BibTex RIS Kaynak Göster

Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi<sub>0.4</sub>Mn<sub>0.4</sub>Co<sub>0.2</sub>O<sub>2</sub> Lithium-ion Battery Cathode Material

Yıl 2018, Cilt: 22 Sayı: 2, 577 - 582, 15.08.2018

Öz

Nano-sized LiNi0.4Mn0.4Co0.2O2 lithium-ion battery cathode materials with and without dual Mg & Al doping were synthesized by Pechini method. The powdered materials were characterized using X-ray diffraction, scanning electron microscopy and electrochemical techniques. X-ray analyses showed that 003/104 peaks intensity ratio increased from 0.95 for undoped material to 1.27 for doped material, thereby suggesting that dual doping was beneficial in terms reducing Li/Ni cation mixing. Although dual doping caused some reduction in initial discharge capacity (140 vs. 128 mAh/g) and increase in charge transfer resistance relative to the undoped material, it noticeably helped increase capacity retention during battery testing at high voltage.

Kaynakça

  • [1] Pan L., Xia Y., Qiu B., Zhao H., Guo H., Jia K., Gu Q., Liu Z. 2016. Synthesis and electrochemical performance of micro-sized Li-rich layered cathode material for Lithium-ion batteries. Electrochimica Acta, 211(2016), 507-514.
  • [2] Kang J., Pham H., Kang D., Park H., Song S. 2016. Improved rate capability of highly loaded carbon fiber-interwoven LiNi0.6Co0.2Mn0.2O2 cathode material for high-power Li-on batteries. Journal of Alloys and Compounds, 657(2016), 464-471
  • [3] Yoo G., Jang B., Son J. 2015. Novel design of core shell structure by NCA modification on NCM cathode material to enhance capacity and cycle life for lithium secondary battery. Ceramics International, 41(2015), 1913-1916
  • [4] Hwang I., Lee C., Kim J., Yoon S. 2012. Particle size effect of Ni-rich cathode materials on lithium ion battery performance. Materials Research Bulletin, 47(2012), 73-78
  • [5] Cho Y., Lee Y., Park S., Lee Y., Cho J. 2010. LiNi0.8Co0.15Al0.05O2 cathode materials prepared by TiO2 nanoparticle coatings on Ni0.8Co0.15Al0.05(OH)2 precursors. Electrochimica Acta, 56(2010), 333-339
  • [6] Liu S., Xiong L., He C. 2014. Long cycle life lithium ion battery with lithium nickel cobalt manganese oxide (NCM) cathode. Journal of Power Sources, 261(2014), 285-291
  • [7] Zhu Y., Luo X., Zhi H., Yang X., Xing L., Liao Y., Xu M., Li W. 2017. Structural exfoliation of layered cathode under high voltage and its suppression by interface film derived from electrolyte additive. ACS Applied Materials and Interfaces, 9(2017), 12021-12034
  • [8] Zhou A., Liu Q., Wang W., Yao X., Hu W., Zhang L., Yu X., Li J., Li H. 2017. Al2O3 surface coating on LiCoO2 through a facile and scalable wet-chemical method towards high-energy cathode materials withstanding high cutoff voltages. Journal Materials Chemistry A, 5(2017), 24361-24370
  • [9] Wise A., Ban C., Weker J., Misra S., Cavanagh A., Wu Z., Li Z., Whittingham M., Xu K., George S., Toney M. 2015. Effect of Al2O3 coating on stabilizing LiNi0.4Mn0.4Co0.2O2 cathodes. Chemistry of Materials, 27(2015), 6146-6154
  • [10] Madec L., Ma L., Nelson KJ., Petibon R., Sun JP., Hill IG., Dahn JR. 2016. The effects of a ternary electrolyte additive system on the electrode/electrolyte interfaces in high voltage lithium-ion cells. Journal of The Electrochemical Society, 163(2016), A1001-A1009
  • [11] Ma L., Xia J., Dahn JR. 2014. Improving the high voltage cycling of LiNi0.42Mn0.42Co0.16O2 (NMC442)/Graphite pouch cells using electrolyte additives. Journal of The Electrochemical Society, 161(2014), A2250-A2254
  • [12] Huang Z., Wang Z., Zheng X., Guo H., Li X., Jing Q., Yang Z. 2015. Structural and electrcohemical properties of Mg-doped nickel based cathode materials LiNi0.6Co0.2Mn0.2-xMgxO2 for lithium ion batteries. RSC Advances, 5(2015), 88773-88779
  • [13] Couceiro A., Garcia S., Rodriquez M., Soulette F., Julien C. 2002. Effect of the aluminum doping on the microstructure and morphology of LiNi0.5Co0.5O2 oxides. Ionics, 8(2002), 192-200
  • [14] Julien C., Mauger A., Zaghib K., Groult H. 2016. Optimization of layered cathode materials for lithium-ion batteries. Materials, 9(2016), 595.
  • [15] Ngala J., Chernova N., Ma M., Mamak M., Zavalij P., Whittingham M. 2003. The synthesis, characterization and electrochemical behavior of the layered LiNi0.4Mn0.4Co0.2O2 compound. Journal of Materials Chemistry, 14(2003), 214-220.
  • [16] Channu VSR., Ravichandran D., Rambabu B., Holze R. 2014. Nanocrystalline LiNi0.4Mn0.4Co0.2O2 cathode for lithium-ion batteries. Colloids and Surfaces A, 453(2014), 125-131
  • [17] Ma M., Chernova NA., Toby BH., Zavalij PY., Whittingham M. 2007. Structural and electrochemical behavior of LiNi0.4Mn0.4Co0.2O2. Journal of Power Sources, 165(2007), 517-534
  • [18] Shi SJ., Mai YJ., Tang YY., Gu CD., Wang XL., Tu JP. 2012. Preparation and electrochemical performance of ball-like LiNi0.4Mn0.4Co0.2O2 cathode materials. Electrochimica Acta, 77(2012), 39-46
  • [19] Myung ST., Lee KS., Sun YK., Yashiro H. 2011. Development of high power lithium-ion batteries: layer Li[Ni0.4Mn0.4Co0.2]O2 and spinel Li[Li0.1Al0.05Mn1.85]O4. Journal Power Sources, 196(2011), 7039-7043
  • [20] Kuznetsov DA., Han B., Yu Y., Rao RR., Hwang J., Leshkov YR., Horn YS. 2018. Tuning redox reactions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule, 2(2018), 225-244
  • [21] Ishidzu K., Oka Y., Nakamura T. 2016. Lattice volume change during charge/discharge reaction and cycle performance of Li[NixCoyMnz]O2. Solid State Ionics, 288(2016), 176-179
  • [22] Li P., Xue L., Li Y., Su Q., Chen Y., Cao G., Lei T., Zhu J., Deng S. 2017. Modification of LiNi0.5Co0.2Mn0.3O2 cathode material using nano TiO2 to enhance the cycle stability in high-voltage ranges. Materials Letters, 207(2017), 217-220
  • [23] Uzun D. 2015. Boron-doped Li1.2Mn0.6Ni0.2O2 as a cathode active material for lithium ion battery. 2015. Solid State Ionics, 281(2015), 73-81
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Muharrem Kunduracı

Yayımlanma Tarihi 15 Ağustos 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: 2

Kaynak Göster

APA Kunduracı, M. (2018). Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22(2), 577-582.
AMA Kunduracı M. Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material. SDÜ Fen Bil Enst Der. Ağustos 2018;22(2):577-582.
Chicago Kunduracı, Muharrem. “Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-Ion Battery Cathode Material”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, sy. 2 (Ağustos 2018): 577-82.
EndNote Kunduracı M (01 Ağustos 2018) Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 2 577–582.
IEEE M. Kunduracı, “Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material”, SDÜ Fen Bil Enst Der, c. 22, sy. 2, ss. 577–582, 2018.
ISNAD Kunduracı, Muharrem. “Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-Ion Battery Cathode Material”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22/2 (Ağustos 2018), 577-582.
JAMA Kunduracı M. Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material. SDÜ Fen Bil Enst Der. 2018;22:577–582.
MLA Kunduracı, Muharrem. “Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-Ion Battery Cathode Material”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, sy. 2, 2018, ss. 577-82.
Vancouver Kunduracı M. Effect of Mg and Al Dual Doping on High Voltage Cycling of LiNi0.4Mn0.4Co0.2O2 Lithium-ion Battery Cathode Material. SDÜ Fen Bil Enst Der. 2018;22(2):577-82.

e-ISSN: 1308-6529