Araştırma Makalesi
BibTex RIS Kaynak Göster

JAPON BILDIRCINLARINDA KULUÇKALIK YUMURTA AĞIRLIĞI, ŞEKLİ, HACMİ VE KABUK YÜZEY ALANININ KULUÇKANIN SEYRİ VE CİVCİV ÇIKIŞ AĞIRLIĞI ÜZERİNE ETKİLERİ

Yıl 2021, Cilt: 16 Sayı: 1, 17 - 25, 10.06.2021

Öz

Bu çalışmada farklı yöntemlerle hesaplanan kabuk yüzey alanı (KYA) ve hacmi (YH) ile kuluçkanın seyri içinde yumurta ağırlığı (YA), kabuk sıcaklığı (KS), oransal nem kaybı (ONK) ve civciv çıkış ağırlığı (ÇA) arasındaki ilişkiler ve değişimler incelenmiştir. On haftalık yaştaki Japon bıldırcınlarından elde edilen toplam 565 kuluçkalık yumurta kullanılmıştır. KYA ve YH, önceki araştırmacıların geliştirdiği tahmin denklemleri ve sayısal görüntü analizi yazılımıyla hesaplanmıştır.
Tahmin denklemleriyle elde edilen KYA ve YH değerlerinin tamamı, sayısal görüntü analiziyle elde edilenlerden istatistiki olarak önemli düzeyde farklı bulunmuştur (P<0,0001). KS gelişme döneminin ilk yarısında makine sıcaklığından daha düşükken, ikinci yarısında daha yüksek olmuştur. Yumurtalar irileştikçe, KYA oransal olarak azalmış ve ONK de zorlaşmıştır. KYA ile KYA/YH oranı ve yine YH ile KYA/YH oranı arasında önemli düzeyde yüksek negatif korelasyonlar bulunmuştur (P<0,01). ÇA ile KYA/YH arasında da önemli düzeyde yüksek negatif korelasyon belirlenmiştir (P<0,01). Yani YA arttıkça, beklendiği üzere KYA, YH ve ÇA artmakta, ancak KYA/YH azalmaktadır. KYA ve YH arttıkça ONK azalmakta, ideal nem kaybının sağlanması güçleşmekte ve ısıl dengenin korunmasında sorunlar yaşanabilmektedir. Bulgular dolaylı olarak, damızlık sürü ve kuluçka idaresi açısından üniformitenin önemine de işaret etmektedir.
Tür içi ve türler arası yumurta şekil farklılıklarına bağlı olarak genelleştirilmiş KYA ve YH tahmin denklemlerinin kullanımı hatalı olabilmektedir. Çalışma kolaylığı ve doğruluk açısından görüntü analizinin tercih edilebileceği sonucuna ulaşılmıştır.

Destekleyen Kurum

SDÜ BAP Yönetim Birimi Başkanlığı

Proje Numarası

4371‐YL1‐15

Teşekkür

Bu çalışma S. Demirel Üniversitesi BAP Yönetim Birimi Başkanlığınca 4371‐YL1‐15 No’lu Proje kapsamında desteklenen ilk yazarın yüksek lisans tezinden özetlenmiştir.

Kaynakça

  • Akıncı Z, Erişir Z, Poyraz Ö (1999). Hindilerde yumurta ağırlığı ve embriyonik gelişim ile yumurta ağırlık kaybı ve bazı kabuk özellikleri arasındaki ilişkiler. Lalahan Hayvan Araştırma Enstitü Dergisi, 39(1): 47-59.
  • Aktan S (2004a). Determining storage related egg quality changes via digital image analysis. South African Journal of Animal Science, 2: 70-74.
  • Aktan S (2004b). Sayısal görüntü analizinin (digital image analysis) hayvancılıkta kullanım olanakları ve metodolojisi. 4. Ulusal Zootekni Bilim Kongresi, Bildiriler, 160-165, Isparta.
  • Aktan S (2011a). Effects of age and storage duration on relationships among albumen quality traits and egg weight in Japanese quails. Journal of Animal and Veterinary Advances, 10(25): 3340-3344.
  • Aktan S (2011b). Effects of age strain on relationships among albumen quality traits and egg weight in commercial brown layers. Journal of Animal and Veterinary Advances, 10(25): 3345-3349.
  • Ayupov FG (1976). On the egg mathematical model. Advanced Scientific-Industrial Experience in Poultry Breeding. 9: 14-16.
  • Boersma PD, Rebstock G (2010). Calculating egg volume when shape differs: When are equations appropriate? Journal of Field Ornithology, 81: 442-448.
  • Bozkurt Y, Aktan S, Ozkaya S (2008). Digital image analysis to predict carcass weight and some carcass characteristics of beef cattle. Asian Journal of Animal and Veterinary Advances, 3: 129-137.
  • Brah GS, Chaudhary ML, Sandhu, JS (1999). Analysis of relation of egg weight with embryonic mortality, hatching time, chick weight and embryonic efficiency in chickens. Indian Journal of Poultry Science, 34: 308‐312.
  • Bridge ES, Boughton RK, Aldridge RA, Harrison TJE, Bowman R, Schoech S. J., 2007. Measuring egg size using digital photography: testing Hoyt’s method using Florida Scrub Jay eggs. Journal of Field Ornithology, 78: 109-116.
  • Bruzuol JJ, Peck SD, Broke J, Peebles ED (2000). Effects of relative humidity during incubation on hatchability and body weight of broiler chick from young breeder flock. Poultry Science, 79: 827‐830.
  • Burtov YZ, Goldin Y, Krivopishin IP (1990). Incubation of eggs: Handbook. Moscow, Russia.
  • Carter TC (1975a). The hen's egg: Relationships of seven characteristics of the strain of hen to the incidence of cracks and other shell defects. British Poultry Science, 16: 289‐296.
  • Carter TC (1975b). The hen's egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. British Poultry Science, 16: 541‐543.
  • Çopur G (2004). Damızlık yetiştiriciliğinde kuluçka aksaklıkları. Hayvansal Üretim Dergisi, 45(1): 31‐35.
  • Davis TA, Shen, SS, Ackerman RA (1988). Embryonic osmorregulation: Consequences of high and low water loss during incubation of the chicken egg. Journal of Experimental Zoology, 245: 144‐156.
  • Decuypere E, Nouwen EJ, Kuhn ER, Geers R, Michels H (1979). Iodohormones in the serum of chicks embryos and post‐hatching chickens as influenced by incubation temperatures. Relationship with the hatching process and thermogenesis. Annales de Biologie Animale Biochemie Biophysique, 19: 1713-1723.
  • Decuypere E, Michels H (1992). Incubation temperature as a management tool: A review. World's Poultry Science Journal, 48: 28‐38.
  • Elibol O (2009). Embriyo Gelişimi ve Kuluçka. Tavukçuluk Bilimi: Yetiştirme, Besleme, Hastalıklar. (Ed. Türkoğlu M, Sarıca M), 3. basım, 588.
  • Etches RJ (1996). Reproduction in Poultry. CAB International, Wallingford, UK.
  • French NA (1997). Modelling incubation temperature: The effect of incubator design, embryonic development and egg size. Poultry Science, 76: 124‐ 133.
  • Gonzalez A, Satterlee DG, Moharer F, Cadd GG (1999). Factors affecting ostrich egg hatchability. Poultry Science, 78: 1257‐1262.
  • Gualhanone A, Furlan RL, Fernandez‐Alarcon MF, Macari M (2012). Effect of breeeder age on eggshell thickness, surface temperature, hatchability and chick weigh. Brazilian Journal of Poultry Science, 14(1): 09‐14.
  • Hoyt DF (1979). Practical methods of estimating volume and fresh weight of bird eggs. The Auk 96: 73‐77.
  • Hoyt DF (1987). A new model of avian embryonic metabolism. Journal of Experimental Zoology, 1: 127‐138.
  • Hu Q, Agarwal U, Bequette BJ (2013). Energy sensing in developing chicken embryos and posthatch chicks from different size eggs. Poultry Science, 92: 1650‐1654.
  • Insko WM, Maclaury DW, Begin JJ, Johnson TH (1971). The relationship of egg weight to hatchability of Coturnix eggs. Poultry Science, 50:297‐298.
  • Kansak S, Aktan S (2020). Japon bıldırcınlarında yumurta ağırlığı, kuluçka sıcaklığı ve kabuk sıcaklığının kuluçka sonuçlarına etkilerinin belirlenmesi. Turkish Journal of Agriculture - Food Science and Technology, 8(12): xxxx-xxxx.
  • Joseph NS, Lourens A, Moran ET (2006). The effects of suboptimal eggshell temperature during incubation on broiler chick quality, live performance, and further processing yield. Poultry Science, 85(5): 932‐938.
  • Leksrisompong N, Romero‐Sanchez H, Plumstead PW, Brannan KE, Brake J (2007). Broiler incubation: 1. Effect of elevated temperature during late incubation on body weight and organs of chicks. Poultry Science, 86: 2685‐2691.
  • Lohani F, Ahmad S (2013). A comparison of some egg geometry parameters in four close‐bred stocks of japanese quail. Scientific Journal of Zoology. 2(9):99‐101.
  • Lourens A (2001). Theimportance of airvelocity in incubation. World Poultry, 17: 29-30.
  • Lourens A, Molenaar R, van den Brand H, Heetkamp MJW, Meijerhof R, Kemp B (2006). Effect of egg size on heat production and thetransition of energy from egg to hatchling. Poultry Science, 85: 770‐776.
  • Lourens A, van den Brand H, Meijerhof R, Kemp B (2005). Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry Science, 84: 914‐920.
  • Lourens A, van den Brand H, Heetkamp MJW, Meijerhof R, Kemp B (2007). Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poultry Science, 86: 2194‐2199.
  • Meijerhof R (2002). Design and Operation of Commercial Incubators. In Practical Aspects of Commercial Incubation. Ratite Conf. Books, Lincolnshire, UK.
  • Meijerhof R, van Beek G (1993). Mathematical modeling of temperature and moisture loss of hatching eggs. Journal of Theoretical Biology, 165: 27-41.
  • Molenaar R, van den Anker I, Meijerhof R, Kemp B, van den Brand H (2011). Effect of eggshell temperature and oxygen concentration during incubation on the developmental and physiological status of broiler hatchlings in the perinatal period. Poultry Science, 90: 1257‐1266.
  • Nangsuay A, Meijerhof R, Ruangpanit Y, Kemp B, van den Brand H (2013). Energy utilization and heat production of embryos from eggs originating from young and old broiler breeder flocks. Poultry Science, 92: 474‐482.
  • Narushin VG (2001). Shape geometry of the avain egg. Animal Production Technology, 79(4): 441‐448.
  • Narushin VG, Romanov MN (2002). Egg physical characteristics and hatchability. World’s Poultry Science Journal, 58: 297‐303.
  • Narushin VG (1997a). The avian egg: Geometrical description and calculation of parameters. Journal of Agricultural Engineering Research, 68: 201-205.
  • Narushin VG (1997b). Non‐destructive measurements of egg parameters and quality characteristics. World's Poultry Science Journal, 57: 141‐153.
  • Narushin VG (2005). Egg geometry calculation using the measurements of length and breadth. Poultry Science, 84(3): 482-484.
  • Nedomová S, Buchar J (2014). Goose eggshell geometry. Res. Agric. Eng. 60: 100-106.
  • Nichelmann M, Burmeister A, Janke O, Höchel J, Tzschentke B (1998). Avian embryonic thermoregulation: Role of Q10 in interpretation of endothermic reactions. Journal of Thermal Biology, 23(6): 369-376.
  • Nordskog AW, Hassan GM (1971). Direct and maternal effects of egg‐size genes on hatchability. Genetics, 67: 267‐278.
  • Paganelli CV, Olszowka A, AR A 1974. The avian egg: Surface area, volume and density. The Condor, 76: 319‐325.
  • Raju MVLN, Chawak MM, Praharaj NK, Rao SVR, Mishra SK (1997). Interrelationships among egg weight, hatchability, chick weight, post‐hatch performance and rearing method in broiler breeders. Indian Journal of Animal Sciences, 67: 48‐50.
  • Rasali DP, Shrestha NP, Mugdal VD, Serrano JV, Palad M, Lambio AL (1993). Egg shell parameters in philippine native chickens and their upgrades. Asian-Australasian Journal of Animal Sciences, 6(1): 1‐4.
  • Romanoff AL, Romanoff AJ (1949). The Avian Egg. Wiley and Sons Inc., NY, USA.
  • Romanoff AL (1960). The Avian Embryo. The Macmillan Co., NY, USA.
  • Romijn C, Lokhorst W (1956). The caloric equilibrium of the chicken embryo. Poultry Science, 35: 829-834.
  • Schneider CA, Rasband WS, Eliceiri KW (2012). NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods, 9: 671-675.
  • Senapati PK, Das K, Mondal KG, Chatterjee AK (1996). Relationship between egg weight, shape index and fertility and hatchability of Japanese quail eggs. Environment and Ecology, 14: 574-577.
  • Shanawany MM (1987). Hatching weight in relation to egg weight in domestic birds. World’s Poultry Science Journal, 43: 107‐115.
  • Sharma PK, Vohra P (1980). Relationship between egg weight, shape index and fertility and hatchability of Japanese quail (Coturnix coturnix japonica) eggs. Indian Journal of Poultry Science, 15: 5‐10.
  • Shatokhina ST (1975). Relationship of morphological traits of eggs with embryonic and post‐embryonic development of different lines of laying hens. Thesis of Candidate of Agricultural Sciences, Kuban Agricultural University, Russia.
  • Sotherland PR, Spotila TR, Paganelli CV (1987). Avian eggs: Barriers to the exchange of heat and mass. The Journal of Experimental Zoology, 1: 81‐86.
  • Sreenivasiah P (2006). Poultry Production: A Unique Encyclopedia. 3rd ed., India.
  • Şeker İ (2003). Bıldırcınlarda kuluçkalık yumurtaların döllülük oranına ve kuluçka sonuçlarına bazı faktörlerin etkisi. YYÜ Veteriner Fakültesi Dergisi, 14(2): 42‐46.
  • Teusan A, Vacaru‐Opriş I, Teusan V (2008). Aspects regarding some morphological values of the domestic quail eggs. Lucrări Sci. Zootehnie şi Biotehnologii, 41(2): 709‐716.
  • Troscianko J (2014). A simple tool for calculating egg shape, volume and surface area from digital images. International Journal of Avian Science, 156: 874-878.
  • Tsarenko PP (1988). Improving the Quality of Poultry Products: Table and Hatching Eggs. Agropromizdat, Leningrad, Russia.
  • Van der Pol CW, van Roovert‐Reijrink IAM, Maatjens CM, van den Brand H, Molenaar R (2012). Effect of realitive humidity during incubation at a set eggshell temperature. Presented on the IFRG meeting, June 2012.
  • Van Roovert‐Reijrink I (2013). Incubation affects chick quality. Poultry World, https://www.poultryworld.net/Genetics/Articles/2013/5/Incubation-affects-chick-quality-1183725W/ (erişim tarihi:09.12.2020.
  • Wilkanowska A, Kokoszynski D (2012). Layer age and quality of pharaoh quail eggs. Journal of Central European Agriculture, 13: 10–21.
  • Wilson HR (1991). Physiological Requirements of the Developing Embryo: Temperature and Turning. In Avian Incubation (Ed. Tullett SG), Butterworth‐Heinemann, London, UK, pp 145–156.

THE EFFECTS OF EGG WEIGHT, SHAPE, VOLUME AND SURFACE AREA IN THE COURSE OF INCUBATION AND EMERGED CHICK WEIGHT IN JAPANESE QUAILS

Yıl 2021, Cilt: 16 Sayı: 1, 17 - 25, 10.06.2021

Öz

In this study, in the course of incubation, it was investigated that the relations and changes amongst the egg shell surface area (ESA), and the egg volume (EV) (both are calculated by different methods) with some traits such as egg weight (EW), egg shell temperature (EST), egg weight loss percentage (EWL), day-old chick weight (CW). A total of 565 hatching Japanese quail eggs from a ten weeks of aged flock were used. The ESA and EV were calculated by either the estimate equations which were developed by previous researchers, and the digital image analysis software tool.
All of the estimated ESA and EV values, which were procured by equations, were found to be significantly different than the revealed ones by digital image analysis (P<0.0001). While the EST was lower than setter temperature in the first half of the embryonic development period, it was found to be higher during the subsequent half. As the eggs got heavier, the ESA decreased proportionally and EWL became more difficult. Significantly high negative correlations were found between ESA and ESA/:EV ratio, and again between YH and ESA:EV (P <0.01). It was also determined that a significantly high negative correlation between CW and ESA:EV ratio (P<0.01). That is, as expected, as EW increases, ESA, EV and CW are increasing, but ESA:EV ratio decreases. As ESA and EV increase, EWL decreases, it becomes difficult to achieve optimum water loss, and problems may occur to maintain thermal balance. Indirectly, these findings also denote the importance of the uniformity in terms of breeder flock and hatchery management.
Depending on the egg shape differences within and between species, the use of generalized ESA and EV estimation equations may be erroneous. It was concluded that image analysis could be preferred in terms of ease of operation and accuracy.

Proje Numarası

4371‐YL1‐15

Kaynakça

  • Akıncı Z, Erişir Z, Poyraz Ö (1999). Hindilerde yumurta ağırlığı ve embriyonik gelişim ile yumurta ağırlık kaybı ve bazı kabuk özellikleri arasındaki ilişkiler. Lalahan Hayvan Araştırma Enstitü Dergisi, 39(1): 47-59.
  • Aktan S (2004a). Determining storage related egg quality changes via digital image analysis. South African Journal of Animal Science, 2: 70-74.
  • Aktan S (2004b). Sayısal görüntü analizinin (digital image analysis) hayvancılıkta kullanım olanakları ve metodolojisi. 4. Ulusal Zootekni Bilim Kongresi, Bildiriler, 160-165, Isparta.
  • Aktan S (2011a). Effects of age and storage duration on relationships among albumen quality traits and egg weight in Japanese quails. Journal of Animal and Veterinary Advances, 10(25): 3340-3344.
  • Aktan S (2011b). Effects of age strain on relationships among albumen quality traits and egg weight in commercial brown layers. Journal of Animal and Veterinary Advances, 10(25): 3345-3349.
  • Ayupov FG (1976). On the egg mathematical model. Advanced Scientific-Industrial Experience in Poultry Breeding. 9: 14-16.
  • Boersma PD, Rebstock G (2010). Calculating egg volume when shape differs: When are equations appropriate? Journal of Field Ornithology, 81: 442-448.
  • Bozkurt Y, Aktan S, Ozkaya S (2008). Digital image analysis to predict carcass weight and some carcass characteristics of beef cattle. Asian Journal of Animal and Veterinary Advances, 3: 129-137.
  • Brah GS, Chaudhary ML, Sandhu, JS (1999). Analysis of relation of egg weight with embryonic mortality, hatching time, chick weight and embryonic efficiency in chickens. Indian Journal of Poultry Science, 34: 308‐312.
  • Bridge ES, Boughton RK, Aldridge RA, Harrison TJE, Bowman R, Schoech S. J., 2007. Measuring egg size using digital photography: testing Hoyt’s method using Florida Scrub Jay eggs. Journal of Field Ornithology, 78: 109-116.
  • Bruzuol JJ, Peck SD, Broke J, Peebles ED (2000). Effects of relative humidity during incubation on hatchability and body weight of broiler chick from young breeder flock. Poultry Science, 79: 827‐830.
  • Burtov YZ, Goldin Y, Krivopishin IP (1990). Incubation of eggs: Handbook. Moscow, Russia.
  • Carter TC (1975a). The hen's egg: Relationships of seven characteristics of the strain of hen to the incidence of cracks and other shell defects. British Poultry Science, 16: 289‐296.
  • Carter TC (1975b). The hen's egg: Estimation of shell superficial area and egg volume, using measurements of fresh egg weight and shell length and breadth alone or in combination. British Poultry Science, 16: 541‐543.
  • Çopur G (2004). Damızlık yetiştiriciliğinde kuluçka aksaklıkları. Hayvansal Üretim Dergisi, 45(1): 31‐35.
  • Davis TA, Shen, SS, Ackerman RA (1988). Embryonic osmorregulation: Consequences of high and low water loss during incubation of the chicken egg. Journal of Experimental Zoology, 245: 144‐156.
  • Decuypere E, Nouwen EJ, Kuhn ER, Geers R, Michels H (1979). Iodohormones in the serum of chicks embryos and post‐hatching chickens as influenced by incubation temperatures. Relationship with the hatching process and thermogenesis. Annales de Biologie Animale Biochemie Biophysique, 19: 1713-1723.
  • Decuypere E, Michels H (1992). Incubation temperature as a management tool: A review. World's Poultry Science Journal, 48: 28‐38.
  • Elibol O (2009). Embriyo Gelişimi ve Kuluçka. Tavukçuluk Bilimi: Yetiştirme, Besleme, Hastalıklar. (Ed. Türkoğlu M, Sarıca M), 3. basım, 588.
  • Etches RJ (1996). Reproduction in Poultry. CAB International, Wallingford, UK.
  • French NA (1997). Modelling incubation temperature: The effect of incubator design, embryonic development and egg size. Poultry Science, 76: 124‐ 133.
  • Gonzalez A, Satterlee DG, Moharer F, Cadd GG (1999). Factors affecting ostrich egg hatchability. Poultry Science, 78: 1257‐1262.
  • Gualhanone A, Furlan RL, Fernandez‐Alarcon MF, Macari M (2012). Effect of breeeder age on eggshell thickness, surface temperature, hatchability and chick weigh. Brazilian Journal of Poultry Science, 14(1): 09‐14.
  • Hoyt DF (1979). Practical methods of estimating volume and fresh weight of bird eggs. The Auk 96: 73‐77.
  • Hoyt DF (1987). A new model of avian embryonic metabolism. Journal of Experimental Zoology, 1: 127‐138.
  • Hu Q, Agarwal U, Bequette BJ (2013). Energy sensing in developing chicken embryos and posthatch chicks from different size eggs. Poultry Science, 92: 1650‐1654.
  • Insko WM, Maclaury DW, Begin JJ, Johnson TH (1971). The relationship of egg weight to hatchability of Coturnix eggs. Poultry Science, 50:297‐298.
  • Kansak S, Aktan S (2020). Japon bıldırcınlarında yumurta ağırlığı, kuluçka sıcaklığı ve kabuk sıcaklığının kuluçka sonuçlarına etkilerinin belirlenmesi. Turkish Journal of Agriculture - Food Science and Technology, 8(12): xxxx-xxxx.
  • Joseph NS, Lourens A, Moran ET (2006). The effects of suboptimal eggshell temperature during incubation on broiler chick quality, live performance, and further processing yield. Poultry Science, 85(5): 932‐938.
  • Leksrisompong N, Romero‐Sanchez H, Plumstead PW, Brannan KE, Brake J (2007). Broiler incubation: 1. Effect of elevated temperature during late incubation on body weight and organs of chicks. Poultry Science, 86: 2685‐2691.
  • Lohani F, Ahmad S (2013). A comparison of some egg geometry parameters in four close‐bred stocks of japanese quail. Scientific Journal of Zoology. 2(9):99‐101.
  • Lourens A (2001). Theimportance of airvelocity in incubation. World Poultry, 17: 29-30.
  • Lourens A, Molenaar R, van den Brand H, Heetkamp MJW, Meijerhof R, Kemp B (2006). Effect of egg size on heat production and thetransition of energy from egg to hatchling. Poultry Science, 85: 770‐776.
  • Lourens A, van den Brand H, Meijerhof R, Kemp B (2005). Effect of eggshell temperature during incubation on embryo development, hatchability, and posthatch development. Poultry Science, 84: 914‐920.
  • Lourens A, van den Brand H, Heetkamp MJW, Meijerhof R, Kemp B (2007). Effects of eggshell temperature and oxygen concentration on embryo growth and metabolism during incubation. Poultry Science, 86: 2194‐2199.
  • Meijerhof R (2002). Design and Operation of Commercial Incubators. In Practical Aspects of Commercial Incubation. Ratite Conf. Books, Lincolnshire, UK.
  • Meijerhof R, van Beek G (1993). Mathematical modeling of temperature and moisture loss of hatching eggs. Journal of Theoretical Biology, 165: 27-41.
  • Molenaar R, van den Anker I, Meijerhof R, Kemp B, van den Brand H (2011). Effect of eggshell temperature and oxygen concentration during incubation on the developmental and physiological status of broiler hatchlings in the perinatal period. Poultry Science, 90: 1257‐1266.
  • Nangsuay A, Meijerhof R, Ruangpanit Y, Kemp B, van den Brand H (2013). Energy utilization and heat production of embryos from eggs originating from young and old broiler breeder flocks. Poultry Science, 92: 474‐482.
  • Narushin VG (2001). Shape geometry of the avain egg. Animal Production Technology, 79(4): 441‐448.
  • Narushin VG, Romanov MN (2002). Egg physical characteristics and hatchability. World’s Poultry Science Journal, 58: 297‐303.
  • Narushin VG (1997a). The avian egg: Geometrical description and calculation of parameters. Journal of Agricultural Engineering Research, 68: 201-205.
  • Narushin VG (1997b). Non‐destructive measurements of egg parameters and quality characteristics. World's Poultry Science Journal, 57: 141‐153.
  • Narushin VG (2005). Egg geometry calculation using the measurements of length and breadth. Poultry Science, 84(3): 482-484.
  • Nedomová S, Buchar J (2014). Goose eggshell geometry. Res. Agric. Eng. 60: 100-106.
  • Nichelmann M, Burmeister A, Janke O, Höchel J, Tzschentke B (1998). Avian embryonic thermoregulation: Role of Q10 in interpretation of endothermic reactions. Journal of Thermal Biology, 23(6): 369-376.
  • Nordskog AW, Hassan GM (1971). Direct and maternal effects of egg‐size genes on hatchability. Genetics, 67: 267‐278.
  • Paganelli CV, Olszowka A, AR A 1974. The avian egg: Surface area, volume and density. The Condor, 76: 319‐325.
  • Raju MVLN, Chawak MM, Praharaj NK, Rao SVR, Mishra SK (1997). Interrelationships among egg weight, hatchability, chick weight, post‐hatch performance and rearing method in broiler breeders. Indian Journal of Animal Sciences, 67: 48‐50.
  • Rasali DP, Shrestha NP, Mugdal VD, Serrano JV, Palad M, Lambio AL (1993). Egg shell parameters in philippine native chickens and their upgrades. Asian-Australasian Journal of Animal Sciences, 6(1): 1‐4.
  • Romanoff AL, Romanoff AJ (1949). The Avian Egg. Wiley and Sons Inc., NY, USA.
  • Romanoff AL (1960). The Avian Embryo. The Macmillan Co., NY, USA.
  • Romijn C, Lokhorst W (1956). The caloric equilibrium of the chicken embryo. Poultry Science, 35: 829-834.
  • Schneider CA, Rasband WS, Eliceiri KW (2012). NIH Image to ImageJ: 25 years of Image Analysis. Nat Methods, 9: 671-675.
  • Senapati PK, Das K, Mondal KG, Chatterjee AK (1996). Relationship between egg weight, shape index and fertility and hatchability of Japanese quail eggs. Environment and Ecology, 14: 574-577.
  • Shanawany MM (1987). Hatching weight in relation to egg weight in domestic birds. World’s Poultry Science Journal, 43: 107‐115.
  • Sharma PK, Vohra P (1980). Relationship between egg weight, shape index and fertility and hatchability of Japanese quail (Coturnix coturnix japonica) eggs. Indian Journal of Poultry Science, 15: 5‐10.
  • Shatokhina ST (1975). Relationship of morphological traits of eggs with embryonic and post‐embryonic development of different lines of laying hens. Thesis of Candidate of Agricultural Sciences, Kuban Agricultural University, Russia.
  • Sotherland PR, Spotila TR, Paganelli CV (1987). Avian eggs: Barriers to the exchange of heat and mass. The Journal of Experimental Zoology, 1: 81‐86.
  • Sreenivasiah P (2006). Poultry Production: A Unique Encyclopedia. 3rd ed., India.
  • Şeker İ (2003). Bıldırcınlarda kuluçkalık yumurtaların döllülük oranına ve kuluçka sonuçlarına bazı faktörlerin etkisi. YYÜ Veteriner Fakültesi Dergisi, 14(2): 42‐46.
  • Teusan A, Vacaru‐Opriş I, Teusan V (2008). Aspects regarding some morphological values of the domestic quail eggs. Lucrări Sci. Zootehnie şi Biotehnologii, 41(2): 709‐716.
  • Troscianko J (2014). A simple tool for calculating egg shape, volume and surface area from digital images. International Journal of Avian Science, 156: 874-878.
  • Tsarenko PP (1988). Improving the Quality of Poultry Products: Table and Hatching Eggs. Agropromizdat, Leningrad, Russia.
  • Van der Pol CW, van Roovert‐Reijrink IAM, Maatjens CM, van den Brand H, Molenaar R (2012). Effect of realitive humidity during incubation at a set eggshell temperature. Presented on the IFRG meeting, June 2012.
  • Van Roovert‐Reijrink I (2013). Incubation affects chick quality. Poultry World, https://www.poultryworld.net/Genetics/Articles/2013/5/Incubation-affects-chick-quality-1183725W/ (erişim tarihi:09.12.2020.
  • Wilkanowska A, Kokoszynski D (2012). Layer age and quality of pharaoh quail eggs. Journal of Central European Agriculture, 13: 10–21.
  • Wilson HR (1991). Physiological Requirements of the Developing Embryo: Temperature and Turning. In Avian Incubation (Ed. Tullett SG), Butterworth‐Heinemann, London, UK, pp 145–156.
Toplam 68 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Hayvansal Üretim (Diğer)
Bölüm Makaleler
Yazarlar

Sedat Aktan 0000-0001-6182-5450

Hasan Çal Bu kişi benim 0000-0003-3112-2097

Proje Numarası 4371‐YL1‐15
Yayımlanma Tarihi 10 Haziran 2021
Gönderilme Tarihi 13 Aralık 2020
Kabul Tarihi 22 Aralık 2020
Yayımlandığı Sayı Yıl 2021 Cilt: 16 Sayı: 1

Kaynak Göster

APA Aktan, S., & Çal, H. (2021). JAPON BILDIRCINLARINDA KULUÇKALIK YUMURTA AĞIRLIĞI, ŞEKLİ, HACMİ VE KABUK YÜZEY ALANININ KULUÇKANIN SEYRİ VE CİVCİV ÇIKIŞ AĞIRLIĞI ÜZERİNE ETKİLERİ. Ziraat Fakültesi Dergisi, 16(1), 17-25.

24611

Bu eser Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı ile lisanslanmıştır.                                                                                                                           32607