Araştırma Makalesi
BibTex RIS Kaynak Göster

Geraghty Contractions in Ordered Uniform Spaces

Yıl 2019, Cilt: 23 Sayı: 3, 970 - 973, 25.12.2019
https://doi.org/10.19113/sdufenbed.569359

Öz

Banach
contraction principle is  first and most
essential result in the fixed point theory. There are many generalisations of
this principle in the literature. One of them is Geraghty contraction. In this
work, Geraghty type contraction was defined via E-distance and common fixed
point theorems were proved for two mappings satisfying Geraghty type
contraction in ordered uniform spaces. Also, some results of these theorems were
obtained.

Kaynakça

  • [1] Willard, S. 1970. General Topology. Addison-Wesley Publishing.
  • [2] Aamri, M., El Moutawakil, D. 2004. Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces. Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis, 20, 83-91.
  • [3] Altun, I., Imdad, M. 2009. Some fixed point theorems on ordered uniform spaces. Filomat, 23(3), 15-22.
  • [4] Turkoglu, D., Ozturk, V. 2014. (psi-phi)-weak contraction on ordered uniform spaces. Filomat, 28(6), 1265—1269.
  • [5] Ozturk, V., Ansari, A.H. 2017. Fixed point theorems for (F,psi,phi)-contractions on ordered S-complete Hausdorff uniform spaces. New Trends in Mathematical Sciences, 5(1), 243-249.
  • [6] Olisama, V., Olaleru, J., Akewe, H., 2017. Best proximity point results for some contractive mappings in uniform spaces. International Journal of Analysis, 2017, Article ID 6173468.
  • [7] Olisama, V., Olaleru, J., Akewe, H., 2018. Best proximity point results for Hardy–Rogers p-proximal cyclic contraction in uniform spaces. Fixed Point Theory Appl., 2018, Article ID 18.
  • [8] Olatinwo, M.O. 2007. Some common fixed point theorems for self-mappings in uniform space. Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis, 23, 47-54.
  • [9] Aamri, M., Bennari, S., El Moutawakil, D. 2006. Fixed points and variational principle in uniform spaces. Siberian Electronic Mathematical Reports, 3, 137-142.
  • [10] Olatinwo, M.O. 2008. On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces. Applied Mathematics E-Notes, 8, 254-262.
  • [11] Shobkolaei, N., Sedghi, S., 2016. Suzuki-type fixed point results for E-contractive maps in uniform spaces. Thai Journal of Mathematics, 14(3), 575-583.
  • [12] Ran, A.C.M., Reurings, M.C.B. 2004. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc., 132, 1435-1443.
  • [13] Nieto, J.J., Lopez, R.R. 2005. Contractive mapping theorems in partially ordered sets applications to ordinary differantial equations. Order., 22, 223-239.
  • [14] Ciric, L.J., Cakić, N., Rajović, M., Ume, J.S. 2008. Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl., 2008, Article ID 131294.
  • [15] Geraghty, M. 1973. On contractive mappings. Proc Amer Math Soc., 40, 604-608.

Sıralı Düzgün Uzaylarda Geraghty Büzülmeler

Yıl 2019, Cilt: 23 Sayı: 3, 970 - 973, 25.12.2019
https://doi.org/10.19113/sdufenbed.569359

Öz

Banach
büzülme prensibi, sabit nokta teorinin ilk ve en önemli sonucudur. Bu prensibin
literatürde pek çok genelleştirmesi vardır. Bunlardan biri de Geraghty
dönüşümüdür.  Bu çalışmada, sıralı düzgün
uzaylarda, E-uzaklık fonksiyonu yardımıyla, Geraghty tipli büzülme tanımlanmış
ve Geraghty tipli büzülmeyi sağlayan iki dönüşüm için ortak sabit nokta teoremleri
ispatlanmıştır. Ayrıca bu teoremlerin bazı sonuçları elde edilmiştir.

Kaynakça

  • [1] Willard, S. 1970. General Topology. Addison-Wesley Publishing.
  • [2] Aamri, M., El Moutawakil, D. 2004. Common fixed point theorems for E-contractive or E-expansive maps in uniform spaces. Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis, 20, 83-91.
  • [3] Altun, I., Imdad, M. 2009. Some fixed point theorems on ordered uniform spaces. Filomat, 23(3), 15-22.
  • [4] Turkoglu, D., Ozturk, V. 2014. (psi-phi)-weak contraction on ordered uniform spaces. Filomat, 28(6), 1265—1269.
  • [5] Ozturk, V., Ansari, A.H. 2017. Fixed point theorems for (F,psi,phi)-contractions on ordered S-complete Hausdorff uniform spaces. New Trends in Mathematical Sciences, 5(1), 243-249.
  • [6] Olisama, V., Olaleru, J., Akewe, H., 2017. Best proximity point results for some contractive mappings in uniform spaces. International Journal of Analysis, 2017, Article ID 6173468.
  • [7] Olisama, V., Olaleru, J., Akewe, H., 2018. Best proximity point results for Hardy–Rogers p-proximal cyclic contraction in uniform spaces. Fixed Point Theory Appl., 2018, Article ID 18.
  • [8] Olatinwo, M.O. 2007. Some common fixed point theorems for self-mappings in uniform space. Acta Mathematica Academiae Peadegogicae Nyiregyhaziensis, 23, 47-54.
  • [9] Aamri, M., Bennari, S., El Moutawakil, D. 2006. Fixed points and variational principle in uniform spaces. Siberian Electronic Mathematical Reports, 3, 137-142.
  • [10] Olatinwo, M.O. 2008. On some common fixed point theorems of Aamri and El Moutawakil in uniform spaces. Applied Mathematics E-Notes, 8, 254-262.
  • [11] Shobkolaei, N., Sedghi, S., 2016. Suzuki-type fixed point results for E-contractive maps in uniform spaces. Thai Journal of Mathematics, 14(3), 575-583.
  • [12] Ran, A.C.M., Reurings, M.C.B. 2004. A fixed point theorem in partially ordered sets and some applications to matrix equations. Proc. Amer. Math. Soc., 132, 1435-1443.
  • [13] Nieto, J.J., Lopez, R.R. 2005. Contractive mapping theorems in partially ordered sets applications to ordinary differantial equations. Order., 22, 223-239.
  • [14] Ciric, L.J., Cakić, N., Rajović, M., Ume, J.S. 2008. Monotone generalized nonlinear contractions in partially ordered metric spaces. Fixed Point Theory Appl., 2008, Article ID 131294.
  • [15] Geraghty, M. 1973. On contractive mappings. Proc Amer Math Soc., 40, 604-608.
Toplam 15 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Vildan Öztürk 0000-0001-5825-2030

Yayımlanma Tarihi 25 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 3

Kaynak Göster

APA Öztürk, V. (2019). Geraghty Contractions in Ordered Uniform Spaces. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 970-973. https://doi.org/10.19113/sdufenbed.569359
AMA Öztürk V. Geraghty Contractions in Ordered Uniform Spaces. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2019;23(3):970-973. doi:10.19113/sdufenbed.569359
Chicago Öztürk, Vildan. “Geraghty Contractions in Ordered Uniform Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 3 (Aralık 2019): 970-73. https://doi.org/10.19113/sdufenbed.569359.
EndNote Öztürk V (01 Aralık 2019) Geraghty Contractions in Ordered Uniform Spaces. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 970–973.
IEEE V. Öztürk, “Geraghty Contractions in Ordered Uniform Spaces”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 3, ss. 970–973, 2019, doi: 10.19113/sdufenbed.569359.
ISNAD Öztürk, Vildan. “Geraghty Contractions in Ordered Uniform Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (Aralık 2019), 970-973. https://doi.org/10.19113/sdufenbed.569359.
JAMA Öztürk V. Geraghty Contractions in Ordered Uniform Spaces. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:970–973.
MLA Öztürk, Vildan. “Geraghty Contractions in Ordered Uniform Spaces”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 3, 2019, ss. 970-3, doi:10.19113/sdufenbed.569359.
Vancouver Öztürk V. Geraghty Contractions in Ordered Uniform Spaces. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(3):970-3.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.