Catharantus roseus Ekstratı Kullanarak Ag Nanopartikülünün Sentezlenmesi ve Sağlıklı İnsan Hücresinde Toksik Etkisinin İncelenmesi
Yıl 2023,
, 355 - 362, 29.12.2023
Firdevs Mert Sivri
,
Senem Akkoç
,
Emel İşbilir
Öz
Bitki ekstraktları kullanılarak nanoparçacıkların biosentezi, diğer sentez yöntemlerine kıyasla daha uygun maliyetli, çevre dostu ve büyük ölçekli üretim için uygun olması sebebiyle büyük ilgi görmektedir. Bu çalışmada indirgeyici ve stabilize edici ajan olarak Catharantus roseus (C. roseus) ekstraktı kullanılarak Ag nanopartiküllerin (Ag NPs) sentezinin ve karakterizasyonunun gerçekleştirilmesi ve sağlıklı insan hücresine karşı toksik etkilerinin incelenmesi hedeflenmiştir. Ag NPs sentezi C. roseus ekstraktı kullanılarak başarılı bir şekilde gerçekleştirilmiştir. Sentezlenen Ag NPs FTIR, XRD, UV-Vis ve TEM analizleri ile karakterize edilmiştir. XRD ve TEM analiz sonuçlarına göre, sentezlenen Ag NPs ortalama partikül boyutunun 16 ± 6 nm ve şeklinin yüzey merkezli kübik olduğu gözlenmiştir. Ayrıca çalışmada biyolojik olarak sentezlenmiş olan Ag NPs sağlıklı insan hücre hattına (L929) karşı toksik etkileri araştırılmış ve yarı maksimum inhibitör konsantrasyonu (IC50) 2.909 µL/mL olarak bulunmuştur.
Proje Numarası
TSG-2021-8458
Kaynakça
- 1 Beyene, H.D., Werkneh, A.A., Bezabh, H.K. and Ambaye, T.G. (2017) Synthesis Paradigm and Applications of Silver Nanoparticles (AgNPs), a Review. Sustainable Materials and Technologies, 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001.
- 2 Aydin Acar, Ç. and Pehlivanoğlu, S. (2019) Gümüş Nanopartiküllerin Biberiye Özütü Ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 10, 172–176. https://doi.org/10.22312/sdusbed.543053.
- 3 Philip, D. (2009) Biosynthesis of Au, Ag and Au–Ag Nanoparticles Using Edible Mushroom Extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73, 374–381. https://doi.org/10.1016/j.saa.2009.02.037.
- 4 Hemlata, Meena, P.R., Singh, A.P. and Tejavath, K.K. (2020) Biosynthesis of Silver Nanoparticles Using Cucumis Prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega, 5, 5520–5528. https://doi.org/10.1021/acsomega.0c00155.
- 5 Patil, A.P., Kapadnis, K.H. and Elangovan, S. (2021) Antibacterial Applications of Biosynthesized AgNPs: A Short Review (2015-2020). Material Science Research India, 18, 143–153.
- 6 Mallmann, E.J.J., Cunha, F.A., Castro, B.N.M.F., Maciel, A.M., Menezes, E.A. and Fechine, P.B.A. (2015) Antifungal Activity of Silver Nanoparticles Obtained by Green Synthesis. Revista do Instituto de Medicina Tropical de São Paulo, 57, 165–167. https://doi.org/10.1590/S0036-46652015000200011.
- 7 Sharma, V.K., Yngard, R.A. and Lin, Y. (2009) Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Advances in Colloid and Interface Science, 145, 83–96. https://doi.org/10.1016/j.cis.2008.09.002.
- 8 Akter, M., Sikder, Md.T., Rahman, Md.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T. and Kurasaki, M. (2018) A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008.
- 9 Suliman Y, A.O., Ali, D., Alarifi, S., Harrath, A.H., Mansour, L. and Alwasel, S.H. (2015) Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Effect of Silver Nanoparticles in Human Lung Epithelial Cells: Effects of Silver Nanoparticles in Human Lung Epithelial Cells. Environmental Toxicology, 30, 149–160. https://doi.org/10.1002/tox.21880.
- 10 Oh, S.-J., Kim, H., Liu, Y., Han, H.-K., Kwon, K., Chang, K.-H., Park, K., Kim, Y., Shim, K., An, S.S.A. and Lee, M.-Y. (2014) Incompatibility of Silver Nanoparticles with Lactate Dehydrogenase Leakage Assay for Cellular Viability Test Is Attributed to Protein Binding and Reactive Oxygen Species Generation. Toxicology Letters, 225, 422–432. https://doi.org/10.1016/j.toxlet.2014.01.015.
- 11 Prabhu, S. and Poulose, E.K. (2012) Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. International Nano Letters, 2, 32. https://doi.org/10.1186/2228-5326-2-32.
- 12 Aslam, J., Khan, S.H., Siddiqui, Z.H., Fatima, Z., Maqsood, M., Bhat, M.A., Nasim, S.A., Ilah, A., Ahmad, I.Z. and Khan, S.A. (2010) Catharanthus Roseus (L.) G. Don. An Important Drug: It’s Applications and Production. Pharmacie Globale (IJCP), 4, 1–16.
- 13 Osibe, D.A., Chiejina, N.V., Ogawa, K. and Aoyagi, H. (2018) Stable Antibacterial Silver Nanoparticles Produced with Seed-Derived Callus Extract of Catharanthus Roseus. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1266–1273. https://doi.org/10.1080/21691401.2017.1367927.
- 14 Al-Shmgani, H.S.A., Mohammed, W.H., Sulaiman, G.M. and Saadoon, A.H. (2017) Biosynthesis of Silver Nanoparticles from Catharanthus Roseus Leaf Extract and Assessing Their Antioxidant, Antimicrobial, and Wound-Healing Activities. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1234–1240. https://doi.org/10.1080/21691401.2016.1220950.
- 15 Kotakadi, V.S., Rao, Y.S., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V. and Gopal, D.V.R.S. (2013) Simple and Rapid Biosynthesis of Stable Silver Nanoparticles Using Dried Leaves of Catharanthus Roseus. Linn. G. Donn and Its Anti Microbial Activity. Colloids and Surfaces B: Biointerfaces, 105, 194–198. https://doi.org/10.1016/j.colsurfb.2013.01.003.
- 16 Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. (2012) Synthesis of Silver Nanoparticles Using Leaves of Catharanthus Roseus Linn. G. Don and Their Antiplasmodial Activities. Asian Pacific Journal of Tropical Biomedicine, 2, 574–580. https://doi.org/10.1016/S2221-1691(12)60100-2.
- 17 Siddiqi, K.S., Husen, A. and Rao, R.A.K. (2018) A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5.
- 18 Tashi, T., Gupta, N.V. and Mbuya, V.B. (2016) Silver Nanoparticles: Synthesis, Mechanism of Antimicrobial Action, Characterization, Medical Applications, and Toxicity Effects. J. Chem. Pharm. Res, 8, 526–537.
- 19 Carlson, C., Hussain, S.M., Schrand, A.M., K. Braydich-Stolle, L., Hess, K.L., Jones, R.L. and Schlager, J.J. (2008) Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry B, 112, 13608–13619. https://doi.org/10.1021/jp712087m.
- 20 Liu, W., Wu, Y., Wang, C., Li, H.C., Wang, T., Liao, C.Y., Cui, L., Zhou, Q.F., Yan, B. and Jiang, G.B. (2010) Impact of Silver Nanoparticles on Human Cells: Effect of Particle Size. Nanotoxicology, Taylor & Francis, 4, 319–330.
- 21 Kim, S., Choi, J.E., Choi, J., Chung, K.-H., Park, K., Yi, J. and Ryu, D.-Y. (2009) Oxidative Stress-Dependent Toxicity of Silver Nanoparticles in Human Hepatoma Cells. Toxicology in Vitro, 23, 1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001.
Biosynthesis of Ag Nanoparticle Using Catharanthus roseus Extract and Investigation of its Toxic Effect in Healthy Cell
Yıl 2023,
, 355 - 362, 29.12.2023
Firdevs Mert Sivri
,
Senem Akkoç
,
Emel İşbilir
Öz
Biosynthesis of nanoparticles from plant extracts is of great interest because it is inexpensive, environmentally friendly, and suitable for large-scale production compared to other synthesis methods. In this study, it was aimed to perform the synthesis and characterization of Ag nanoparticles (Ag NPs) by using Catharantus roseus (C. roseus) extract as a reducing and stabilizing agent and to evaluate their toxic effects against a healthy human cell line. The synthesis of Ag NPs were successfully carried out using the extract of C. roseus. By using FTIR, XRD, UV-Vis, and TEM analysis, the synthesized Ag NPs were characterized. According to XRD and TEM analysis results, it was observed that the average diameter of the synthesized Ag NPs was 16 ± 6 nm and its shape was a face-centered cubic (fcc). In addition, the toxic effects of biologically synthesized Ag NPs against a human healthy cell line (L929) were investigated in the study and the half-maximum inhibitory concentration (IC50) was found to be 2.909 µL/mL.
Destekleyen Kurum
Süleyman Demirel Üniversitesi
Proje Numarası
TSG-2021-8458
Teşekkür
We would like to thank Suleyman Demirel University Research Fund (TSG-2021-8458).
Kaynakça
- 1 Beyene, H.D., Werkneh, A.A., Bezabh, H.K. and Ambaye, T.G. (2017) Synthesis Paradigm and Applications of Silver Nanoparticles (AgNPs), a Review. Sustainable Materials and Technologies, 13, 18–23. https://doi.org/10.1016/j.susmat.2017.08.001.
- 2 Aydin Acar, Ç. and Pehlivanoğlu, S. (2019) Gümüş Nanopartiküllerin Biberiye Özütü Ile Biyosentezi ve MCF-7 Meme Kanseri Hücrelerinde Sitotoksik Etkisi. Süleyman Demirel Üniversitesi Sağlık Bilimleri Dergisi, 10, 172–176. https://doi.org/10.22312/sdusbed.543053.
- 3 Philip, D. (2009) Biosynthesis of Au, Ag and Au–Ag Nanoparticles Using Edible Mushroom Extract. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 73, 374–381. https://doi.org/10.1016/j.saa.2009.02.037.
- 4 Hemlata, Meena, P.R., Singh, A.P. and Tejavath, K.K. (2020) Biosynthesis of Silver Nanoparticles Using Cucumis Prophetarum Aqueous Leaf Extract and Their Antibacterial and Antiproliferative Activity Against Cancer Cell Lines. ACS Omega, 5, 5520–5528. https://doi.org/10.1021/acsomega.0c00155.
- 5 Patil, A.P., Kapadnis, K.H. and Elangovan, S. (2021) Antibacterial Applications of Biosynthesized AgNPs: A Short Review (2015-2020). Material Science Research India, 18, 143–153.
- 6 Mallmann, E.J.J., Cunha, F.A., Castro, B.N.M.F., Maciel, A.M., Menezes, E.A. and Fechine, P.B.A. (2015) Antifungal Activity of Silver Nanoparticles Obtained by Green Synthesis. Revista do Instituto de Medicina Tropical de São Paulo, 57, 165–167. https://doi.org/10.1590/S0036-46652015000200011.
- 7 Sharma, V.K., Yngard, R.A. and Lin, Y. (2009) Silver Nanoparticles: Green Synthesis and Their Antimicrobial Activities. Advances in Colloid and Interface Science, 145, 83–96. https://doi.org/10.1016/j.cis.2008.09.002.
- 8 Akter, M., Sikder, Md.T., Rahman, Md.M., Ullah, A.K.M.A., Hossain, K.F.B., Banik, S., Hosokawa, T., Saito, T. and Kurasaki, M. (2018) A Systematic Review on Silver Nanoparticles-Induced Cytotoxicity: Physicochemical Properties and Perspectives. Journal of Advanced Research, 9, 1–16. https://doi.org/10.1016/j.jare.2017.10.008.
- 9 Suliman Y, A.O., Ali, D., Alarifi, S., Harrath, A.H., Mansour, L. and Alwasel, S.H. (2015) Evaluation of Cytotoxic, Oxidative Stress, Proinflammatory and Genotoxic Effect of Silver Nanoparticles in Human Lung Epithelial Cells: Effects of Silver Nanoparticles in Human Lung Epithelial Cells. Environmental Toxicology, 30, 149–160. https://doi.org/10.1002/tox.21880.
- 10 Oh, S.-J., Kim, H., Liu, Y., Han, H.-K., Kwon, K., Chang, K.-H., Park, K., Kim, Y., Shim, K., An, S.S.A. and Lee, M.-Y. (2014) Incompatibility of Silver Nanoparticles with Lactate Dehydrogenase Leakage Assay for Cellular Viability Test Is Attributed to Protein Binding and Reactive Oxygen Species Generation. Toxicology Letters, 225, 422–432. https://doi.org/10.1016/j.toxlet.2014.01.015.
- 11 Prabhu, S. and Poulose, E.K. (2012) Silver Nanoparticles: Mechanism of Antimicrobial Action, Synthesis, Medical Applications, and Toxicity Effects. International Nano Letters, 2, 32. https://doi.org/10.1186/2228-5326-2-32.
- 12 Aslam, J., Khan, S.H., Siddiqui, Z.H., Fatima, Z., Maqsood, M., Bhat, M.A., Nasim, S.A., Ilah, A., Ahmad, I.Z. and Khan, S.A. (2010) Catharanthus Roseus (L.) G. Don. An Important Drug: It’s Applications and Production. Pharmacie Globale (IJCP), 4, 1–16.
- 13 Osibe, D.A., Chiejina, N.V., Ogawa, K. and Aoyagi, H. (2018) Stable Antibacterial Silver Nanoparticles Produced with Seed-Derived Callus Extract of Catharanthus Roseus. Artificial Cells, Nanomedicine, and Biotechnology, 46, 1266–1273. https://doi.org/10.1080/21691401.2017.1367927.
- 14 Al-Shmgani, H.S.A., Mohammed, W.H., Sulaiman, G.M. and Saadoon, A.H. (2017) Biosynthesis of Silver Nanoparticles from Catharanthus Roseus Leaf Extract and Assessing Their Antioxidant, Antimicrobial, and Wound-Healing Activities. Artificial Cells, Nanomedicine, and Biotechnology, 45, 1234–1240. https://doi.org/10.1080/21691401.2016.1220950.
- 15 Kotakadi, V.S., Rao, Y.S., Gaddam, S.A., Prasad, T.N.V.K.V., Reddy, A.V. and Gopal, D.V.R.S. (2013) Simple and Rapid Biosynthesis of Stable Silver Nanoparticles Using Dried Leaves of Catharanthus Roseus. Linn. G. Donn and Its Anti Microbial Activity. Colloids and Surfaces B: Biointerfaces, 105, 194–198. https://doi.org/10.1016/j.colsurfb.2013.01.003.
- 16 Ponarulselvam, S., Panneerselvam, C., Murugan, K., Aarthi, N., Kalimuthu, K. and Thangamani, S. (2012) Synthesis of Silver Nanoparticles Using Leaves of Catharanthus Roseus Linn. G. Don and Their Antiplasmodial Activities. Asian Pacific Journal of Tropical Biomedicine, 2, 574–580. https://doi.org/10.1016/S2221-1691(12)60100-2.
- 17 Siddiqi, K.S., Husen, A. and Rao, R.A.K. (2018) A Review on Biosynthesis of Silver Nanoparticles and Their Biocidal Properties. Journal of Nanobiotechnology, 16, 14. https://doi.org/10.1186/s12951-018-0334-5.
- 18 Tashi, T., Gupta, N.V. and Mbuya, V.B. (2016) Silver Nanoparticles: Synthesis, Mechanism of Antimicrobial Action, Characterization, Medical Applications, and Toxicity Effects. J. Chem. Pharm. Res, 8, 526–537.
- 19 Carlson, C., Hussain, S.M., Schrand, A.M., K. Braydich-Stolle, L., Hess, K.L., Jones, R.L. and Schlager, J.J. (2008) Unique Cellular Interaction of Silver Nanoparticles: Size-Dependent Generation of Reactive Oxygen Species. The Journal of Physical Chemistry B, 112, 13608–13619. https://doi.org/10.1021/jp712087m.
- 20 Liu, W., Wu, Y., Wang, C., Li, H.C., Wang, T., Liao, C.Y., Cui, L., Zhou, Q.F., Yan, B. and Jiang, G.B. (2010) Impact of Silver Nanoparticles on Human Cells: Effect of Particle Size. Nanotoxicology, Taylor & Francis, 4, 319–330.
- 21 Kim, S., Choi, J.E., Choi, J., Chung, K.-H., Park, K., Yi, J. and Ryu, D.-Y. (2009) Oxidative Stress-Dependent Toxicity of Silver Nanoparticles in Human Hepatoma Cells. Toxicology in Vitro, 23, 1076–1084. https://doi.org/10.1016/j.tiv.2009.06.001.