Raşit ve Bünyamin Şahin. “Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 2, 2018, ss. 545-51.
Vancouver Aydın R, Şahin B. Enhancement Physical Performance of Nanostructured CuO Films via Surfactant TX-100. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22(2):545-51.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.