Son yıllarda akıllı mobil cihazlar hayatımızı ciddi anlamda kolaylaştırmış ve hız kazandırmıştır. Android işletim sistemi (İS) bu cihazlar arasında en yüksek kullanım oranına sahiptir. Yaygın kullanım, yetersiz güvenlik mekanizmaları ve kullanıcıların bilinç düzeyi bu İS’ni saldırganların hedefi haline getirmektedir. Android İS’nin güvenlik mekanizmasını temelini izin tabanlı güvenlik modeli oluşturmaktadır. Uygulamalar, kullanıcı tarafından verilen izinlere bağlı olarak işlevlerini yerine getirebilmektedir. Ancak kullanıcı farkındalığı, talep edilen izinlerin suiistimale açık olup olmadığı hususunda yeterli seviyede değildir. Bu sebeple bu uygulamalarda kötücül içerik tespiti için ek yöntemlere ihtiyaç duyulmaktadır. Bu çalışmada, kötücül yazılım uygulamalarının tespiti amacıyla makine öğrenmesi algoritmaları kullanılarak izin tabanlı bir yöntem önerilmiştir. Önerilen yöntem destek vektör makinesi, rastgele orman, Naïve Bayes ve K en yakın komşu makine öğrenmesi algoritmalarıyla ayrı ayrı denenmiş ve başarımları kıyaslanmıştır. Rastgele orman algoritması %95,65 doğruluk oranıyla en yüksek başarımı sergilemiştir.
Bölüm | Makaleler |
---|---|
Yazarlar | |
Yayımlanma Tarihi | 15 Ağustos 2018 |
Yayımlandığı Sayı | Yıl 2018 Cilt: 22 Sayı: 2 |
e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688
Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.