Araştırma Makalesi
BibTex RIS Kaynak Göster

Relationship between Tau-fluvalinate Resistance and Carboxylesterase Enzyme in Myzus persicae (Hemiptera: Aphididae) Populations

Yıl 2025, Cilt: 20 Sayı: 2, 68 - 74, 30.12.2025

Öz

Myzus persicae is an important pest that causes significant economic losses in various crops. Worldwide, control of Myzus persicae largely relies on the use of insecticides, which has led to the development of resistance to several chemical classes. In this study, the resistance levels of Myzus persicae populations collected from tomato production areas in Antalya to tau-fluvalinate, a commonly used pyrethroid, were determined. Additionally, the relationship between resistance and carboxylesterase, an important detoxification enzyme, was evaluated. The leaf-dip method was employed to determine LC50 values for the aphid populations. The resistance levels of the collected populations were calculated by comparing their LC50 values to those of a susceptible population. The tau-fluvalinate resistance ratios for the S1, S2, S3, S4, and K populations were found to be 48.8, 37.4, 35.3, 18.5, and 63.5-fold, respectively. In all field populations, carboxylesterase enzyme levels were significantly higher compared to the susceptible population. These results suggest a possible association between tau-fluvalinate resistance and carboxylesterase activity in Myzus persicae populations. Moreover, the findings indicate that regional variations in tau-fluvalinate usage frequency may contribute to differences in resistance levels.

Kaynakça

  • Anonymous, (1979). Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides”, Method for adult aphids- FAO Method No. 17. FAO Plant Protection Bulletin, 27(2), 29-32.
  • Basit, A., Humza, M., Majeed, M. Z., Shakeel, M., Idrees, A., Hu, C. X., & Liu, T. X. (2024). Systemic resistance induced in tomato plants by Beauveria bassiana‐derived proteins against tomato yellow leaf curl virus and aphid Myzus persicae. Pest Management Science, 80(4), 1821-1830. https://doi.org/10.1002/ps.7906
  • Bass, C., Puinean, A. M., Zimmer, C. T., Denholm, I., Field, L. M., Foster, S. P., Gutbrod, O., Nauen, R., Slater, R., & Williamson, M. S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51,41-51. https://doi.org/10.1016/j.ibmb.2014.05.003
  • Beckingham, C., Phillips, J., Gill, M., & Crossthwaite, A. J. (2013). Investigating nicotinic acetylcholine receptor expression in neonicotinoid resistant Myzus persicae FRC. Pesticide Biochemistry and Physiology, 107(3), 293-298. https://doi.org/10.1016/j.pestbp.2013.08.005
  • Cahill, M., Byrne, F. J., Gorman, K., Denholm, I., & Devonshire, A. L. (1995). Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 85(2), 181-187. https://doi.org/10.1017/S0007485300034258
  • Cai, H., Yang, L., Zuo, Z., Liao, W., & Yang, Z. (2021). Resistance status of Myzus persicae to pesticide and its relationship with enzymes. Agronomy Journal, 113(2), 806-819. https://doi.org/10.1002/agj2.20490
  • De Beer, B., Vandenhole, M., Njiru, C., Spanoghe, P., Dermauw, W., & Van Leeuwen, T. (2022). High-resolution genetic mapping combined with transcriptome profiling reveals that both target-site resistance and increased detoxification confer resistance to the pyrethroid bifenthrin in the spider mite Tetranychus urticae. Biology, 11(11), 1630. https://doi.org/10.3390/biology11111630
  • Devonshire, A. L. (1977). The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), andits role in conferring insecticide resistance. Biochemical Journal, 167(3), 675-683. https://doi.org/10.1042/bj1670675
  • Devonshire, A. L., & Moores, G. D. (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potatoa phids (Myzus persicae). Pesticide Biochemistry and Physiology, 18(2), 235-246. https://doi.org/10.1016/0048-3575(82)90110-9
  • Devonshire, A. L., Devine, G. J., & Moores, G. D. (1992). Comparison of microplate esterase assays and immuno assay for identifying insecticide resistant variants of Myzus persicae (Homoptera: Aphididae). Bulletin of Entomology Research, 82, 459-463. https://doi.org/10.1017/S0007485300042516
  • Dong, K., Du, Y., Rinkevich, F., Nomura, Y., Xu, P., Wang, L., Silver, K., & Zhorov, B. S. (2014). Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology, 50, 1-17. https://doi.org/10.1016/j.ibmb.2014.03.012
  • Eleftherianos, I., Foster, S. P., Williamson, M. S., & Denholm, I. (2008). Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research, 98(2), 183-191. https://doi.org/10.1017/S0007485307005524
  • Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L. M., Gorman, K., & Bass, C. (2012). Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology, 42(7), 506-513. https://doi.org/10.1016/j.ibmb.2012.03.008
  • Hemingway, N., & Karunaratne, H. (1998). Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12(1), 1-12. https://doi.org/10.1046/j.1365-2915.1998.00082.x
  • Hu, J., Chen, F., Wang, J., Rao, W., Lin, L., & Fan, G. (2023). Multiple insecticide resistance and associated metabolic-based mechanisms in a Myzus persicae (Sulzer) population. Agronomy, 13(9), 2276. https://doi.org/10.3390/agronomy13092276
  • Jing C., Wei Z., Haiping L. I., & Qingyun D. (2016). Study on susceptibility to pyrethroids and carboxylesterase activity in Myzus persicae on potato. Chinese Journal of Pesticide Science, 18(2), 201-206. https://dx.doi.org/10.16801/j.issn.1008-7303.2016.0026
  • Kaneko, H. (2010). Pyrethroid chemistry and metabolism. In Hayes' handbook of pesticide toxicology (pp. 1635-1663). Academic press.
  • Khambay, B. P. S., & Jewess, P. J. (2004). Pyrethroids. https://repository.rothamsted.ac.uk/item/895vq/pyrethroids
  • LeOra Software, (1994). “Polo-pc: a user’s guide to probit or logit analysis leora software”, Berkeley, 28.
  • Meng, J., Zhang, C., Chen, X., Cao, Y., & Shang, S. (2014). Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Pesticide Biochemistry and Physiology, 115, 1–8. https://doi.org/10.1016/j.pestbp.2014.09.002
  • Nauen, R., Bass, C., Feyereisen, R., & Vontas, J. (2022). The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology, 67(1), 105-124. https://doi.org/10.1146/annurev-ento-070621-061328
  • Sabra, S. G., Abbas, N., & Hafez, A. M. (2023). First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. Pesticide Biochemistry and Physiology, 194, 105504. https://doi.org/10.1016/j.pestbp.2023.105504
  • Salman Yorulmaz. S., Keskin, C., & Kaya, M. (2021). Tau-fluvalinate’nin sublethal dozlarının Myzus persicae (Sulzer) (Hemiptera: Aphididae)’nin yaşam çizelgesi üzerine etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1), 83-87. https://doi.org/10.25308/aduziraat.821967
  • Sparks, T. C., Crossthwaite, A. J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U., Fujioka, S., Hirao, A., & Karmon, D. (2020). Insecticides, biologicsandnematicides: UpdatestoIRAC’smode of action classification-a tool for resistance management. Pesticide Biochemistry and Physiology, 167, 104587. https://doi.org/10.1016/j.pestbp.2020.104587
  • Tabet, D. H., Visentin, E., Bonadio, M., Bjeljac, M., Reyes-Domínguez, Y., Gallmetzer, A., & Spitaler, U. (2023). Efficacy of insecticides against the invasive apricot aphid, Myzus mumecola. Insects, 14(9), 746. https://doi.org/10.3390/insects14090746
  • Ulusoy, S., Kahya, D., Gökhan, M., & Özgür, O. (2023). Insecticide resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) in cotton fields in Çukurova Region of Türkiye. Turkish Journal of Entomology, 47(4), 387-399. https://doi.org/10.16970/entoted.1344982
  • Wheelock, C. E., Shan, G., & Ottea, J. (2005). Overview of carboxylesterases and their role in the metabolism of insecticides. Journal of Pesticide Science, 30(2), 75-83. https://doi.org/10.1584/jpestics.30.75

Myzus persicae (Hemiptera: Aphididae) Popülasyonlarında Tau-fluvalinate Direnci ve Karboksilesteraz Enzim İlişkisi

Yıl 2025, Cilt: 20 Sayı: 2, 68 - 74, 30.12.2025

Öz

Myzus persicae birçok üründe ekonomik kayba neden olan önemli bir zararlıdır. Dünya genelinde Myzus persicae ile mücadele büyük ölçüde insektisit kullanımı tercih edilmektedir. Bu durum ise zararlının çeşitli kimyasal gruplarına karşı direnç gelişimine yol açmaktadır. Bu çalışmada, Antalya’daki domates üretim alanlarından toplanan Myzus persicae popülasyonlarında, yaygın olarak kullanılan bir piretroid olan tau-fluvalinate’a karşı direnç düzeyleri belirlenmiştir. Ayrıca, önemli bir detoksifikasyon mekanizması olan karboksilesteraz enziminin dirençle ile olan ilişkisi de değerlendirilmiştir. Yaprak biti popülasyonlarında LC50 değerlerinin belirlenmesinde yaprak daldırma metodu kullanılmıştır. Toplanan popülasyonların LC50 değerleri hassas popülasyonun LC50 değerlerine oranlanarak direnç düzeyleri belirlenmiştir. Çalışma sonucunda S1, S2, S3, S4 ve K popülasyonları için tau-fluvalinate direnç oranları sırasıyla 48.8, 37.4, 35.3, 18.5 ve 63.5 kat olarak belirlenmiştir. Tüm tarla popülasyonlarında, hassas popülasyona kıyasla karboksilesteraz enzim düzeyleri anlamlı düzeyde yüksek bulunmuştur. Sonuç olarak Myzus persicae popülasyonlarında tau-fluvalinate direnci ile karboksilesteraz enzimi arasında bir ilişki olabileceği düşünülmektedir. Aynı zamanda ve bölgede tau-fluvalinate kullanım sıklığının direnç düzeylerinde farklılıklara neden olduğunu ortaya koymaktadır.

Kaynakça

  • Anonymous, (1979). Recommended methods for the detection and measurement of resistance of agricultural pests to pesticides”, Method for adult aphids- FAO Method No. 17. FAO Plant Protection Bulletin, 27(2), 29-32.
  • Basit, A., Humza, M., Majeed, M. Z., Shakeel, M., Idrees, A., Hu, C. X., & Liu, T. X. (2024). Systemic resistance induced in tomato plants by Beauveria bassiana‐derived proteins against tomato yellow leaf curl virus and aphid Myzus persicae. Pest Management Science, 80(4), 1821-1830. https://doi.org/10.1002/ps.7906
  • Bass, C., Puinean, A. M., Zimmer, C. T., Denholm, I., Field, L. M., Foster, S. P., Gutbrod, O., Nauen, R., Slater, R., & Williamson, M. S. (2014). The evolution of insecticide resistance in the peach potato aphid, Myzus persicae. Insect Biochemistry and Molecular Biology, 51,41-51. https://doi.org/10.1016/j.ibmb.2014.05.003
  • Beckingham, C., Phillips, J., Gill, M., & Crossthwaite, A. J. (2013). Investigating nicotinic acetylcholine receptor expression in neonicotinoid resistant Myzus persicae FRC. Pesticide Biochemistry and Physiology, 107(3), 293-298. https://doi.org/10.1016/j.pestbp.2013.08.005
  • Cahill, M., Byrne, F. J., Gorman, K., Denholm, I., & Devonshire, A. L. (1995). Pyrethroid and organophosphate resistance in the tobacco whitefly Bemisia tabaci (Homoptera: Aleyrodidae). Bulletin of Entomological Research, 85(2), 181-187. https://doi.org/10.1017/S0007485300034258
  • Cai, H., Yang, L., Zuo, Z., Liao, W., & Yang, Z. (2021). Resistance status of Myzus persicae to pesticide and its relationship with enzymes. Agronomy Journal, 113(2), 806-819. https://doi.org/10.1002/agj2.20490
  • De Beer, B., Vandenhole, M., Njiru, C., Spanoghe, P., Dermauw, W., & Van Leeuwen, T. (2022). High-resolution genetic mapping combined with transcriptome profiling reveals that both target-site resistance and increased detoxification confer resistance to the pyrethroid bifenthrin in the spider mite Tetranychus urticae. Biology, 11(11), 1630. https://doi.org/10.3390/biology11111630
  • Devonshire, A. L. (1977). The properties of a carboxylesterase from the peach-potato aphid, Myzus persicae (Sulz.), andits role in conferring insecticide resistance. Biochemical Journal, 167(3), 675-683. https://doi.org/10.1042/bj1670675
  • Devonshire, A. L., & Moores, G. D. (1982). A carboxylesterase with broad substrate specificity causes organophosphorus, carbamate and pyrethroid resistance in peach-potatoa phids (Myzus persicae). Pesticide Biochemistry and Physiology, 18(2), 235-246. https://doi.org/10.1016/0048-3575(82)90110-9
  • Devonshire, A. L., Devine, G. J., & Moores, G. D. (1992). Comparison of microplate esterase assays and immuno assay for identifying insecticide resistant variants of Myzus persicae (Homoptera: Aphididae). Bulletin of Entomology Research, 82, 459-463. https://doi.org/10.1017/S0007485300042516
  • Dong, K., Du, Y., Rinkevich, F., Nomura, Y., Xu, P., Wang, L., Silver, K., & Zhorov, B. S. (2014). Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology, 50, 1-17. https://doi.org/10.1016/j.ibmb.2014.03.012
  • Eleftherianos, I., Foster, S. P., Williamson, M. S., & Denholm, I. (2008). Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research, 98(2), 183-191. https://doi.org/10.1017/S0007485307005524
  • Haddi, K., Berger, M., Bielza, P., Cifuentes, D., Field, L. M., Gorman, K., & Bass, C. (2012). Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology, 42(7), 506-513. https://doi.org/10.1016/j.ibmb.2012.03.008
  • Hemingway, N., & Karunaratne, H. (1998). Mosquito carboxylesterases: A review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Medical and Veterinary Entomology, 12(1), 1-12. https://doi.org/10.1046/j.1365-2915.1998.00082.x
  • Hu, J., Chen, F., Wang, J., Rao, W., Lin, L., & Fan, G. (2023). Multiple insecticide resistance and associated metabolic-based mechanisms in a Myzus persicae (Sulzer) population. Agronomy, 13(9), 2276. https://doi.org/10.3390/agronomy13092276
  • Jing C., Wei Z., Haiping L. I., & Qingyun D. (2016). Study on susceptibility to pyrethroids and carboxylesterase activity in Myzus persicae on potato. Chinese Journal of Pesticide Science, 18(2), 201-206. https://dx.doi.org/10.16801/j.issn.1008-7303.2016.0026
  • Kaneko, H. (2010). Pyrethroid chemistry and metabolism. In Hayes' handbook of pesticide toxicology (pp. 1635-1663). Academic press.
  • Khambay, B. P. S., & Jewess, P. J. (2004). Pyrethroids. https://repository.rothamsted.ac.uk/item/895vq/pyrethroids
  • LeOra Software, (1994). “Polo-pc: a user’s guide to probit or logit analysis leora software”, Berkeley, 28.
  • Meng, J., Zhang, C., Chen, X., Cao, Y., & Shang, S. (2014). Differential protein expression in the susceptible and resistant Myzus persicae (Sulzer) to imidacloprid. Pesticide Biochemistry and Physiology, 115, 1–8. https://doi.org/10.1016/j.pestbp.2014.09.002
  • Nauen, R., Bass, C., Feyereisen, R., & Vontas, J. (2022). The role of cytochrome P450s in insect toxicology and resistance. Annual Review of Entomology, 67(1), 105-124. https://doi.org/10.1146/annurev-ento-070621-061328
  • Sabra, S. G., Abbas, N., & Hafez, A. M. (2023). First monitoring of resistance and corresponding mechanisms in the green peach aphid, Myzus persicae (Sulzer), to registered and unregistered insecticides in Saudi Arabia. Pesticide Biochemistry and Physiology, 194, 105504. https://doi.org/10.1016/j.pestbp.2023.105504
  • Salman Yorulmaz. S., Keskin, C., & Kaya, M. (2021). Tau-fluvalinate’nin sublethal dozlarının Myzus persicae (Sulzer) (Hemiptera: Aphididae)’nin yaşam çizelgesi üzerine etkileri. Adnan Menderes Üniversitesi Ziraat Fakültesi Dergisi, 18(1), 83-87. https://doi.org/10.25308/aduziraat.821967
  • Sparks, T. C., Crossthwaite, A. J., Nauen, R., Banba, S., Cordova, D., Earley, F., Ebbinghaus-Kintscher, U., Fujioka, S., Hirao, A., & Karmon, D. (2020). Insecticides, biologicsandnematicides: UpdatestoIRAC’smode of action classification-a tool for resistance management. Pesticide Biochemistry and Physiology, 167, 104587. https://doi.org/10.1016/j.pestbp.2020.104587
  • Tabet, D. H., Visentin, E., Bonadio, M., Bjeljac, M., Reyes-Domínguez, Y., Gallmetzer, A., & Spitaler, U. (2023). Efficacy of insecticides against the invasive apricot aphid, Myzus mumecola. Insects, 14(9), 746. https://doi.org/10.3390/insects14090746
  • Ulusoy, S., Kahya, D., Gökhan, M., & Özgür, O. (2023). Insecticide resistance of Aphis gossypii Glover, 1877 (Hemiptera: Aphididae) in cotton fields in Çukurova Region of Türkiye. Turkish Journal of Entomology, 47(4), 387-399. https://doi.org/10.16970/entoted.1344982
  • Wheelock, C. E., Shan, G., & Ottea, J. (2005). Overview of carboxylesterases and their role in the metabolism of insecticides. Journal of Pesticide Science, 30(2), 75-83. https://doi.org/10.1584/jpestics.30.75
Toplam 27 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Pestisititler ve Toksikoloji, Tarımda Akaroloji
Bölüm Araştırma Makalesi
Yazarlar

Sibel Yorulmaz 0000-0003-3836-5673

Gizem Berber Tortop 0000-0003-3090-3705

Bayram Karaburgu Bu kişi benim 0000-0003-2015-3719

Gönderilme Tarihi 19 Eylül 2025
Kabul Tarihi 5 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 20 Sayı: 2

Kaynak Göster

APA Yorulmaz, S., Berber Tortop, G., & Karaburgu, B. (2025). Myzus persicae (Hemiptera: Aphididae) Popülasyonlarında Tau-fluvalinate Direnci ve Karboksilesteraz Enzim İlişkisi. Ziraat Fakültesi Dergisi, 20(2), 68-74. https://doi.org/10.54975/isubuzfd.1786655

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607