Araştırma Makalesi
BibTex RIS Kaynak Göster

Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması

Yıl 2022, Cilt: 26 Sayı: 1, 122 - 131, 25.04.2022
https://doi.org/10.19113/sdufenbed.984820

Öz

Her yıl birçok yeni pestisit kullanım amacıyla üretilmektedir. Pestisitlerin önemli alt gruplarından biri olan fungusitler, tarımsal ürünleri fungal enfeksiyonlardan korumak amacıyla kullanılmaktadır. Bununla birlikte fungusitlerin genotoksik potansiyelleri hakkındaki çalışmalar hala çok sınırlıdır. Bu çalışmada, yaygın kullanılan dört fungusit’in (metiram, kresoxim-methyl, propamocarb ve hymexazol) genotoksik potansiyelleri Drosophila Somatik Mutasyon ve Rekombinasyon Testi (SMART) ve Drosophila Tek Hücre Jel Elektroforezi Testi (Drosophila Komet Testi) kullanılarak araştırılmıştır. Son yıllarda genetik çalışmalarda yaygın olarak kullanılan Drosophila, insan genetik hastalıkları araştırmalarında, genetik ve moleküler yaklaşımların kullanılmasında güçlü bir sistem sağlamaktadır. Model organizma olarak Drosophila birçok açıdan insan sistemleri ile benzer yönler göstermektedir. Çalışmadan elde edilen sonuçlara göre genotoksik etkisi SMART yöntemi ile araştırılan 4 fungusitin genotoksisiteyi indüklemediği tespit edilmiştir. KOMET deneyinde ise çalışılan fungusitlerin DNA tek iplik kırığına yol açtığı belirlenmiştir. Bu çalışma pestisitlerin insan sağlığı ve olası genetik hastalıklar üzerine potansiyel etkileri hakkında yeni veriler sunmaktadır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

116Z029

Teşekkür

Bu çalışma TÜBİTAK tarafından 1002 Hızlı Destek Programı kapsamında (Proje No: 116Z029) desteklenmiştir.

Kaynakça

  • [1] Tiryaki, O., Canhilal, R., Horuz, S. 2010. Tarım İlaçları Kullanımı Ve Riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 154-169.
  • [2] Doğanlar, O., Doğanlar, Z. B., Kurtdere, A. K., Chasan, T., Ok, E .S. 2020. Chronic exposure of human glioblastoma tumors to low cancentrations of a pesticide mixture induced multidrug resistance against chemotherapy agents. Ecotoxicology and Environmental Safety, 202, 110940.
  • [3] Farha, W., El-Aty, A.A., Rahman, M. M., Shin, H. -C., Shim, J. -H. 2016. An overview on common aspects influencing the dissipation pattern of pesticides: a review. Environmental Monitoring and Assessment, 188(12), 1-21..
  • [4] Liu, X., Zhang, R., Jin, Y. 2020. Differential responses of larval zebrafish to the fungicide propamocarb: Endpoints at development, locomotor behavior and oxidative stress. Science of the Total Environment, 731, 139136.
  • [5] Shelton, J. F., Hertz-Picciotto, I., Pessah, I. N. 2012. Tipping The Balance Of Autism Risk: Potential Mechanisms Linking Pesticides And Autism. Environmental Health Perspectives, 120(7), 944-951.
  • [6] Kwasniewska, K., Gadzala-Kopciuch, R., Cendrowski, K. 2015. 2-Analytical Procedure For The Determination of Zearalenone in Environmental and Biological Samples. Critical Reviews In Analytical Chemistry, 45(2), 119-130.
  • [7] Siegwart, M., Graillot, B., Lopez, C. B., Besse, S., Bardin, M., Nicot, P.C., Lopez-Ferber, M. 2015. Resistance To Bio-Insecticides or How to Enhance Their Sustainability: A Review. Frontiers in Plant Science, 6, 381.
  • [8] Wang, J., Yang, H., Zhang, X., Huang, Y., Qin, W. C., Wen, Y., Zhao, Y. H. 2020. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. Ecotoxicology and Environmental Safety, 203, 111046.
  • [9] Kaya, B. 2000. Bazı pestisitlerin Drosophila melanogaster hatlarında mutajenik ve rekombinojenik etkilerinin araştırılması. Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 134s, Antalya.
  • [10] Kaya, B., Marcos, R., Yanıkoğlu, A., Creus, A. 2004. Evaluation of the Genotoxicity of Four Herbicides in The Wing Spot Test of Drosophila melanogaster Using Two Different Strains. Mutation Research, 557(1), 53-62.
  • [11] Kubilay, B. 2013. Karbamatlı Pestisitlerden Carbaryl’in Tatlı Su İstakozlarında (Astacus leptodactylus Esch. 1823) Akut Toksik Etkisinin Belirlenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 57s, Ankara. [12] Cao, J., Wang, M., Yu, H., She, Y.G., Cao, Z., Ye, J. M., Abd El-Aty, A. M., Hacimüftüoğlu, A., Wang, J., Lao, S. B. 2020. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides.Journal of Agricultural and Food Chemistry, 68, 7298–7315.
  • [13] Wolmarans, N. J., Bervoets, L., Meire, P., Wepener, V. 2020. Current status and future prognosis of malaria vector control pesticide ecotoxicology and Xenopus sp. Reviews of Environmental Contamination and Toxicology, 252, 131–171.
  • [14] Gupta R. C. 2007. Veterinary Toxicology: Basic And Clinical Principles (1. Basım). Elsevier, Park Avenue South, New York, 1201s.
  • [15] Carisse, O. 2010. Fungicides. InTech. Rijeka, Croatia, 538s.
  • [16] Reilly T. J. Smalling K. L., Orlando, J. L., Kuivila K. M. 2012. Occurrence of Boscalid And Other Selected Fungicides in Surface Water and Groundwater in Three Targeted Use Areas in The United States, Chemosphere, 89, 228–234.
  • [17] Brooks, G. T., Roberts, T. R. 1999. Pesticide Chemistry And Bioscience. UK: Royal Society Of Chemistry.
  • [18] TUIK (Turkish Statistical Institute) 2014. The summary of agricultural statistics. http://tuik.gov.tr (Erişim Tarihi: 16.08.2021).
  • [19] Graf, U., Wurgler, F. E., Katz, A. J., Frei, H., Juan, H., Hall, C. B., Kale, P. G. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster, Environmental and Molecular Mutagenesis, 6, 153-188.
  • [20] Frei, H., Wurgler, F. E. 1988. Statistical methods to decide whether mutagenic test data from Drosophila assays indicate a positive, negative or inconclusive results. Mutation Research, 203, 297-308.
  • [21] Mukhopadhyay, I., Chowdhuri, D.K., Bajpayee, M., Dhawan, A. 2004. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay.Mutagenesis, 19, 85-90.
  • [22] Sidduque, H. R., Chowdhuri, D. K., Saxena, D. K., Dhawan, A. 2005. Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis, 20, 285-290.
  • [23] Carmona, E. R., Guescheva, T., Creus, A., Marcos, R. 2011. Proposal of an in vivo Comet assay using haemocytes of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 52, 165-169.
  • [24] Carmona, E. R., Creus, A., Marcos, R. 2011. Genotoxic effects of two nickelcompounds in somatic cells of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 718, 33-37.
  • [25] Carmona, E. R., Creus, A., Marcos, R. 2011c. Genotoxicity tetsing of two lead compounds in somatic cells of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 724, 35-40.
  • [26] Shukla, A. K., Pragya, P. Kar Chowdhuri, D. 2011. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutation Research, 726, 222-226.
  • [27] Augustyniak, M.1, Gladysz, M.2, Dziewięcka, M2. 2016. The Comet assay in insects-Status, prospects and benefits for science. Mutation research. Reviews in Mutation Research, 767, 67-76.
  • [28] Bajpayee, M., Kumar, A., Dhawan A. 2016. Chapter 1 : The Comet Assay: A Versatile Tool for Assessing DNA Damage. ss 3-64. Dhawan, A., Anderson, D., ed. 2016. The Comet Assay in Toxicology 2nd Edition. The Royal Society of Chemistry, United Kingdom, 590s.
  • [29] Irving, P., Ubeda, J. M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiolgy, 7, 335-350.
  • [30] Akyıl, D. 2006. Farklı Tipteki Fungusitlerin Muhtemel Mutajeniteleri Üzerine Bir Çalışma. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 92s, Afyonkarahisar.
  • [31] Dülgeroğlu Y. 2012. Salamuralık Asma Yaprağı Üretiminde Fungusit Kalıntı Miktarı Üzerine Hasat Zamanı Ve Salamura Yöntemlerinin Etkisi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 43s, Tokat. (Yüksek Lisans Tezi) Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü.
  • [32] Krieger, R. 1990. Handbook of Pesticide Toxicology, Vol. 3 Academic Press, 0123341604, New York, 1576s.
  • [33] U.S. Environmental Protectin Agency (EPA) 1999. Reregistration Eligibility Decision (RED), Captan, EPA-738-R-99-015, Office of Pesticide Programs, U.S. Government Printing Office, Washington, DC.
  • [34] Ypema, H. 2003. Fungicides, Hymexazol. ss 572-573. Plimmer, R. J., Gammon, D. W., Ragsdale, N. N., ed. 2003. Encyclopedia of Agrochemicals Volume 2. Wiley-Interscience, Canada, 1004s.
  • [35] Wu, X. -J., Lu, W. -Q., Roos, P. H., Mersch-Sundermann, V. 2005. Vinclozin, A Widely Used Fungizide, Enhanced BaP-Induced Micronucleus Formation in Human Derived Hepatoma Cells By Increasing CYP1A1 Expression. Toxicology Letters, 159, 83-88.
  • [36] Sanchez-Argüello, P., Aparicio, N., Fernandez, C. 2012. Linking embryo toxicity with genotoxic responses in the fresh water snail Physa acuta: Single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene. Ecotoxicology and Environmental Safety, 80, 152-160.
  • [37] Zweig, G. 1978. Analytical Methods for Pesticides and Plant Growth Regulators: New and Updated Methods. Academic Press. New York, 611s.
  • [38] Orth, A.B., Kuhn, P.J., Schmitt, M.R. 2003. Fungicides, Inhibitors of Mitochondrial Energy Production. ss 573-584. Plimmer, J.R., Gammon, D.W., Ragsdale, N.N., ed. 2003. Encyclopedia of Agrochemicals Volume 2. Wiley-Interscience, Canada, 1004s.
  • [39] Lee, J., Kim, E., Shin, Y., Lee, J., Lee, J., Moon, J. -K., Choi, H., Maasfeld, W., Kim, J. -H. 2018. Whole body dosimetry and risk assessment of agricultural operator exposure to the fungicide kresoxim-methyl in apple orchards. Ecotoxicology and Environmental Safety, 155, 94-100.
  • [40] Cui, F., Chai, T., Liu, X., Wang, C. 2017. Toxicity of Three Strobilurins (Kresoxim-Methyl, Pyraclostrobin, and Trifloxystrobin) on Daphnia magna. Environmental Toxicology and Chemistry, 36(1), 182-189.
  • [41] Flampouri, E., Mavrikou, S., Mouzaki-Paxinou, A-C., Kintzios, S. 2016. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl. Biochemical Pharmacology, 113, 97-109.
  • [42] Flampouri, E., Theodosi-Palimeri, D., Kintzios, S. 2018. Strobilurin fungicide kresoxim-methyl effects on an cancerous neural cell line: oxidant/antioxidant responses and in vitro migration. Toxicology Mechanisms and Methods, 28, 709-716.
  • [43] Regueiro, J., Olguın, N., Simal-Gandara, J., Sunol, C. 2015. Toxicity evaluation of new agricultural fungicides in primary cultered cortical neurons. Environmental Research, 140, 37-44.
  • [44] Liu, L., Jiang, C., Wu, Z., Gong, Y., Wang, G. 2013. Toxic Effects of Three Strobilurins (Trifloxysrobin, Azoxystrobin And Kresoxim-Methyl) on mRNA Expression And Antioxidant Enzymes In Grass Carp (Ctenopharyngodon idella) Juveniles. Ecotoxicology and Environmental Safety, 98, 297-302.
  • [45] Liu, X., Wang, Y., Chen, H., Zhang, J., Wang, C., Li, X., Pang, S. 2018. Acute toxicity and associated mechanisms of four strobilurins in algae. Environmental Toxicology and Pharmacology, 60, 12-16.
  • [46] Charles, J. M., Tobia, A., van Ravenzwaay, B. 2000. Subchronic and Chronic Toxicological Investigations on Metiram: The Lack of a Carcinogenic Response in Rodents. Toxicological Sciences, 54, 481-492.
  • [47] Whalen, M. M., Loganathan, B. G., Yamashita, N., Saito, T. 2003. Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides. Chemico-Biological Interactions, 145, 311-319.
  • [48] Sakr, S. A., Shalaby, S. Y. 2012. Metiram-induced histological and histochemical alterations in liver and kidney of pregnant mice. Life Science Journal, 9(1), 71-76.
  • [49] Buschhaus, H. 2003. Fungicides, Carbamates. ss 550-552. Plimmer, J. R., Gammon, D. W., Ragsdale, N.N., ed. 2003. Encyclopedia of Agrochemicals Volume 2, Wiley-Interscience, Canada, 1004s.
  • [50] Zhang, Y., Jin, C., Wang, X., Shen, M., Zhou, J., Wu, S., Fu, Z., Jin, Y. 2018. Propamocarb exposure decreases the secretion of neurotransmitters and causes behavioral impairments in mice. Environmental Toxicology, 34, 22-29.
  • [51] Aydemir, N., Bilaloğlu, R. 2004. The Investigation of The Genotoxic Effects of Fenarimol and Propamocarb in Mouse Bone Marrow In vivo. Toxicology Letters, 147, 1, 73-78.
  • [52] Falfushynska, H. I., Gnatyshyna, L. L., Stoliar, O. B. 2013. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 22, 433-445.

Investigation of Genotoxic Potentials of Some Fungicides by Drosophila SMART and KOMET Methods

Yıl 2022, Cilt: 26 Sayı: 1, 122 - 131, 25.04.2022
https://doi.org/10.19113/sdufenbed.984820

Öz

Many new pesticides are produced for use every year. Fungicides, one of the important subgroups of pesticides, are used to protect agricultural products from fungal infections. However, studies on the genotoxic potential of fungicides are still very limited. In this study, the genotoxic potentials of four commonly used fungicides (metiram, kresoxim-methyl, propamocarb and hymexazol) were investigated using the Drosophila Somatic Mutation and Recombination Test (SMART) and the Drosophila Single Cell Gel Electrophoresis Test (Drosophila Comet Test). Drosophila, which has been widely used in genetic studies in recent years, provides a powerful system in the use of genetic and molecular approaches in human genetic diseases research. As a model organism, Drosophila is in many ways similar to human systems. According to the results obtained from the study, it was determined that 4 fungicides whose genotoxic effects were investigated by SMART method did not induce genotoxicity. In the KOMET experiment, it was determined that the studied fungicides caused DNA single strand breakage. This study provides new data on the potential effects of pesticides on human health and possible genetic diseases.

Proje Numarası

116Z029

Kaynakça

  • [1] Tiryaki, O., Canhilal, R., Horuz, S. 2010. Tarım İlaçları Kullanımı Ve Riskleri. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(2), 154-169.
  • [2] Doğanlar, O., Doğanlar, Z. B., Kurtdere, A. K., Chasan, T., Ok, E .S. 2020. Chronic exposure of human glioblastoma tumors to low cancentrations of a pesticide mixture induced multidrug resistance against chemotherapy agents. Ecotoxicology and Environmental Safety, 202, 110940.
  • [3] Farha, W., El-Aty, A.A., Rahman, M. M., Shin, H. -C., Shim, J. -H. 2016. An overview on common aspects influencing the dissipation pattern of pesticides: a review. Environmental Monitoring and Assessment, 188(12), 1-21..
  • [4] Liu, X., Zhang, R., Jin, Y. 2020. Differential responses of larval zebrafish to the fungicide propamocarb: Endpoints at development, locomotor behavior and oxidative stress. Science of the Total Environment, 731, 139136.
  • [5] Shelton, J. F., Hertz-Picciotto, I., Pessah, I. N. 2012. Tipping The Balance Of Autism Risk: Potential Mechanisms Linking Pesticides And Autism. Environmental Health Perspectives, 120(7), 944-951.
  • [6] Kwasniewska, K., Gadzala-Kopciuch, R., Cendrowski, K. 2015. 2-Analytical Procedure For The Determination of Zearalenone in Environmental and Biological Samples. Critical Reviews In Analytical Chemistry, 45(2), 119-130.
  • [7] Siegwart, M., Graillot, B., Lopez, C. B., Besse, S., Bardin, M., Nicot, P.C., Lopez-Ferber, M. 2015. Resistance To Bio-Insecticides or How to Enhance Their Sustainability: A Review. Frontiers in Plant Science, 6, 381.
  • [8] Wang, J., Yang, H., Zhang, X., Huang, Y., Qin, W. C., Wen, Y., Zhao, Y. H. 2020. Evaluation of modes of action of pesticides to Daphnia magna based on QSAR, excess toxicity and critical body residues. Ecotoxicology and Environmental Safety, 203, 111046.
  • [9] Kaya, B. 2000. Bazı pestisitlerin Drosophila melanogaster hatlarında mutajenik ve rekombinojenik etkilerinin araştırılması. Akdeniz Üniversitesi, Fen Bilimleri Enstitüsü, Doktora Tezi, 134s, Antalya.
  • [10] Kaya, B., Marcos, R., Yanıkoğlu, A., Creus, A. 2004. Evaluation of the Genotoxicity of Four Herbicides in The Wing Spot Test of Drosophila melanogaster Using Two Different Strains. Mutation Research, 557(1), 53-62.
  • [11] Kubilay, B. 2013. Karbamatlı Pestisitlerden Carbaryl’in Tatlı Su İstakozlarında (Astacus leptodactylus Esch. 1823) Akut Toksik Etkisinin Belirlenmesi. Gazi Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 57s, Ankara. [12] Cao, J., Wang, M., Yu, H., She, Y.G., Cao, Z., Ye, J. M., Abd El-Aty, A. M., Hacimüftüoğlu, A., Wang, J., Lao, S. B. 2020. An overview on the mechanisms and applications of enzyme inhibition-based methods for determination of organophosphate and carbamate pesticides.Journal of Agricultural and Food Chemistry, 68, 7298–7315.
  • [13] Wolmarans, N. J., Bervoets, L., Meire, P., Wepener, V. 2020. Current status and future prognosis of malaria vector control pesticide ecotoxicology and Xenopus sp. Reviews of Environmental Contamination and Toxicology, 252, 131–171.
  • [14] Gupta R. C. 2007. Veterinary Toxicology: Basic And Clinical Principles (1. Basım). Elsevier, Park Avenue South, New York, 1201s.
  • [15] Carisse, O. 2010. Fungicides. InTech. Rijeka, Croatia, 538s.
  • [16] Reilly T. J. Smalling K. L., Orlando, J. L., Kuivila K. M. 2012. Occurrence of Boscalid And Other Selected Fungicides in Surface Water and Groundwater in Three Targeted Use Areas in The United States, Chemosphere, 89, 228–234.
  • [17] Brooks, G. T., Roberts, T. R. 1999. Pesticide Chemistry And Bioscience. UK: Royal Society Of Chemistry.
  • [18] TUIK (Turkish Statistical Institute) 2014. The summary of agricultural statistics. http://tuik.gov.tr (Erişim Tarihi: 16.08.2021).
  • [19] Graf, U., Wurgler, F. E., Katz, A. J., Frei, H., Juan, H., Hall, C. B., Kale, P. G. 1984. Somatic Mutation and Recombination Test in Drosophila melanogaster, Environmental and Molecular Mutagenesis, 6, 153-188.
  • [20] Frei, H., Wurgler, F. E. 1988. Statistical methods to decide whether mutagenic test data from Drosophila assays indicate a positive, negative or inconclusive results. Mutation Research, 203, 297-308.
  • [21] Mukhopadhyay, I., Chowdhuri, D.K., Bajpayee, M., Dhawan, A. 2004. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline comet assay.Mutagenesis, 19, 85-90.
  • [22] Sidduque, H. R., Chowdhuri, D. K., Saxena, D. K., Dhawan, A. 2005. Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline comet assay. Mutagenesis, 20, 285-290.
  • [23] Carmona, E. R., Guescheva, T., Creus, A., Marcos, R. 2011. Proposal of an in vivo Comet assay using haemocytes of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 52, 165-169.
  • [24] Carmona, E. R., Creus, A., Marcos, R. 2011. Genotoxic effects of two nickelcompounds in somatic cells of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 718, 33-37.
  • [25] Carmona, E. R., Creus, A., Marcos, R. 2011c. Genotoxicity tetsing of two lead compounds in somatic cells of Drosophila melanogaster. Environmental and Molecular Mutagenesis, 724, 35-40.
  • [26] Shukla, A. K., Pragya, P. Kar Chowdhuri, D. 2011. A modified alkaline Comet assay for in vivo detection of oxidative DNA damage in Drosophila melanogaster. Mutation Research, 726, 222-226.
  • [27] Augustyniak, M.1, Gladysz, M.2, Dziewięcka, M2. 2016. The Comet assay in insects-Status, prospects and benefits for science. Mutation research. Reviews in Mutation Research, 767, 67-76.
  • [28] Bajpayee, M., Kumar, A., Dhawan A. 2016. Chapter 1 : The Comet Assay: A Versatile Tool for Assessing DNA Damage. ss 3-64. Dhawan, A., Anderson, D., ed. 2016. The Comet Assay in Toxicology 2nd Edition. The Royal Society of Chemistry, United Kingdom, 590s.
  • [29] Irving, P., Ubeda, J. M., Doucet, D., Troxler, L., Lagueux, M., Zachary, D., Hoffmann, J.A., Hetru, C., Meister, M. 2005. New insights into Drosophila larval haemocyte functions through genome-wide analysis. Cell Microbiolgy, 7, 335-350.
  • [30] Akyıl, D. 2006. Farklı Tipteki Fungusitlerin Muhtemel Mutajeniteleri Üzerine Bir Çalışma. Afyon Kocatepe Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 92s, Afyonkarahisar.
  • [31] Dülgeroğlu Y. 2012. Salamuralık Asma Yaprağı Üretiminde Fungusit Kalıntı Miktarı Üzerine Hasat Zamanı Ve Salamura Yöntemlerinin Etkisi. Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü, Yüksek Lisans Tezi, 43s, Tokat. (Yüksek Lisans Tezi) Gaziosmanpaşa Üniversitesi, Fen Bilimleri Enstitüsü.
  • [32] Krieger, R. 1990. Handbook of Pesticide Toxicology, Vol. 3 Academic Press, 0123341604, New York, 1576s.
  • [33] U.S. Environmental Protectin Agency (EPA) 1999. Reregistration Eligibility Decision (RED), Captan, EPA-738-R-99-015, Office of Pesticide Programs, U.S. Government Printing Office, Washington, DC.
  • [34] Ypema, H. 2003. Fungicides, Hymexazol. ss 572-573. Plimmer, R. J., Gammon, D. W., Ragsdale, N. N., ed. 2003. Encyclopedia of Agrochemicals Volume 2. Wiley-Interscience, Canada, 1004s.
  • [35] Wu, X. -J., Lu, W. -Q., Roos, P. H., Mersch-Sundermann, V. 2005. Vinclozin, A Widely Used Fungizide, Enhanced BaP-Induced Micronucleus Formation in Human Derived Hepatoma Cells By Increasing CYP1A1 Expression. Toxicology Letters, 159, 83-88.
  • [36] Sanchez-Argüello, P., Aparicio, N., Fernandez, C. 2012. Linking embryo toxicity with genotoxic responses in the fresh water snail Physa acuta: Single exposure to benzo(a)pyrene, fluoxetine, bisphenol A, vinclozolin and exposure to binary mixtures with benzo(a)pyrene. Ecotoxicology and Environmental Safety, 80, 152-160.
  • [37] Zweig, G. 1978. Analytical Methods for Pesticides and Plant Growth Regulators: New and Updated Methods. Academic Press. New York, 611s.
  • [38] Orth, A.B., Kuhn, P.J., Schmitt, M.R. 2003. Fungicides, Inhibitors of Mitochondrial Energy Production. ss 573-584. Plimmer, J.R., Gammon, D.W., Ragsdale, N.N., ed. 2003. Encyclopedia of Agrochemicals Volume 2. Wiley-Interscience, Canada, 1004s.
  • [39] Lee, J., Kim, E., Shin, Y., Lee, J., Lee, J., Moon, J. -K., Choi, H., Maasfeld, W., Kim, J. -H. 2018. Whole body dosimetry and risk assessment of agricultural operator exposure to the fungicide kresoxim-methyl in apple orchards. Ecotoxicology and Environmental Safety, 155, 94-100.
  • [40] Cui, F., Chai, T., Liu, X., Wang, C. 2017. Toxicity of Three Strobilurins (Kresoxim-Methyl, Pyraclostrobin, and Trifloxystrobin) on Daphnia magna. Environmental Toxicology and Chemistry, 36(1), 182-189.
  • [41] Flampouri, E., Mavrikou, S., Mouzaki-Paxinou, A-C., Kintzios, S. 2016. Alterations of cellular redox homeostasis in cultured fibroblast-like renal cells upon exposure to low doses of cytochrome bc1 complex inhibitor kresoxim-methyl. Biochemical Pharmacology, 113, 97-109.
  • [42] Flampouri, E., Theodosi-Palimeri, D., Kintzios, S. 2018. Strobilurin fungicide kresoxim-methyl effects on an cancerous neural cell line: oxidant/antioxidant responses and in vitro migration. Toxicology Mechanisms and Methods, 28, 709-716.
  • [43] Regueiro, J., Olguın, N., Simal-Gandara, J., Sunol, C. 2015. Toxicity evaluation of new agricultural fungicides in primary cultered cortical neurons. Environmental Research, 140, 37-44.
  • [44] Liu, L., Jiang, C., Wu, Z., Gong, Y., Wang, G. 2013. Toxic Effects of Three Strobilurins (Trifloxysrobin, Azoxystrobin And Kresoxim-Methyl) on mRNA Expression And Antioxidant Enzymes In Grass Carp (Ctenopharyngodon idella) Juveniles. Ecotoxicology and Environmental Safety, 98, 297-302.
  • [45] Liu, X., Wang, Y., Chen, H., Zhang, J., Wang, C., Li, X., Pang, S. 2018. Acute toxicity and associated mechanisms of four strobilurins in algae. Environmental Toxicology and Pharmacology, 60, 12-16.
  • [46] Charles, J. M., Tobia, A., van Ravenzwaay, B. 2000. Subchronic and Chronic Toxicological Investigations on Metiram: The Lack of a Carcinogenic Response in Rodents. Toxicological Sciences, 54, 481-492.
  • [47] Whalen, M. M., Loganathan, B. G., Yamashita, N., Saito, T. 2003. Immunomodulation of human natural killer cell cytotoxic function by triazine and carbamate pesticides. Chemico-Biological Interactions, 145, 311-319.
  • [48] Sakr, S. A., Shalaby, S. Y. 2012. Metiram-induced histological and histochemical alterations in liver and kidney of pregnant mice. Life Science Journal, 9(1), 71-76.
  • [49] Buschhaus, H. 2003. Fungicides, Carbamates. ss 550-552. Plimmer, J. R., Gammon, D. W., Ragsdale, N.N., ed. 2003. Encyclopedia of Agrochemicals Volume 2, Wiley-Interscience, Canada, 1004s.
  • [50] Zhang, Y., Jin, C., Wang, X., Shen, M., Zhou, J., Wu, S., Fu, Z., Jin, Y. 2018. Propamocarb exposure decreases the secretion of neurotransmitters and causes behavioral impairments in mice. Environmental Toxicology, 34, 22-29.
  • [51] Aydemir, N., Bilaloğlu, R. 2004. The Investigation of The Genotoxic Effects of Fenarimol and Propamocarb in Mouse Bone Marrow In vivo. Toxicology Letters, 147, 1, 73-78.
  • [52] Falfushynska, H. I., Gnatyshyna, L. L., Stoliar, O. B. 2013. In situ exposure history modulates the molecular responses to carbamate fungicide Tattoo in bivalve mollusk. Ecotoxicology, 22, 433-445.
Toplam 51 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Ayşen Yağmur Kurşun 0000-0003-1657-6808

Merve Güneş 0000-0003-3278-0542

Burcin Yalcin 0000-0002-9694-5839

Havva Ertuğrul 0000-0002-6185-7767

Bülent Kaya 0000-0002-0491-9781

Proje Numarası 116Z029
Yayımlanma Tarihi 25 Nisan 2022
Yayımlandığı Sayı Yıl 2022 Cilt: 26 Sayı: 1

Kaynak Göster

APA Kurşun, A. Y., Güneş, M., Yalcin, B., Ertuğrul, H., vd. (2022). Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, 26(1), 122-131. https://doi.org/10.19113/sdufenbed.984820
AMA Kurşun AY, Güneş M, Yalcin B, Ertuğrul H, Kaya B. Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması. SDÜ Fen Bil Enst Der. Nisan 2022;26(1):122-131. doi:10.19113/sdufenbed.984820
Chicago Kurşun, Ayşen Yağmur, Merve Güneş, Burcin Yalcin, Havva Ertuğrul, ve Bülent Kaya. “Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART Ve KOMET Yöntemleri Ile Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26, sy. 1 (Nisan 2022): 122-31. https://doi.org/10.19113/sdufenbed.984820.
EndNote Kurşun AY, Güneş M, Yalcin B, Ertuğrul H, Kaya B (01 Nisan 2022) Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26 1 122–131.
IEEE A. Y. Kurşun, M. Güneş, B. Yalcin, H. Ertuğrul, ve B. Kaya, “Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması”, SDÜ Fen Bil Enst Der, c. 26, sy. 1, ss. 122–131, 2022, doi: 10.19113/sdufenbed.984820.
ISNAD Kurşun, Ayşen Yağmur vd. “Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART Ve KOMET Yöntemleri Ile Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi 26/1 (Nisan 2022), 122-131. https://doi.org/10.19113/sdufenbed.984820.
JAMA Kurşun AY, Güneş M, Yalcin B, Ertuğrul H, Kaya B. Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması. SDÜ Fen Bil Enst Der. 2022;26:122–131.
MLA Kurşun, Ayşen Yağmur vd. “Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART Ve KOMET Yöntemleri Ile Araştırılması”. Süleyman Demirel Üniversitesi Fen Bilimleri Enstitüsü Dergisi, c. 26, sy. 1, 2022, ss. 122-31, doi:10.19113/sdufenbed.984820.
Vancouver Kurşun AY, Güneş M, Yalcin B, Ertuğrul H, Kaya B. Bazı Fungusitlerin Genotoksik Potansiyellerinin Drosophila SMART ve KOMET Yöntemleri ile Araştırılması. SDÜ Fen Bil Enst Der. 2022;26(1):122-31.

e-ISSN: 1308-6529