BibTex RIS Kaynak Göster

Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı

Yıl 2018, Cilt: 22 Sayı: Özel, 448 - 459, 05.10.2018

Öz

Yakın zamanda Burgers denklemlerinin rölativistik modellerinin bir çok çeşidi elde edilip, bu modellerin farklı uzay-zaman geometrilerindeki versiyonları da geliştirildi. Bu makalede daha önceki çalışmalarda kullanılan teknikler geliştirilerek Reissner-Nordström uzay-zaman geometrisine uygulandı. Bunun sonucunda, enerji-momentum tensörlerinden yararlanılarak Euler ve rölativistik Burgers denklemleri elde edildi. Uzay-zamanı küresel ve elektrik yüklü bir kitle olarak tasvir eden Reissner-Nordström metriğnden elde ettiğimiz modelimizin statik çözümler içerdiğini gözlemlediğimiz bu çalışmada, bu çözümlerin davranışları da ayrıca etüt edildi. Bunun yanında sonlu hacim metodları kullanılarak şok ve seyrelme dalgalarının yayılımı bir çok nümerik hesapla gösterildi.

Kaynakça

  • [1] Arene M., 2014. Instability of extreme Reissner-Nordström black holes. Imperial College London, Master Thesis, London.
  • [2] Amorim P., LeFloch P. G., and Okutmustur B. 2008. Finite Volume Schemes on Lorentzian Manifolds. Communications in Mathematical Sciences, Volume 6, Number 4 (2008), 1059-1086.
  • [3] Ceylan T., and Okutmustur B. 2017. Finite volume approximation of the relativistic Burgers equation on a Schwarzschild-(Anti-)de Sitter spacetime. Turk J Math 41(2017), 1027-1041.
  • [4] Ceylan T., and Okutmustur B. 2016. Finite Volume Method for the Relativistic Burgers Model on a (1+1)-Dimensional de Sitter Spacetime. Math. Comput. Appl. 21(2), (2016), 16.
  • [5] Ceylan T., LeFloch P. G., and Okutmustur B. 2018. A Finite Volume Method for the Relativistic Burgers Equation on a FLRW Background Spacetime. Commun. Comput. Phys., 23(2018), 500-519.
  • [6] Guinot V. 2003. Godunov–type schemes: an introduction for engineers. 1st edition. Amsterdam, Netherlands: Elsevier, 508s.
  • [7] Kruzkov S.N. 1970. First-order quasilinear equations in several independent variables, Mat. Sbornik 81 (1970), 285-355; English trans. in Math. USSR Sb. 10 (1970), 217-243.
  • [8] LeFloch P. G., Makhlof H. and Okutmustur B. 2012. Relativistic Burgers equations on a curved spacetime. Derivation and finite volume approximation. SIAM Journal on Numerical Analysis, Volume 50, Number 4, (2012), 2136-2158.
  • [9] LeFloch P. G., Naves V., and Okutmustur B. 2009. Hyperbolic conservation laws on manifolds. Error estimate for finite volume schemes. Acta Math. Sinica 25 (2009), 1041-1066.
  • [10] LeFloch P. G.,and Okutmustur B. 2008. Hyperbolic conservation laws on spacetimes. A finite volume scheme based on differential forms. Far East J Math Sci 31 (2008), 49-83.
  • [11] Nordebo, J. 2016. The Reissner-Nordström metric. Umea University, Department of Physics. Yüksek Lisans Tezi, 46s, Isviçre.
  • [12] LeVeque R.J. 2002. Finite volume methods for hyperbolic problems. 1st edition. Cambridge, England: Cambridge University Press, 558s.
  • [13] Nashed G.G.L. 2007. Stability of Reissner–Nordström Black Hole. Acta Physica Polonica, 112 (2007) 13-19.
  • [14] Van Leer B. 1984. On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe. SIAM J Sci Stat Comput, 5(2012), 1-20.
  • [15] Wald R.M. 1984. General Relativity, 1st edition. The University of Chicago Press, 506s.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Bölüm Makaleler
Yazarlar

Baver Okutmuştur

Yayımlanma Tarihi 5 Ekim 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 22 Sayı: Özel

Kaynak Göster

APA Okutmuştur, B. (2018). Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 22, 448-459.
AMA Okutmuştur B. Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Ekim 2018;22:448-459.
Chicago Okutmuştur, Baver. “Reissner-Nordström Uzay-Zaman Geometrisinde Burgers Modelleri için Şok Ve Seyrelme Dalgalarının Yayılımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22, Ekim (Ekim 2018): 448-59.
EndNote Okutmuştur B (01 Ekim 2018) Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 448–459.
IEEE B. Okutmuştur, “Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 22, ss. 448–459, 2018.
ISNAD Okutmuştur, Baver. “Reissner-Nordström Uzay-Zaman Geometrisinde Burgers Modelleri için Şok Ve Seyrelme Dalgalarının Yayılımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 22 (Ekim 2018), 448-459.
JAMA Okutmuştur B. Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:448–459.
MLA Okutmuştur, Baver. “Reissner-Nordström Uzay-Zaman Geometrisinde Burgers Modelleri için Şok Ve Seyrelme Dalgalarının Yayılımı”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 22, 2018, ss. 448-59.
Vancouver Okutmuştur B. Reissner-Nordström Uzay-zaman Geometrisinde Burgers modelleri için Şok ve Seyrelme Dalgalarının Yayılımı. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2018;22:448-59.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.