Araştırma Makalesi
BibTex RIS Kaynak Göster

Green Synthesis of Silver Nanoparticles and Their Antimicrobial Effects on Some Food Pathogens

Yıl 2022, Cilt: 26 Sayı: 1, 106 - 114, 25.04.2022
https://doi.org/10.19113/sdufenbed.970654

Öz

In this study, silver nanoparticles (AgNPs) were obtained by biological method in a simple, low-cost and environmentally friendly way. The characterization of the synthesized AgNPs was fulfilled using UV-visible Spectrophotometer, Field Emission Scanning Electron Microscope (FE-SEM), Transmission Electron Microscopy (TEM), Energy-Dispersive X-Ray Spectroscopy, X-Ray Diffraction Diffractrometer (XRD), Fourier Transform Infrared Spectroscopy and Zeta sizer and potantial devices. It was determined that AgNPs gave a maximum peak at 440-450 nm absorbance. According to the TEM and FE-SEM results, the morphological structures of the nanoparticles were spherical and their average size was 38 nm. According to the XRD pattern, it was observed that the powder crystal structures of the nanoparticles were cubic and 21.94 nm in size. The zeta size of the nanoparticles was 158.2 nm on average and zeta potential of nanoparticles was -23.4 mV. Minimum Inhibition Concentrations (MIC) (mg/mL) of the synthesized AgNPs on Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 11774, Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Candida albicans were determined as 1.25, 0.625, 2.5, 1.25 and 0.312, respectively. AgNO3 and antibiotic MIC values (mg/mL) of the mentioned microorganisms were determined as 2.65;2, 1.32;1, 0.66;2, 1.32;4, 0.66;2, respectively.

Kaynakça

  • [1] Sharma, C., Dhiman, R., Rokana, N., Panwar, H. 2017. Nanotechnology: An Untapped Resource for Food Packaging. Frontiers in Microbiology, 8, 1735.
  • [2] Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J. Pettersen, M.K. 2021. Nanocomposites for Food Packaging Applications: An Overview. Nanomaterials, 11(1), 10.
  • [3] Fernández, A., Picouet, P., Lloret, E. 2010. Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Journal of Food Protection, 73(12), 2263-2269.
  • [4] Adeyeye, S. A. O. 2019. Food packaging and nanotechnology: safeguarding consumer health and safety. Nutrition & Food Science, 49(6), 1164-1179.
  • [5] Beykara, M., Çağlar, A. 2016. Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641.
  • [6] Baran, A., Keskin, C., Baran, M. F. 2020. Metalik Nanopartiküllerin Çevre Dostu Sentezi ve Karakterizasyonu. ss 47-70. Keskin, C., Baran, M. F., ed. 2004. Nanomalzeme Sentezi ve Güncel Kullanım Alanları, İksad Yayınevi, Türkiye, 110s.
  • [7] Wahab, A., Abdul Rahim, A., Hassan, S., Egbuna, C., Manzoor, M. F., Okere, K. J., Walag, A. M. P. 2021. Application of nanotechnology in the packaging of edible materials. ss 215-225. Egbuna, C., Mishra, A. P. Goyal, M. R., ed. 2021. Preparation of Phytopharmaceuticals for the Management of Disorders, Academic Press, USA, 574s.
  • [8] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1-3), 134-139.
  • [9] Nartop, P. 2019. Yeşil Sentez Yolu İle Gümüş Nanopartiküllerin Elde Edilmesinde Bitkisel Ekstrelerin İndirgeyici Ajan Olarak Kullanılması. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi C-Yaşam Bilimleri ve Biyoteknoloji, 8(1), 50-60.
  • [10] Baran, M. F., Saydut, A. 2019. Altın nanomalzeme sentezi ve karakterizasyonu. DÜMF Mühendislik Dergisi, 10(3), 1033-1040.
  • [11] Sharma, V. K., Yngard, R. A., Lin, Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science, 145(1-2), 83-96.
  • [12] Chook, S. W., Chia, C. H., Zakaria, S., Ayob, M. K., Chee, K. L., Huang, N. M., Neoh, H. M., Lim, H. N., Jamal, R., Rahman, R. 2012. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters, 7, 541.
  • [13] Baran, A. 2021. Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biyomedikal uygulamaları. DÜMF Mühendislik Dergisi, 12(2), 329-336.
  • [14] Smolkova, B., El Yamani, N., Collins, A. R., Gutleb, A. C., Dusinska, M. 2015. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food and Chemical Toxicology, 77, 64-73.
  • [15] Sánchez-Valdes, S., Ortega-Ortiz, H., Ramos-de Valle, L. F., Medellín-Rodríguez, F. J., Guedea-Miranda, R. 2008. Mechanical and antimicrobial properties of multilayer films with a polyethylene / silver nanocomposite layer. Journal of Applied Polymer Science, 111(2), 953-962.
  • [16] Rhim, J. W., Park, H. M., Ha, C. S. 2013. Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
  • [17] Awwad, A. M., Salem, N. M. 2012. Green Synthesis of Silver Nanoparticles by Mulberry Leaves Extract. Nanoscience and Nanotechnology, 2(4), 125-128.
  • [18] Ndikau, M., Noah, N. M., Andala, D. M., Masika, E. 2017. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. International Journal of Analytical Chemistry, 2017, 8108504.
  • [19] Baran, M. F. 2019. Synthesis and Antimicrobial Applications of Silver Nanoparticles From Artemisia absinthium plant. Biological and Chemical Research, 6, 96-103.
  • [20] Fatema, S., Shirsat, M., Farooqui, M. Arif, P. M. 2019. Biosynthesis of Silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. International Journal of Nano Dimension, 10(2), 163-168.
  • [21] Jayaprakash, N., Vijaya, J. J., Kaviyarasu, K., Kombaiah, K., Kennedy, L. J., Ramalingam, R. J., Munusamy, M. A., Al-Lohedan, H. A. 2017. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178-185.
  • [22] Pugazhendhi, S., Palanisamy, P. K., Jayavel, R. 2018. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457-463.
  • [23] Ambika, S., Sundrarajan, M. 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 146, 52-57. [24] Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I. M. 2016. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6), 1015-1019.
  • [25] Baran, M. F. 2019. Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi. DÜMF Mühendislik Dergisi, 10(1), 221-227.
  • [26] Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., Mirzapour, A. 2018. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148-154.
  • [27] Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C., Narayanan, V. 2014. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. European Journal of Medicinal Chemistry, 76, 256–263.
  • [28] Swamy, M. K., Akhtar, M. S., Mohanty, S. K., Sinniah, U. R. 2015. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 939-944.
  • [29] Smith, E., Meissl, K. 2007. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27(2), 268-276.
  • [30] Muthusamy, G., Thangasamy, S., Raja, M., Chinnappan, S., Kandasamy, S. 2017. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research, 24, 19459-19464.
  • [31] Kumar, J. K., Prasad, A. G. D. 2011. Identification and Comparison of Biomolecules in Medicinal Plants of Tephrosia tinctoria and Atylosia albicans By Using FTIR. Romanian Journal of Biophysics, 21(1), 63-71.
  • [32] Paosen, S., Saising, J., Wira Septama, A., Piyawan Voravuthikunchai, S. 2017. Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201-206.
  • [33] Roy, S., Shankar, S., Rhim, J.-W. 2019. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 88, 237-246.
  • [34] Aromal, S. A., Vidhu, V. K., Philip, D. 2012. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85(1), 99-104.
  • [35] Aktepe, N. 2021. Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • [36] Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastaka, V., Hasan, S. H., Asthana, R. K. 2017. Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202-211.
  • [37] Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., Zhang, L., Zhou, J., Peng, Q. 2019. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/ Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 4, 1897-1906.
  • [38] Rajoka, M. S. R., Mehwish, H. M., Zhang, H., Ashraf, M., Fang, H., Zeng, X., Wu, Y., Khurshid, M., Zhao, L., He, Z. 2020. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186, 110734.
  • [39] Baran, M. F., Keskin, C., Atalar, M. N., Baran, A. 2021. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 11(1), 365-375.
  • [40] Jenifer, A. A., Malaikozhundan, B., Vijayakumar, S., Anjugam, M., Iswarya, A., Vaseeharan, B. 2019. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. Journal of Cluster Science, 31, 989-1002.
  • [41] Alkhalaf, M. I., Hussein, R. H., Hamza, A. 2020. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 27(9), 2410-2419.
  • [42] Hoseinnejad, M., Jafari, S. M., Katouzian, I. 2017. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161-181.
  • [43] Ramkumar, V. S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G. D., Dung, T., Kannapiran, E. 2017. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 14, 1-7.
  • [44] Lopes, C. R. B., Courrol, L. C. 2018. Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. Journal of Luminescence, 199, 183-187.
  • [45] Pallela, P. N. V. K., Ummey, S., Ruddaraju, L. K., Pammi, S. V. N., Yoon, S. G. 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69.
  • [46] Baran, M. F., Koç, A., Uzan, S. 2018. Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül (AgNP) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences, 5, 44-52.
  • [47] Becaro, A. A., Jonsson, C.M., Puti, F. C., Siqueira, M. C., Mattoso, L. H. C., Correa, D. S., Ferreira, M. D. 2015. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring & Management, 3, 22-29.
  • [48] Kedi, P., Meva, F. E., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., Mohamed, H., Dongmo, A. B., Maaza, M. 2018. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International Journal of Nanomedicine, 13, 8537-8548.
  • [49] Nguyen, T.-D., Dang, C.-H., Mai, D.-T. 2018. Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydrate Polymers, 197, 29-37.
  • [50] Khamhaengpol, A., Siri, S. 2017. Green synthesis of silver nanoparticles using tissue extract of weaver ant larvae. Materials Letters, 192, 72-75.
  • [51] Dada, A. O., Adekola, F. A., Dada, F. E., Adelani-Akande, A. T., Bello, M. O., Okonkwo, C. R., Inyinbor, A. A., Oluyori, A. P., Olayanju, A., Ajanaku, K. O., Adetunji, C. O. 2019. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 5, 10, e02517.
  • [52] Tavakol, S., Hoveizi, E., Kharrazi, S., Tavakol, B., Karimi, S., Sorkhabadi, S. M. R. 2016. Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 817-823.
  • [53] Maddinedi, S. B., Mandal, B. K., Maddili, S. K. 2017. Biofabrication of size controllable silver nanoparticles - A green approach. Journal of Photochemistry and Photobiology B: Biology, 167, 236-241.
  • [54] Mapala, K., Pattabi, M. 2017. Mimosa pudica Flower Extract Mediated Green Synthesis of Gold Nanoparticles. NanoWorld Journal, 3(2), 44-50.
  • [55] Patil, M. P., Singh, R. D., Koli, P. B., Patil, K. T., Jagdale P. S., Tipare A. R., Kim G.-D. 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis, 121, 184-189.
  • [56] Thirumagal, N., Jeyakumari, A. P. 2020. Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract. Journal of Cluster Science, 31, 487-497.
  • [57] Hatipoğlu, A. 2021. Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progress in Nutrition, 23(3), e2021241.
  • [58] Hatipoğlu, A. 2021. Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. [59] Moodley, J. S., Krishna, S. B. N., Pillay, K., Govender, S., Govender, P. 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1), 015011.
  • [60] Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D. 2020. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10, 12805.
  • [61] Tamboli, D. P., Lee, D. S. 2013. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878-84.
  • [62] Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.
  • [63] Gaillet, S., Rouanet, J. M. 2015. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms – A review. Food and Chemical Toxicology, 77, 58-63.
  • [64] Hannon, J. C., Cummins, E., Kerry, J., Cruz-Romero, M., Morris, M. 2015. Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science & Technology, 43(1), 43-62.
  • [65] Baran, A., Keskin, C. 2020. Nanopartiküllerin Yeşil Sentezi ve Anti-Mikrobiyal Uygulamaları. ss 1-18. Akgül, H., ed. 2020. Fen Bilimleri ve Matematik Alanında Akademik Çalışmalar II, Gece Kitaplığı, Türkiye, 96s.
  • [66] Baran, M. F., Saydut, A., Umaz, A. 2019. Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. DÜMF Mühendislik Dergisi, 10(2), 689-695.

Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri

Yıl 2022, Cilt: 26 Sayı: 1, 106 - 114, 25.04.2022
https://doi.org/10.19113/sdufenbed.970654

Öz

Bu çalışmada, gümüş nanopartiküller (AgNP’ler) biyolojik yöntemle kolay, düşük maliyetli ve çevre dostu bir şekilde elde edilmiştir. Sentezi yapılan AgNP’lerin karakterizasyonu UV-visible Spektrofotometre (UV-Vis.), Alan Emisyon Taramalı Elektron Mikroskobu (FE-SEM), Transmisyon Elektron Mikroskobu (TEM), Enerji Dağılımlı X-Işını Spektroskopisi (EDX), X- Işını Kırınımı Difraktrometresi (XRD), Fourier Dönüşümü Kızılötesi Spektroskopisi (FT-IR) ve Zeta boyut ve potansiyel cihazı kullanılarak yapılmıştır. AgNP’lerin 440-450 nm absorbansta maksimum pik vermiştir. TEM ve FE-SEM sonuçlarına göre nanopartiküllerin morfolojik yapılarının küresel ve ortalama 38 nm; XRD sonuçlarına göre nanopartiküllerin toz kristal yapılarının kübik ve 21.94 nm boyutunda; zeta boyutunun ise ortalama 158.2 nm, zeta potansiyelinin -23.4 mV olduğu görülmüştür. Sentezlenen AgNP'lerin Staphylococcus aureus ATCC 29213, Bacillus subtilis ATCC 11774 Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 ve Candida albicans üzerinde Minimum İnhibisyon Konsantrasyonları (MİK) (mg/mL) sırasıyla 1.25, 0.625, 2.50, 1.25 ve 0.312 olarak tespit edilmiştir. Söz konusu mikroorganizmaların AgNO3 ve antibiyotik MİK değerleri (mg/mL) sırasıyla 2.65;2, 1.32;1, 0.66;2, 1.32;4, 0.66;2 olarak tespit edilmiştir.

Kaynakça

  • [1] Sharma, C., Dhiman, R., Rokana, N., Panwar, H. 2017. Nanotechnology: An Untapped Resource for Food Packaging. Frontiers in Microbiology, 8, 1735.
  • [2] Sarfraz, J., Gulin-Sarfraz, T., Nilsen-Nygaard, J. Pettersen, M.K. 2021. Nanocomposites for Food Packaging Applications: An Overview. Nanomaterials, 11(1), 10.
  • [3] Fernández, A., Picouet, P., Lloret, E. 2010. Reduction of the spoilage-related microflora in absorbent pads by silver nanotechnology during modified atmosphere packaging of beef meat. Journal of Food Protection, 73(12), 2263-2269.
  • [4] Adeyeye, S. A. O. 2019. Food packaging and nanotechnology: safeguarding consumer health and safety. Nutrition & Food Science, 49(6), 1164-1179.
  • [5] Beykara, M., Çağlar, A. 2016. Bitkisel Özütler Kullanılarak Gümüş-Nanopartikül (AgNP) Sentezlenmesi ve Antimikrobiyal Etkinlikleri Üzerine Bir Araştırma. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 16(3), 631-641.
  • [6] Baran, A., Keskin, C., Baran, M. F. 2020. Metalik Nanopartiküllerin Çevre Dostu Sentezi ve Karakterizasyonu. ss 47-70. Keskin, C., Baran, M. F., ed. 2004. Nanomalzeme Sentezi ve Güncel Kullanım Alanları, İksad Yayınevi, Türkiye, 110s.
  • [7] Wahab, A., Abdul Rahim, A., Hassan, S., Egbuna, C., Manzoor, M. F., Okere, K. J., Walag, A. M. P. 2021. Application of nanotechnology in the packaging of edible materials. ss 215-225. Egbuna, C., Mishra, A. P. Goyal, M. R., ed. 2021. Preparation of Phytopharmaceuticals for the Management of Disorders, Academic Press, USA, 574s.
  • [8] Bar, H., Bhui, D. K., Sahoo, G. P., Sarkar, P., De, S. P., Misra, A. 2009. Green synthesis of silver nanoparticles using latex of Jatropha curcas. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 339(1-3), 134-139.
  • [9] Nartop, P. 2019. Yeşil Sentez Yolu İle Gümüş Nanopartiküllerin Elde Edilmesinde Bitkisel Ekstrelerin İndirgeyici Ajan Olarak Kullanılması. Eskişehir Teknik Üniversitesi Bilim ve Teknoloji Dergisi C-Yaşam Bilimleri ve Biyoteknoloji, 8(1), 50-60.
  • [10] Baran, M. F., Saydut, A. 2019. Altın nanomalzeme sentezi ve karakterizasyonu. DÜMF Mühendislik Dergisi, 10(3), 1033-1040.
  • [11] Sharma, V. K., Yngard, R. A., Lin, Y. 2009. Silver nanoparticles: Green synthesis and their antimicrobial activities, Advances in Colloid and Interface Science, 145(1-2), 83-96.
  • [12] Chook, S. W., Chia, C. H., Zakaria, S., Ayob, M. K., Chee, K. L., Huang, N. M., Neoh, H. M., Lim, H. N., Jamal, R., Rahman, R. 2012. Antibacterial performance of Ag nanoparticles and AgGO nanocomposites prepared via rapid microwave-assisted synthesis method. Nanoscale Research Letters, 7, 541.
  • [13] Baran, A. 2021. Gümüş nano malzemelerin çevre dostu, hızlı sentezi ve biyomedikal uygulamaları. DÜMF Mühendislik Dergisi, 12(2), 329-336.
  • [14] Smolkova, B., El Yamani, N., Collins, A. R., Gutleb, A. C., Dusinska, M. 2015. Nanoparticles in food. Epigenetic changes induced by nanomaterials and possible impact on health. Food and Chemical Toxicology, 77, 64-73.
  • [15] Sánchez-Valdes, S., Ortega-Ortiz, H., Ramos-de Valle, L. F., Medellín-Rodríguez, F. J., Guedea-Miranda, R. 2008. Mechanical and antimicrobial properties of multilayer films with a polyethylene / silver nanocomposite layer. Journal of Applied Polymer Science, 111(2), 953-962.
  • [16] Rhim, J. W., Park, H. M., Ha, C. S. 2013. Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38(10-11), 1629-1652.
  • [17] Awwad, A. M., Salem, N. M. 2012. Green Synthesis of Silver Nanoparticles by Mulberry Leaves Extract. Nanoscience and Nanotechnology, 2(4), 125-128.
  • [18] Ndikau, M., Noah, N. M., Andala, D. M., Masika, E. 2017. Green Synthesis and Characterization of Silver Nanoparticles Using Citrullus lanatus Fruit Rind Extract. International Journal of Analytical Chemistry, 2017, 8108504.
  • [19] Baran, M. F. 2019. Synthesis and Antimicrobial Applications of Silver Nanoparticles From Artemisia absinthium plant. Biological and Chemical Research, 6, 96-103.
  • [20] Fatema, S., Shirsat, M., Farooqui, M. Arif, P. M. 2019. Biosynthesis of Silver nanoparticle using aqueous extract of Saraca asoca leaves, its characterization and antimicrobial activity. International Journal of Nano Dimension, 10(2), 163-168.
  • [21] Jayaprakash, N., Vijaya, J. J., Kaviyarasu, K., Kombaiah, K., Kennedy, L. J., Ramalingam, R. J., Munusamy, M. A., Al-Lohedan, H. A. 2017. Green synthesis of Ag nanoparticles using Tamarind fruit extract for the antibacterial studies. Journal of Photochemistry and Photobiology B: Biology, 169, 178-185.
  • [22] Pugazhendhi, S., Palanisamy, P. K., Jayavel, R. 2018. Synthesis of highly stable silver nanoparticles through a novel green method using Mirabillis jalapa for antibacterial, nonlinear optical applications. Optical Materials, 79, 457-463.
  • [23] Ambika, S., Sundrarajan, M. 2015. Antibacterial behaviour of Vitex negundo extract assisted ZnO nanoparticles against pathogenic bacteria. Journal of Photochemistry and Photobiology B: Biology, 146, 52-57. [24] Elshikh, M., Ahmed, S., Funston, S., Dunlop, P., McGaw, M., Marchant, R., Banat, I. M. 2016. Resazurin-based 96-well plate microdilution method for the determination of minimum inhibitory concentration of biosurfactants. Biotechnology Letters, 38(6), 1015-1019.
  • [25] Baran, M. F. 2019. Prunus avium kiraz yaprağı özütü ile gümüş nanopartikül (AgNP) sentezi ve antimikrobiyal etkisinin incelenmesi. DÜMF Mühendislik Dergisi, 10(1), 221-227.
  • [26] Behravan, M., Panahi, A. H., Naghizadeh, A., Ziaee, M., Mahdavi, R., Mirzapour, A. 2018. Facile green synthesis of silver nanoparticles using Berberis vulgaris leaf and root aqueous extract and its antibacterial activity. International Journal of Biological Macromolecules, 124, 148-154.
  • [27] Lokina, S., Stephen, A., Kaviyarasan, V., Arulvasu, C., Narayanan, V. 2014. Cytotoxicity and antimicrobial activities of green synthesized silver nanoparticles. European Journal of Medicinal Chemistry, 76, 256–263.
  • [28] Swamy, M. K., Akhtar, M. S., Mohanty, S. K., Sinniah, U. R. 2015. Synthesis and characterization of silver nanoparticles using fruit extract of Momordica cymbalaria and assessment of their in vitro antimicrobial, antioxidant and cytotoxicity activities. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 151, 939-944.
  • [29] Smith, E., Meissl, K. 2007. The applicability of Fourier transform infrared (FT-IR) spectroscopy in waste management. Waste Management, 27(2), 268-276.
  • [30] Muthusamy, G., Thangasamy, S., Raja, M., Chinnappan, S., Kandasamy, S. 2017. Biosynthesis of silver nanoparticles from Spirulina microalgae and its antibacterial activity. Environmental Science and Pollution Research, 24, 19459-19464.
  • [31] Kumar, J. K., Prasad, A. G. D. 2011. Identification and Comparison of Biomolecules in Medicinal Plants of Tephrosia tinctoria and Atylosia albicans By Using FTIR. Romanian Journal of Biophysics, 21(1), 63-71.
  • [32] Paosen, S., Saising, J., Wira Septama, A., Piyawan Voravuthikunchai, S. 2017. Green synthesis of silver nanoparticles using plants from Myrtaceae family and characterization of their antibacterial activity. Materials Letters, 209, 201-206.
  • [33] Roy, S., Shankar, S., Rhim, J.-W. 2019. Melanin-mediated synthesis of silver nanoparticle and its use for the preparation of carrageenan-based antibacterial films. Food Hydrocolloids, 88, 237-246.
  • [34] Aromal, S. A., Vidhu, V. K., Philip, D. 2012. Green synthesis of well-dispersed gold nanoparticles using Macrotyloma uniflorum. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 85(1), 99-104.
  • [35] Aktepe, N. 2021. Gümüş nano materyallerin sentezi, karakterizasyonu ve antimikrobiyal aktiviteleri. DÜMF Mühendislik Dergisi, 12(2), 347-354.
  • [36] Singh, A. K., Tiwari, R., Kumar, V., Singh, P., Riyazat Khadim, S. K., Tiwari, A., Srivastaka, V., Hasan, S. H., Asthana, R. K. 2017. Photo-induced biosynthesis of silver nanoparticles from aqueous extract of Dunaliella salina and their anticancer potential. Journal of Photochemistry and Photobiology B: Biology, 166, 202-211.
  • [37] Huang, X., Wang, R., Jiao, T., Zou, G., Zhan, F., Yin, J., Zhang, L., Zhou, J., Peng, Q. 2019. Facile Preparation of Hierarchical AgNP-Loaded MXene/Fe3O4/ Polymer Nanocomposites by Electrospinning with Enhanced Catalytic Performance for Wastewater Treatment. ACS Omega, 4, 1897-1906.
  • [38] Rajoka, M. S. R., Mehwish, H. M., Zhang, H., Ashraf, M., Fang, H., Zeng, X., Wu, Y., Khurshid, M., Zhao, L., He, Z. 2020. Antibacterial and antioxidant activity of exopolysaccharide mediated silver nanoparticle synthesized by Lactobacillus brevis isolated from Chinese koumiss. Colloids and Surfaces B: Biointerfaces, 186, 110734.
  • [39] Baran, M. F., Keskin, C., Atalar, M. N., Baran, A. 2021. Environmentally Friendly Rapid Synthesis of Gold Nanoparticles from Artemisia absinthium Plant Extract and Application of Antimicrobial Activities. Journal of the Institute of Science and Technology, 11(1), 365-375.
  • [40] Jenifer, A. A., Malaikozhundan, B., Vijayakumar, S., Anjugam, M., Iswarya, A., Vaseeharan, B. 2019. Green Synthesis and Characterization of Silver Nanoparticles (AgNPs) Using Leaf Extract of Solanum nigrum and Assessment of Toxicity in Vertebrate and Invertebrate Aquatic Animals. Journal of Cluster Science, 31, 989-1002.
  • [41] Alkhalaf, M. I., Hussein, R. H., Hamza, A. 2020. Green synthesis of silver nanoparticles by Nigella sativa extract alleviates diabetic neuropathy through anti-inflammatory and antioxidant effects. Saudi Journal of Biological Sciences, 27(9), 2410-2419.
  • [42] Hoseinnejad, M., Jafari, S. M., Katouzian, I. 2017. Inorganic and metal nanoparticles and their antimicrobial activity in food packaging applications. Critical Reviews in Microbiology, 44(2), 161-181.
  • [43] Ramkumar, V. S., Pugazhendhi, A., Gopalakrishnan, K., Sivagurunathan, P., Saratale, G. D., Dung, T., Kannapiran, E. 2017. Biofabrication and characterization of silver nanoparticles using aqueous extract of seaweed Enteromorpha compressa and its biomedical properties. Biotechnology Reports, 14, 1-7.
  • [44] Lopes, C. R. B., Courrol, L. C. 2018. Green synthesis of silver nanoparticles with extract of Mimusops coriacea and light. Journal of Luminescence, 199, 183-187.
  • [45] Pallela, P. N. V. K., Ummey, S., Ruddaraju, L. K., Pammi, S. V. N., Yoon, S. G. 2018. Ultra Small, mono dispersed green synthesized silver nanoparticles using aqueous extract of Sida cordifolia plant and investigation of antibacterial activity. Microbial Pathogenesis, 124, 63-69.
  • [46] Baran, M. F., Koç, A., Uzan, S. 2018. Kenger (Gundelia tournefortii) Yaprağı İle Gümüş Nanopartikül (AgNP) Sentezi, Karakterizasyonu ve Antimikrobiyal Uygulamaları. International Journal on Mathematic, Engineering and Natural Sciences, 5, 44-52.
  • [47] Becaro, A. A., Jonsson, C.M., Puti, F. C., Siqueira, M. C., Mattoso, L. H. C., Correa, D. S., Ferreira, M. D. 2015. Toxicity of PVA-stabilized silver nanoparticles to algae and microcrustaceans. Environmental Nanotechnology, Monitoring & Management, 3, 22-29.
  • [48] Kedi, P., Meva, F. E., Kotsedi, L., Nguemfo, E. L., Zangueu, C. B., Ntoumba, A. A., Mohamed, H., Dongmo, A. B., Maaza, M. 2018. Eco-friendly synthesis, characterization, in vitro and in vivo anti-inflammatory activity of silver nanoparticle-mediated Selaginella myosurus aqueous extract. International Journal of Nanomedicine, 13, 8537-8548.
  • [49] Nguyen, T.-D., Dang, C.-H., Mai, D.-T. 2018. Biosynthesized AgNP capped on novel nanocomposite 2-hydroxypropyl-β-cyclodextrin/alginate as a catalyst for degradation of pollutants. Carbohydrate Polymers, 197, 29-37.
  • [50] Khamhaengpol, A., Siri, S. 2017. Green synthesis of silver nanoparticles using tissue extract of weaver ant larvae. Materials Letters, 192, 72-75.
  • [51] Dada, A. O., Adekola, F. A., Dada, F. E., Adelani-Akande, A. T., Bello, M. O., Okonkwo, C. R., Inyinbor, A. A., Oluyori, A. P., Olayanju, A., Ajanaku, K. O., Adetunji, C. O. 2019. Silver nanoparticle synthesis by Acalypha wilkesiana extract: phytochemical screening, characterization, influence of operational parameters, and preliminary antibacterial testing. Heliyon, 5, 10, e02517.
  • [52] Tavakol, S., Hoveizi, E., Kharrazi, S., Tavakol, B., Karimi, S., Sorkhabadi, S. M. R. 2016. Organelles and chromatin fragmentation of human umbilical vein endothelial cell influence by the effects of zeta potential and size of silver nanoparticles in different manners. Artificial Cells, Nanomedicine, and Biotechnology, 45(4), 817-823.
  • [53] Maddinedi, S. B., Mandal, B. K., Maddili, S. K. 2017. Biofabrication of size controllable silver nanoparticles - A green approach. Journal of Photochemistry and Photobiology B: Biology, 167, 236-241.
  • [54] Mapala, K., Pattabi, M. 2017. Mimosa pudica Flower Extract Mediated Green Synthesis of Gold Nanoparticles. NanoWorld Journal, 3(2), 44-50.
  • [55] Patil, M. P., Singh, R. D., Koli, P. B., Patil, K. T., Jagdale P. S., Tipare A. R., Kim G.-D. 2018. Antibacterial potential of silver nanoparticles synthesized using Madhuca longifolia flower extract as a green resource. Microbial Pathogenesis, 121, 184-189.
  • [56] Thirumagal, N., Jeyakumari, A. P. 2020. Structural, Optical and Antibacterial Properties of Green Synthesized Silver Nanoparticles (AgNPs) Using Justicia adhatoda L. Leaf Extract. Journal of Cluster Science, 31, 487-497.
  • [57] Hatipoğlu, A. 2021. Green synthesis of gold nanoparticles from Prunus cerasifera pissardii nigra leaf and their antimicrobial activities on some food pathogens. Progress in Nutrition, 23(3), e2021241.
  • [58] Hatipoğlu, A. 2021. Abelmoschus esculentus yaprağı kullanılarak gümüş nanopartiküllerin yeşil sentezi ve bazı gıda patojenleri üzerindeki antimikrobiyal etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 22(2), 239-246. [59] Moodley, J. S., Krishna, S. B. N., Pillay, K., Govender, S., Govender, P. 2018. Green synthesis of silver nanoparticles from Moringa oleifera leaf extracts and its antimicrobial potential. Advances in Natural Sciences: Nanoscience and Nanotechnology, 9(1), 015011.
  • [60] Garibo, D., Borbón-Nuñez, H. A., de León, J. N. D. 2020. Green synthesis of silver nanoparticles using Lysiloma acapulcensis exhibit high-antimicrobial activity. Scientific Reports, 10, 12805.
  • [61] Tamboli, D. P., Lee, D. S. 2013. Mechanistic antimicrobial approach of extracellularly synthesized silver nanoparticles against gram positive and gram negative bacteria. Journal of Hazardous Materials, 260, 878-84.
  • [62] Duncan, T. V. 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of Colloid and Interface Science, 363(1), 1-24.
  • [63] Gaillet, S., Rouanet, J. M. 2015. Silver nanoparticles: Their potential toxic effects after oral exposure and underlying mechanisms – A review. Food and Chemical Toxicology, 77, 58-63.
  • [64] Hannon, J. C., Cummins, E., Kerry, J., Cruz-Romero, M., Morris, M. 2015. Advances and challenges for the use of engineered nanoparticles in food contact materials. Trends in Food Science & Technology, 43(1), 43-62.
  • [65] Baran, A., Keskin, C. 2020. Nanopartiküllerin Yeşil Sentezi ve Anti-Mikrobiyal Uygulamaları. ss 1-18. Akgül, H., ed. 2020. Fen Bilimleri ve Matematik Alanında Akademik Çalışmalar II, Gece Kitaplığı, Türkiye, 96s.
  • [66] Baran, M. F., Saydut, A., Umaz, A. 2019. Gümüş nanomalzeme sentezi ve antimikrobiyal uygulamaları. DÜMF Mühendislik Dergisi, 10(2), 689-695.
Toplam 64 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Abdulkerim Hatipoğlu 0000-0002-1487-1953

Yayımlanma Tarihi 25 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 1

Kaynak Göster

APA Hatipoğlu, A. (2022). Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 106-114. https://doi.org/10.19113/sdufenbed.970654
AMA Hatipoğlu A. Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. SDÜ Fen Bil Enst Der. Nisan 2022;26(1):106-114. doi:10.19113/sdufenbed.970654
Chicago Hatipoğlu, Abdulkerim. “Gümüş Nanopartiküllerin Yeşil Sentezi Ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Nisan 2022): 106-14. https://doi.org/10.19113/sdufenbed.970654.
EndNote Hatipoğlu A (01 Nisan 2022) Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 106–114.
IEEE A. Hatipoğlu, “Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri”, SDÜ Fen Bil Enst Der, c. 26, sy. 1, ss. 106–114, 2022, doi: 10.19113/sdufenbed.970654.
ISNAD Hatipoğlu, Abdulkerim. “Gümüş Nanopartiküllerin Yeşil Sentezi Ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Nisan 2022), 106-114. https://doi.org/10.19113/sdufenbed.970654.
JAMA Hatipoğlu A. Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. SDÜ Fen Bil Enst Der. 2022;26:106–114.
MLA Hatipoğlu, Abdulkerim. “Gümüş Nanopartiküllerin Yeşil Sentezi Ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2022, ss. 106-14, doi:10.19113/sdufenbed.970654.
Vancouver Hatipoğlu A. Gümüş Nanopartiküllerin Yeşil Sentezi ve Bazı Gıda Patojenleri Üzerindeki Antimikrobiyal Etkileri. SDÜ Fen Bil Enst Der. 2022;26(1):106-14.

e-ISSN: 1308-6529