Araştırma Makalesi
BibTex RIS Kaynak Göster

Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts

Yıl 2025, Cilt: 39 Sayı: 3, 619 - 630, 27.12.2025

Öz

Mung bean micro sprouts were dried using five microwave power densities, reducing moisture content from 84.4% to 5.1% (dry basis). Drying time decreased by up to 46% as power increased, but improvements plateaued beyond 14.4 Wg-1. The maximum drying rate reached 8.7 g min-1 at 18 Wg-1. Drying curves showed a fast initial moisture loss followed by slower drying due to sample properties. Fourteen thin-layer drying models were evaluated; the Kulcu model consistently provided the best fit (R² up to 0.9998, RMSE as low as 0.0036), with Midilli and Jena-Das models ranking next. Optimization techniques varied by power: Pattern Search was more effective at lower powers, while Nelder-Mead performed better at higher powers. Error rates mostly stayed below 3%, especially during critical drying phases. Optimal drying conditions balanced efficiency and energy use around 10.8–14.4 Wg-1. Color analysis showed the greatest changes at the lowest (3.6 Wg-1) and highest (18 Wg-1) powers, with luminosity decreasing and redness increasing as power rose. The Kulcu model proved reliable for predicting drying behavior, supporting improved drying system design in industry, balancing drying time, energy consumption, and product quality.

Kaynakça

  • Agrawal, Y. C., & Singh, R. P. (1977). Thin layer drying studies on short grain rough rice. ASAE Paper No. 3531, ASAE, St. Joseph, MI.
  • Akpınar, E. K., Biçer, Y., & Çetinkaya, F. (2006). Modeling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75, 308–315. https://doi.org/10.1016/j.jfoodeng.2005.04.018
  • Alibaş Özkan, B., Akbudak, N., & Akbudak, B. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577–583. https://doi.org/10.1016/j.jfoodeng.2005.10.026
  • Alibaş, İ. (2012). Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18(1), 43–53. https://doi.org/10.1501/Tarimbil_0000001191
  • Alibaş, İ. (2012). Sıcak havayla kurutulan enginar (Cynara cardunculus L. var. scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1), 49–62.
  • Aloo, S. O., Ofosu, F. K., Kilonzi, S. M., Shabbir, U., & Oh, D. H. (2021). Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients, 13(8), 2882. https://doi.org/10.3390/nu13082882
  • Awulachew, M. T. (2022). A review to nutritional and health aspect of sprouted food. International Journal of Food Sciences and Nutrition, 10(7), 564–568.
  • Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4–6), 121–126. https://doi.org/10.1016/S0038-092X(96)00130-2
  • Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10–15. https://doi.org/10.1214/ss/1177011077
  • Chen, S.-L., Breene, W., & Schowalter, C. (1987). Effects of growth regulators on yield and quality of mungbean sprouts grown in an automatically controlled chamber. Journal of Food Processing and Preservation, 11(4), 251–263. https://doi.org/10.1111/j.1745-4557.1987.tb00814.x
  • Çulal Kılıç, H., Karaman, R., Demirkurt, A., Daloğlu, Ş. (2022). Maş fasulyesi (Vigna radiata L.) tohumlarında fasulye adi mozayik virüsü’nün serolojik ve moleküler yöntemler ile belirlenmesi. Akademik Ziraat Dergisi, 11(1), 125-130. https://doi.org/10.29278/azd.952259
  • Demir, V., Günhan, T., & Yağcıoğlu, A. K. (2007). Mathematical modelling of convection drying of green table olives. Biosystems Engineering, 98, 47–53. https://doi.org/10.1016/j.biosystemseng.2007.06.011
  • Gan, R. Y., Lui, W. Y., Chan, C. L., & Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of Food Processing and Preservation, 41(1), e12846. https://doi.org/10.1111/jfpp.12846
  • Gan, R. Y., Lui, W. Y., Chan, C. L., & Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of food processing and preservation, 41(1), e12846. https://doi:10.1111/jfpp.12846
  • Ghani, M., Kulkarni, K. P., Song, J. T., Shannon, J. G., & Lee, J. D. (2016). Soybean sprouts: A review of nutrient composition, health benefits and genetic variation. Plant Breeding and Biotechnology, 4(4), 398–412. https://doi.org/10.9787/PBB.2016.4.4.398
  • Gunasekaran, S. (1999). Pulsed microwave-vacuum drying of food materials. Drying Technology, 17(3), 395–412. https://doi.org/10.1080/07373939908917542
  • Guo, J., Zheng, L., & Li, Z. (2021). Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system. Science of The Total Environment, 777, 146109. https://doi.org/10.1016/j.scitotenv.2021.146109
  • Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23–69. https://doi.org/10.1016/S0951-8320(03)00058-9
  • Hooke, R., & Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical problems. Journal of the ACM, 8(2), 212–229. https://doi.org/10.1145/321062.321069
  • Huang, P.-H., Cheng, Y.-T., Chan, Y.-J., Lu, W.-C., & Li, P.-H. (2022). Effect of Heat Treatment on Nutritional and Chromatic Properties of Mung Bean (Vigna radiata L.). Agronomy, 12(6), 1365. https://doi.org/10.3390/agronomy1206136
  • Iman, R. L., & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistics - Theory and Methods, 9(17), 1749–1842. https://doi.org/10.1080/03610928008827996
  • Jena, S., & Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79, 92–99. https://doi.org/10.1016/j.jfoodeng.2006.01.032
  • Kirkpatrick, S., Gelatt Jr., C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü, R., Karaaslan, S., & Varol, H. T. (2024). Microwave-assisted foam mat drying of pumpkin pulp and development of a new drying model. Journal of Scientific and Engineering Research, 11(3), 81–94. http://dx.doi.org/10.5281/zenodo.12750262
  • Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1), 112–147. https://doi.org/10.1137/S1052623496303470
  • Lewis, R. M., Torczon, V., & Trosset, M. W. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207. https://doi.org/10.1016/S0377-0427(00)00423-4
  • Maqbool, Z., Khalid, W., Mahum, Khan, A., Azmat, M., Sehrish, A., Zia, S., Koraqi, H., Al-Farga, A., Aqlan, F., & Khan, K. A. (2024). Cereal sprout‐based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Science & Nutrition, 12(2), 707–721. https://doi.org/10.1002/fsn3.3830
  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245. https://doi.org/10.2307/1268522
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Radoiu, M. (2020). Microwave drying process scale-up. Chemical Engineering and Processing - Process Intensification, 155, 108088. https://doi.org/10.1016/j.cep.2020.108088
  • Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281–289. https://doi.org/10.1016/j.jfoodeng.2005.03.024
  • Salehi, F. (2024). Microwave pretreatment of sprouted mung beans before hot-air and infrared drying process. Innovative Food Technologies, 11(3), 182-197. https://doi.org/10.22104/ift.2024.6635.2164
  • Sarjerao, L. S. K., Kashyap, P., & Sharma, P. (2022). Effect of drying techniques on drying kinetics, antioxidant capacity, structural, and thermal characteristics of germinated mung beans (Vigna radiata). Journal of Food Process Engineering, 45(11), e14155. https://doi.org/10.1111/jfpe.14155
  • Sedani, S. R., Pardeshi, I. L., & Dorkar, A. R. (2021). Study on the effect of stepwise decreasing microwave power drying (SDMPD) of moth bean sprouts on its quality. Legume Science, 3(4), e84. https://doi.org/10.1002/leg3.84
  • Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5, 1261–1265. https://doi.org/10.13031/2013.34757
  • Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2), 167–173. https://doi.org/10.1016/j.biosystemseng.2004.07.008
  • Süslü, A., & Külcü, R. (2024). Kurutma modelleri için ATATEK-Drying yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1), 51–61.
  • Toğrul, İ. T., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32. https://doi.org/10.1016/S0260-8774(02)00329-1
  • Varol, H. T., Karaaslan, S., Külcü, R., & Sivri, D. S. (2024). Microwave-assisted foam mat drying of kumquat puree and investigation of some parameters. BIO Web of Conferences, 85, 01029. https://doi.org/10.1051/bioconf/20248501029
  • Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301. https://doi.org/10.13031/2013.32245
  • White, G. M., Bridges, T. C., Loewer, O. J., & Ross, I. J. (1981). Thin layer drying model for soybeans. Transactions of the ASAE, 24, 1643. https://doi.org/10.13031/2013.34506
  • Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020). Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules, 25(20), 4648. https://doi.org/10.3390/molecules25204648
  • Yaldız, O., Ertekin, C., & Uzun, H. İ. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26, 457–465. https://doi.org/10.1016/S0360-5442(01)00018-4
  • Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), e13831. https://doi.org/10.1111/jfpe.13831

Maş Fasulyesi Filizlerinin Mikrodalgada Kurutulması Sürecinde Kurutma Kinetiği, Renk Değişimi, Enerji Tüketimi ve Matematiksel Modelleme Yöntemlerinin Karşılaştırmalı Analizi

Yıl 2025, Cilt: 39 Sayı: 3, 619 - 630, 27.12.2025

Öz

Maş fasulyesi mikro filizleri, beş farklı mikrodalga güç yoğunluğunda kurutularak nem içeriği %84,4’ten %5,1’e (kuru bazda) düşürülmüştür. Güç arttıkça kuruma süresi %46 oranına kadar azalmış, ancak 14,4 Wg⁻¹’in üzerinde bu azalış sınırlı kalmış maksimum kuruma hızı ise 18 Wg⁻¹’de 8,7 g/dakikaya ulaşmıştır. Kuruma eğrileri, örnek özelliklerine bağlı olarak hızlı bir başlangıçtaki nem kaybını, ardından daha yavaş bir kuruma sürecini göstermiştir. On dört ince tabaka kurutma modeli değerlendirilmiş; Kulcu modeli sürekli olarak en iyi uyumu sağlamış (R² 0,9998’e kadar, RMSE 0,0036’ya kadar düşmüştür), ardından Midilli ve Jena-Das modelleri gelmiştir. Optimizasyon teknikleri güce göre farklılık göstermiş; düşük güçlerde Pattern Search daha etkili olurken, yüksek güçlerde Nelder-Mead daha iyi sonuç vermiştir. Hata oranları çoğunlukla %3’ün altında kalmış, özellikle kritik kuruma aşamalarında düşük seviyelerde seyretmiştir. En uygun kurutma koşulları, verimlilik ve enerji kullanımını 10,8–14,4 Wg⁻¹ aralığında dengelemiştir. Renk analizinde en büyük değişimler, en düşük (3,6 Wg⁻¹) ve en yüksek (18 Wg⁻¹) güçlerde gözlenmiş; güç arttıkça parlaklık azalmış, kırmızılık ise artmıştır. Kulcu modeli, kuruma davranışını öngörmede güvenilir bulunmuş ve endüstride geliştirilmiş kurutma sistemi tasarımlarına, kuruma süresi, enerji tüketimi ve ürün kalitesi arasında denge kurulmasına katkı sağlamıştır.

Kaynakça

  • Agrawal, Y. C., & Singh, R. P. (1977). Thin layer drying studies on short grain rough rice. ASAE Paper No. 3531, ASAE, St. Joseph, MI.
  • Akpınar, E. K., Biçer, Y., & Çetinkaya, F. (2006). Modeling of thin layer drying of parsley leaves in a convective dryer and under open sun. Journal of Food Engineering, 75, 308–315. https://doi.org/10.1016/j.jfoodeng.2005.04.018
  • Alibaş Özkan, B., Akbudak, N., & Akbudak, B. (2007). Microwave drying characteristics of spinach. Journal of Food Engineering, 78(2), 577–583. https://doi.org/10.1016/j.jfoodeng.2005.10.026
  • Alibaş, İ. (2012). Microwave drying of grapevine (Vitis vinifera L.) leaves and determination of some quality parameters. Journal of Agricultural Sciences, 18(1), 43–53. https://doi.org/10.1501/Tarimbil_0000001191
  • Alibaş, İ. (2012). Sıcak havayla kurutulan enginar (Cynara cardunculus L. var. scolymus) dilimlerinin kuruma eğrilerinin tanımlanmasında yeni bir modelin geliştirilmesi ve mevcut modellerle kıyaslanması. Uludağ Üniversitesi Ziraat Fakültesi Dergisi, 26(1), 49–62.
  • Aloo, S. O., Ofosu, F. K., Kilonzi, S. M., Shabbir, U., & Oh, D. H. (2021). Edible plant sprouts: Health benefits, trends, and opportunities for novel exploration. Nutrients, 13(8), 2882. https://doi.org/10.3390/nu13082882
  • Awulachew, M. T. (2022). A review to nutritional and health aspect of sprouted food. International Journal of Food Sciences and Nutrition, 10(7), 564–568.
  • Ayensu, A. (1997). Dehydration of food crops using a solar dryer with convective heat flow. Solar Energy, 59(4–6), 121–126. https://doi.org/10.1016/S0038-092X(96)00130-2
  • Bertsimas, D., & Tsitsiklis, J. (1993). Simulated annealing. Statistical Science, 8(1), 10–15. https://doi.org/10.1214/ss/1177011077
  • Chen, S.-L., Breene, W., & Schowalter, C. (1987). Effects of growth regulators on yield and quality of mungbean sprouts grown in an automatically controlled chamber. Journal of Food Processing and Preservation, 11(4), 251–263. https://doi.org/10.1111/j.1745-4557.1987.tb00814.x
  • Çulal Kılıç, H., Karaman, R., Demirkurt, A., Daloğlu, Ş. (2022). Maş fasulyesi (Vigna radiata L.) tohumlarında fasulye adi mozayik virüsü’nün serolojik ve moleküler yöntemler ile belirlenmesi. Akademik Ziraat Dergisi, 11(1), 125-130. https://doi.org/10.29278/azd.952259
  • Demir, V., Günhan, T., & Yağcıoğlu, A. K. (2007). Mathematical modelling of convection drying of green table olives. Biosystems Engineering, 98, 47–53. https://doi.org/10.1016/j.biosystemseng.2007.06.011
  • Gan, R. Y., Lui, W. Y., Chan, C. L., & Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of Food Processing and Preservation, 41(1), e12846. https://doi.org/10.1111/jfpp.12846
  • Gan, R. Y., Lui, W. Y., Chan, C. L., & Corke, H. (2017). Hot air drying induces browning and enhances phenolic content and antioxidant capacity in mung bean (Vigna radiata L.) sprouts. Journal of food processing and preservation, 41(1), e12846. https://doi:10.1111/jfpp.12846
  • Ghani, M., Kulkarni, K. P., Song, J. T., Shannon, J. G., & Lee, J. D. (2016). Soybean sprouts: A review of nutrient composition, health benefits and genetic variation. Plant Breeding and Biotechnology, 4(4), 398–412. https://doi.org/10.9787/PBB.2016.4.4.398
  • Gunasekaran, S. (1999). Pulsed microwave-vacuum drying of food materials. Drying Technology, 17(3), 395–412. https://doi.org/10.1080/07373939908917542
  • Guo, J., Zheng, L., & Li, Z. (2021). Microwave drying behavior, energy consumption, and mathematical modeling of sewage sludge in a novel pilot-scale microwave drying system. Science of The Total Environment, 777, 146109. https://doi.org/10.1016/j.scitotenv.2021.146109
  • Helton, J. C., & Davis, F. J. (2003). Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliability Engineering & System Safety, 81(1), 23–69. https://doi.org/10.1016/S0951-8320(03)00058-9
  • Hooke, R., & Jeeves, T. A. (1961). “Direct search” solution of numerical and statistical problems. Journal of the ACM, 8(2), 212–229. https://doi.org/10.1145/321062.321069
  • Huang, P.-H., Cheng, Y.-T., Chan, Y.-J., Lu, W.-C., & Li, P.-H. (2022). Effect of Heat Treatment on Nutritional and Chromatic Properties of Mung Bean (Vigna radiata L.). Agronomy, 12(6), 1365. https://doi.org/10.3390/agronomy1206136
  • Iman, R. L., & Conover, W. J. (1980). Small sample sensitivity analysis techniques for computer models, with an application to risk assessment. Communications in Statistics - Theory and Methods, 9(17), 1749–1842. https://doi.org/10.1080/03610928008827996
  • Jena, S., & Das, H. (2007). Modelling for vacuum drying characteristics of coconut presscake. Journal of Food Engineering, 79, 92–99. https://doi.org/10.1016/j.jfoodeng.2006.01.032
  • Kirkpatrick, S., Gelatt Jr., C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. https://doi.org/10.1126/science.220.4598.671
  • Külcü, R., Karaaslan, S., & Varol, H. T. (2024). Microwave-assisted foam mat drying of pumpkin pulp and development of a new drying model. Journal of Scientific and Engineering Research, 11(3), 81–94. http://dx.doi.org/10.5281/zenodo.12750262
  • Lagarias, J. C., Reeds, J. A., Wright, M. H., & Wright, P. E. (1998). Convergence properties of the Nelder-Mead simplex method in low dimensions. SIAM Journal on Optimization, 9(1), 112–147. https://doi.org/10.1137/S1052623496303470
  • Lewis, R. M., Torczon, V., & Trosset, M. W. (2000). Direct search methods: Then and now. Journal of Computational and Applied Mathematics, 124(1–2), 191–207. https://doi.org/10.1016/S0377-0427(00)00423-4
  • Maqbool, Z., Khalid, W., Mahum, Khan, A., Azmat, M., Sehrish, A., Zia, S., Koraqi, H., Al-Farga, A., Aqlan, F., & Khan, K. A. (2024). Cereal sprout‐based food products: Industrial application, novel extraction, consumer acceptance, antioxidant potential, sensory evaluation, and health perspective. Food Science & Nutrition, 12(2), 707–721. https://doi.org/10.1002/fsn3.3830
  • Maskan, M. (2001). Kinetics of colour change of kiwifruits during hot air and microwave drying. Journal of Food Engineering, 48(2), 169–175. https://doi.org/10.1016/S0260-8774(00)00154-0
  • McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21(2), 239–245. https://doi.org/10.2307/1268522
  • Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7(4), 308–313. https://doi.org/10.1093/comjnl/7.4.308
  • Radoiu, M. (2020). Microwave drying process scale-up. Chemical Engineering and Processing - Process Intensification, 155, 108088. https://doi.org/10.1016/j.cep.2020.108088
  • Sacilik, K., & Elicin, A. K. (2006). The thin layer drying characteristics of organic apple slices. Journal of Food Engineering, 73, 281–289. https://doi.org/10.1016/j.jfoodeng.2005.03.024
  • Salehi, F. (2024). Microwave pretreatment of sprouted mung beans before hot-air and infrared drying process. Innovative Food Technologies, 11(3), 182-197. https://doi.org/10.22104/ift.2024.6635.2164
  • Sarjerao, L. S. K., Kashyap, P., & Sharma, P. (2022). Effect of drying techniques on drying kinetics, antioxidant capacity, structural, and thermal characteristics of germinated mung beans (Vigna radiata). Journal of Food Process Engineering, 45(11), e14155. https://doi.org/10.1111/jfpe.14155
  • Sedani, S. R., Pardeshi, I. L., & Dorkar, A. R. (2021). Study on the effect of stepwise decreasing microwave power drying (SDMPD) of moth bean sprouts on its quality. Legume Science, 3(4), e84. https://doi.org/10.1002/leg3.84
  • Sharaf-Elden, Y. I., Blaisdell, J. L., & Hamdy, M. Y. (1980). A model for ear corn drying. Transactions of the ASAE, 5, 1261–1265. https://doi.org/10.13031/2013.34757
  • Soysal, Y. (2004). Microwave drying characteristics of parsley. Biosystems Engineering, 89(2), 167–173. https://doi.org/10.1016/j.biosystemseng.2004.07.008
  • Süslü, A., & Külcü, R. (2024). Kurutma modelleri için ATATEK-Drying yazılımının geliştirilmesi. Akademia Doğa ve İnsan Bilimleri Dergisi, 10(1), 51–61.
  • Toğrul, İ. T., & Pehlivan, D. (2003). Modeling of drying kinetics of single apricot. Journal of Food Engineering, 58, 23–32. https://doi.org/10.1016/S0260-8774(02)00329-1
  • Varol, H. T., Karaaslan, S., Külcü, R., & Sivri, D. S. (2024). Microwave-assisted foam mat drying of kumquat puree and investigation of some parameters. BIO Web of Conferences, 85, 01029. https://doi.org/10.1051/bioconf/20248501029
  • Verma, L. R., Bucklin, R. A., Endan, J. B., & Wratten, F. T. (1985). Effects of drying air parameters on rice drying models. Transactions of the ASAE, 28, 296–301. https://doi.org/10.13031/2013.32245
  • White, G. M., Bridges, T. C., Loewer, O. J., & Ross, I. J. (1981). Thin layer drying model for soybeans. Transactions of the ASAE, 24, 1643. https://doi.org/10.13031/2013.34506
  • Wojdyło, A., Nowicka, P., Tkacz, K., & Turkiewicz, I. P. (2020). Sprouts vs. microgreens as novel functional foods: Variation of nutritional and phytochemical profiles and their in vitro bioactive properties. Molecules, 25(20), 4648. https://doi.org/10.3390/molecules25204648
  • Yaldız, O., Ertekin, C., & Uzun, H. İ. (2001). Mathematical modelling of thin layer solar drying of Sultana grapes. Energy, 26, 457–465. https://doi.org/10.1016/S0360-5442(01)00018-4
  • Yilmaz, P., Demirhan, E., & Özbek, B. (2021). Microwave drying effect on drying characteristic and energy consumption of Ficus carica Linn leaves. Journal of Food Process Engineering, 44(10), e13831. https://doi.org/10.1111/jfpe.13831
Toplam 45 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Tarım Makineleri
Bölüm Araştırma Makalesi
Yazarlar

Recep Külcü 0000-0002-7185-6514

Ahmet Süslü 0000-0003-4016-589X

Sevil Karaaslan 0000-0002-2289-8005

Hürkan Tayfun Varol 0000-0001-7782-6554

Gönderilme Tarihi 24 Eylül 2025
Kabul Tarihi 3 Kasım 2025
Yayımlanma Tarihi 27 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 39 Sayı: 3

Kaynak Göster

APA Külcü, R., Süslü, A., Karaaslan, S., Varol, H. T. (2025). Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts. Selcuk Journal of Agriculture and Food Sciences, 39(3), 619-630.
AMA Külcü R, Süslü A, Karaaslan S, Varol HT. Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts. Selcuk J Agr Food Sci. Aralık 2025;39(3):619-630.
Chicago Külcü, Recep, Ahmet Süslü, Sevil Karaaslan, ve Hürkan Tayfun Varol. “Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts”. Selcuk Journal of Agriculture and Food Sciences 39, sy. 3 (Aralık 2025): 619-30.
EndNote Külcü R, Süslü A, Karaaslan S, Varol HT (01 Aralık 2025) Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts. Selcuk Journal of Agriculture and Food Sciences 39 3 619–630.
IEEE R. Külcü, A. Süslü, S. Karaaslan, ve H. T. Varol, “Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts”, Selcuk J Agr Food Sci, c. 39, sy. 3, ss. 619–630, 2025.
ISNAD Külcü, Recep vd. “Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts”. Selcuk Journal of Agriculture and Food Sciences 39/3 (Aralık2025), 619-630.
JAMA Külcü R, Süslü A, Karaaslan S, Varol HT. Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts. Selcuk J Agr Food Sci. 2025;39:619–630.
MLA Külcü, Recep vd. “Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts”. Selcuk Journal of Agriculture and Food Sciences, c. 39, sy. 3, 2025, ss. 619-30.
Vancouver Külcü R, Süslü A, Karaaslan S, Varol HT. Comparative Analysis of Drying Kinetics, Color Change, Energy Consumption, and Mathematical Modeling Methods in Microwave Drying of Mung Bean Sprouts. Selcuk J Agr Food Sci. 2025;39(3):619-30.

Selcuk Journal of Agriculture and Food Sciences Creative Commons Atıf-GayriTicari 4.0 Uluslararası Lisansı (CC BY NC) ile lisanslanmıştır.