Araştırma Makalesi
BibTex RIS Kaynak Göster

Conformable Kesirli Diferansiyel Denklemlerinin Taylor ve Sonlu Farklar Metodu ile Sayısal Çözümleri

Yıl 2019, Cilt: 23 Sayı: 3, 850 - 863, 25.12.2019
https://doi.org/10.19113/sdufenbed.579361

Öz

Bu çalışmada yeni
tanımlanan conformable kesirli türevli denklemler için güvenilir 
ve etkili bir metot türettik. Kesirli Taylor açılımından ilk önce Euler ve
Taylor metodunu geliştirdik. Bu Taylor açılımı başlangıç noktasından farklı bir noktada
açılmış genelleştirilmiş Taylor serisiridir. Öngörülen metotlar daha etkili ve hızlı olduğunu
birinci dereceden kesirli diferansiyel denklemlere ve ikinci dereceden salınımlı kesirli
diferansiyel denklemlere  uygulayarak gösterdik. İkinci
metodumuz ise kesirli diferansiyel denklemi zayıf tekil integral denklemine dönüştürüp, çarpım intagrasyon kuralını
uygulayarak çözmek olacaktır. Bu yeni tanımda özel tanımlı fonksiyonlar olmadığı için,
metotlar daha doğru sonuç verecek ve bilgisayar programlaması daha kolay olacaktır. Bu
öngörülen metotların kararlılık ve yakınsaklıkları
ispatlanmış olup, teorik sonuçları destekleyen sayısal örnekler verilmiştir.

Kaynakça

  • [1] Zaslavsky, G. M., 2012. Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2012), 461–580.
  • [2] Miller, K., Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st Edition. Wiley, New York, 1993.
  • [3] Podlubny, I. 1999. Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA, 1999.
  • [4] Khalil, R., Horani, M. ,Yousef, A., Sababheh, M. 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264 (2014), 65–70.
  • [5] Abdeljawad, T. 2015. On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279 (2015), 57–66.
  • [6] Chung,W. S. 2015. Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290 (2015), 150–158.
  • [7] Benkhettou, N., Hassani, S., Torres, D. 2015. A conformable fractional calculus on arbitrary time scales. J.King Saud Univ. Sci., 28 (2015), 93–98.
  • [8] Yang, S., Wang, L., Zhang, S. 2018. Conformable derivative: application to non-Darcian flow in lowpermeability porous media. Appl. Math. Lett. 79 (2018), 105–110.
  • [9] Zhou, H., Yang, S., Zhang, S. 2018. Conformable derivative approach to anomalous diffusion. Physica A, 491(2018), 1001–1013.
  • [10] Zhao, D., Luo, M. 2017. General conformable fractional derivative and its physical interpretation. Calcolo, 54(2017) 903–917.
  • [11] Li, C. P., Chen, A., Ye, J. J. 2012. Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys., 230 (2012), 3352–3368.
  • [12] Lin, R., Liu, F. 2007. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Analysis, 66 (2007), 856–869.
  • [13] Li, C., Deng, W. 2007. Remarks on fractional derivatives. Appl. Math. Comput., 187 (2007), 777–784.
  • [14] Deng, W. H. 2008. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal., 47 (2008), 204–226.
  • [15] Lubich, C. 1986. A stability analysis of convolution quadratures for Abel-Volterra integral equations. MA Journal of Numerical Analysis, I6 (1986), 87–101.
  • [16] Diethelm, K., Ford, N., Freed, A. 2002. A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn., 290 (2002), 3–22.
  • [17] Li, C., Zeng, F. 2012. Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos Appl. Sci. Eng., 22 (4) (2012), 1230014.
  • [18] Li, C., Zeng, F. 2015. Numerical Methods for Fractional Calculus., 1st Edition. Chapman and Hall/CRC Press,USA.
  • [19] Young, A. 1954. Approximate product-integration. Proc. Roy. Soc. London Ser. A., 224 (1954), 552–561.
  • [20] Caccioppoli, R. 1930. Un teorema generale sull esistenza de elemente uniti una transformazione funzionale. Acad. Naz. Linzei., 11 (1930), 31–49.
  • [21] Usero, D. 2008. Fractional Taylor series for Caputo fractional derivatives. Construction of numerical schemes. http://http://www.fdi.ucm.es/profesor/lvazquez/calcfrac/docs/paper_Usero.pdf (Eri¸sim Tarihi: 23.01.2008).
  • [22] Deng, W. H. 2007. Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys., 227 (2007), 1510–1522.
  • [23] Huang, Y. , Lau, T. 2003. A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind. J. Math. Anal. Appl., 282 (2003), 56–62.

Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods

Yıl 2019, Cilt: 23 Sayı: 3, 850 - 863, 25.12.2019
https://doi.org/10.19113/sdufenbed.579361

Öz

We drive efficient and
reliable finite difference methods for fractional differential equations (FDEs)
based on recently defined conformable fractional derivative. We first derive
fractional Euler and fractional Taylor methods based on the fractional Taylor
expansion. This fractional Taylor series are the generalized fractional Taylor series
that are independent of initial point. We show that the proposed methods are
more efficient and faster by applying these methods on first order FDEs and
second order oscillatory FDEs. Our second approach is based on inverting FDEs
to a weakly singular integral equation that is approximated by product
integration rule. This new definition has no special functions and thus the
proposed numerical methods will be more accurate and easier to implement than
existing methods for FDEs. We prove the stability and convergence of the
proposed methods. Numerical examples are given to support the theoretical
results.

Kaynakça

  • [1] Zaslavsky, G. M., 2012. Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2012), 461–580.
  • [2] Miller, K., Ross, B. 1993. An Introduction to the Fractional Calculus and Fractional Differential Equations, 1st Edition. Wiley, New York, 1993.
  • [3] Podlubny, I. 1999. Fractional Differential Equations, Mathematics in Science and Engineering. Academic Press Inc., San Diego, CA, 1999.
  • [4] Khalil, R., Horani, M. ,Yousef, A., Sababheh, M. 2014. A new definition of fractional derivative. Journal of Computational and Applied Mathematics, 264 (2014), 65–70.
  • [5] Abdeljawad, T. 2015. On conformable fractional calculus. Journal of Computational and Applied Mathematics, 279 (2015), 57–66.
  • [6] Chung,W. S. 2015. Fractional Newton mechanics with conformable fractional derivative. Journal of Computational and Applied Mathematics, 290 (2015), 150–158.
  • [7] Benkhettou, N., Hassani, S., Torres, D. 2015. A conformable fractional calculus on arbitrary time scales. J.King Saud Univ. Sci., 28 (2015), 93–98.
  • [8] Yang, S., Wang, L., Zhang, S. 2018. Conformable derivative: application to non-Darcian flow in lowpermeability porous media. Appl. Math. Lett. 79 (2018), 105–110.
  • [9] Zhou, H., Yang, S., Zhang, S. 2018. Conformable derivative approach to anomalous diffusion. Physica A, 491(2018), 1001–1013.
  • [10] Zhao, D., Luo, M. 2017. General conformable fractional derivative and its physical interpretation. Calcolo, 54(2017) 903–917.
  • [11] Li, C. P., Chen, A., Ye, J. J. 2012. Numerical approaches to fractional calculus and fractional ordinary differential equation. J. Comput. Phys., 230 (2012), 3352–3368.
  • [12] Lin, R., Liu, F. 2007. Fractional high order methods for the nonlinear fractional ordinary differential equation. Nonlinear Analysis, 66 (2007), 856–869.
  • [13] Li, C., Deng, W. 2007. Remarks on fractional derivatives. Appl. Math. Comput., 187 (2007), 777–784.
  • [14] Deng, W. H. 2008. Finite element method for the space and time fractional Fokker-Planck equation. SIAM J. Numer. Anal., 47 (2008), 204–226.
  • [15] Lubich, C. 1986. A stability analysis of convolution quadratures for Abel-Volterra integral equations. MA Journal of Numerical Analysis, I6 (1986), 87–101.
  • [16] Diethelm, K., Ford, N., Freed, A. 2002. A predictor–corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn., 290 (2002), 3–22.
  • [17] Li, C., Zeng, F. 2012. Finite difference methods for fractional differential equations. Int. J. Bifurc. Chaos Appl. Sci. Eng., 22 (4) (2012), 1230014.
  • [18] Li, C., Zeng, F. 2015. Numerical Methods for Fractional Calculus., 1st Edition. Chapman and Hall/CRC Press,USA.
  • [19] Young, A. 1954. Approximate product-integration. Proc. Roy. Soc. London Ser. A., 224 (1954), 552–561.
  • [20] Caccioppoli, R. 1930. Un teorema generale sull esistenza de elemente uniti una transformazione funzionale. Acad. Naz. Linzei., 11 (1930), 31–49.
  • [21] Usero, D. 2008. Fractional Taylor series for Caputo fractional derivatives. Construction of numerical schemes. http://http://www.fdi.ucm.es/profesor/lvazquez/calcfrac/docs/paper_Usero.pdf (Eri¸sim Tarihi: 23.01.2008).
  • [22] Deng, W. H. 2007. Numerical algorithm for the time fractional Fokker–Planck equation. J. Comput. Phys., 227 (2007), 1510–1522.
  • [23] Huang, Y. , Lau, T. 2003. A generalization of discrete Gronwall inequality and its application to weakly singular Volterra integral equation of the second kind. J. Math. Anal. Appl., 282 (2003), 56–62.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Şuayip Toprakseven 0000-0003-3901-9641

Yayımlanma Tarihi 25 Aralık 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 23 Sayı: 3

Kaynak Göster

APA Toprakseven, Ş. (2019). Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 23(3), 850-863. https://doi.org/10.19113/sdufenbed.579361
AMA Toprakseven Ş. Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. Aralık 2019;23(3):850-863. doi:10.19113/sdufenbed.579361
Chicago Toprakseven, Şuayip. “Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23, sy. 3 (Aralık 2019): 850-63. https://doi.org/10.19113/sdufenbed.579361.
EndNote Toprakseven Ş (01 Aralık 2019) Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23 3 850–863.
IEEE Ş. Toprakseven, “Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods”, Süleyman Demirel Üniv. Fen Bilim. Enst. Derg., c. 23, sy. 3, ss. 850–863, 2019, doi: 10.19113/sdufenbed.579361.
ISNAD Toprakseven, Şuayip. “Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 23/3 (Aralık 2019), 850-863. https://doi.org/10.19113/sdufenbed.579361.
JAMA Toprakseven Ş. Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23:850–863.
MLA Toprakseven, Şuayip. “Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 23, sy. 3, 2019, ss. 850-63, doi:10.19113/sdufenbed.579361.
Vancouver Toprakseven Ş. Numerical Solutions of Conformable Fractional Differential Equations by Taylor and Finite Difference Methods. Süleyman Demirel Üniv. Fen Bilim. Enst. Derg. 2019;23(3):850-63.

e-ISSN :1308-6529
Linking ISSN (ISSN-L): 1300-7688

Dergide yayımlanan tüm makalelere ücretiz olarak erişilebilinir ve Creative Commons CC BY-NC Atıf-GayriTicari lisansı ile açık erişime sunulur. Tüm yazarlar ve diğer dergi kullanıcıları bu durumu kabul etmiş sayılırlar. CC BY-NC lisansı hakkında detaylı bilgiye erişmek için tıklayınız.