Derleme
BibTex RIS Kaynak Göster

Minimal Processing Methods Applied to Seafood

Yıl 2025, Cilt: 10 Sayı: 2, 709 - 730, 24.12.2025
https://doi.org/10.33484/sinopfbd.1768673

Öz

Seafood, which has a very important place in human life for healthy nutrition, is consumed mostly fresh/unprocessed all over the world. However, the need for processed seafood is increasing day by day due to the demands arising from the changing lifestyle and consumer trends of our age. Seafood, which has a much more delicate structure compared to other types of meat, is prone to rapid spoilage. When processed with traditional or classical industrial processing methods, high nutritional losses can occur, and additives used for long storage life can negatively affect consumer perception. For this reason, classical processing methods are now being replaced by new technologies that provide minimum loss and maximum preservation of nutritional values. These technologies are generally defined as minimal processing methods that increase the processing quality of seafood and extend shelf life. Minimal processing methods can be applied at every stage, from processing to storage and packaging of products. Minimal processing methods used in seafood are reviewed under the headings of non-thermal treatments (high hydrostatic pressure, pulsed electric field, irradiation, ultrasound, packaging), thermal treatments (sous vide, infrared heating, microwave heating, ohmic heating), and natural antimicrobials. Hurdle technology (multiple hurdle technology), which can be used in conjunction with minimal processing methods, is also discussed. In this review article, information is provided on the basic principles of minimal processing methods, their areas of application, and the researches conducted on this subject.

Etik Beyan

Çalışma, etik kurul izni veya herhangi bir özel izin gerektirmemektedir.

Kaynakça

  • Dean, L. M. (1990). Nutrition and preparation. In R. E. Martin, G. J. Flick (eds.), The seafood industry. Chap.16. Published Van Nostrand Rainhold, (p. 255-267) New York. https://link.springer.com/chapter/10.1007/978-1-4615-2041-2_16#citeas
  • Love, R. M. (1982). Basic facts about fish. In A. Aitken, I. M. Mackie, J. H. Merritt & M. L. Windsor (eds.), Fish handling & Processing. Chap 2. Ministry of Agriculture, Fisheries & Food. Torry Research Station, (p. 2-19). Edinburgh.
  • Thakur, A., Dhiman, A. K., Thakur, N. S., Hamid, C. M., & Gautam, S. (2019). An introduction to seafood and recent advances in the processing of seafood products. International Archive of Applied Sciences and Technoogy, 10, 169-180. https://doi.org/10.15515/iaast.0976-4828.10.2.169180
  • Pal, J., Shukla, B. N., Maurya, A. K., Verma, H. O., Pandey, G., & Amitha, A. (2018). A review on role of fish in human nutrition with special emphasis to essential fatty acid. International journal of fisheries and aquatic studies,6(2), 427-430.
  • Pigott, G.M., & B.W. Tucker. (1990). Seafood effects of technology on nutrition. Marcel Dekker, Inc. New York.
  • Knirsch, M. C., Dos Santos, C. A., de Oliveira Soares, A. A. M., & Penna, T. C. V. (2010). Ohmic heating–a review. Trends in Food Science & Technology, 21(9), 436-441. https://doi.org/10.1016/j.tifs.2010.06.003
  • Gordon, D.T., Ratliff. V. (1992). The implications of omega 3 fatty acids in human health. In G.J. Flick, R.E. Martin (eds.), Advances in seafood biochemistry composition and quality, Technomic Publishing Co. Inc. (p. 69-98).
  • Turan, H., Kaya, Y., & Sönmez, G. (2006). Balık etinin besin değeri ve insan sağlığındaki yeri. E.Ü. Su Ürünleri Dergisi. 23, Ek. (1/3): 505-508.
  • Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques. American Journal of Applied Sciences,7(7), 859.
  • Ekonomou, S. I., & Boziaris, I. S. (2021). Non-thermal methods for ensuring the microbiological quality and safety of seafood. Applied Sciences, 11(2), 833. https://doi.org/10.3390/app11020833
  • Abel, N., Rotabakk, B. T., & Lerfall, J. (2022). Mild processing of seafood A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 340-370. https://doi.org/10.1111/1541-4337.12876
  • Banerjee, R., & Verma, A. K. (2014). Minimally processed meat and fish products. In Minimally Processed Foods: Technologies for Safety, Quality, and Convenience. Cham: Springer International Publishing. (p. 193-250).
  • Khouryieh, H. A. (2021). Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. https://doi.org/10.1016/j.ifset.2020.102559
  • Uçak, İ. (2018). Su ürünleri işleme ve muhafazasında yüksek hidrostatik basınç kullanımı. Journal of Limnology and Freshwater Fisheries Research, 4(1), 47-57. https://doi.org/10.17216/limnofish.340039
  • Roobab, U., Fidalgo, L. G., Arshad, R. N., Khan, A. W., Zeng, X. A., Bhat, Z. F., Bekhit A. E. A., Batool, Z., & Aadil, R. M. (2022). High‐pressure processing of fish and shellfish products: Safety, quality, and research prospects. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3297-3325. https://doi.org/10.1111/1541-4337.12977
  • Patterson, M. F. (2014). Food Technologies: High Pressure Processing. Encyclopedia of Food Safety, 196–201.
  • Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., & Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197-203. https://doi.org/10.1016/S0924-2244(98)00039-9
  • de Oliveira, F. A., Neto, O. C., dos Santos, L. M. R., Ferreira, E. H. R., & Rosenthal, A. (2017). Effect of high pressure on fish meat quality–A review. Trends in Food Science & Technology, 66, 1-19. https://doi.org/10.1016/j.tifs.2017.04.014
  • Chen, L., Jiao, D., Liu, H., Zhu, C., Sun, Y., Wu, J., Zheng, M., & Zhang, D. (2022). Effects of water distribution and protein degradation on the texture of high pressure-treated shrimp (Penaeus monodon) during chilled storage. Food Control, 132, 108555. https://doi.org/10.1016/j.foodcont.2021.108555
  • Cartagena, L., Puertolas, E., & Martinez de Maranon, I. (2021). Highpressure pretreatment in albacore (Thunnus alalunga) for reducing freeze-driven weight losses with minimal quality changes. Journal of the Science of Food and Agriculture, 101(7), 2704–2711. https://doi.org/10.1002/jsfa.10895
  • Tsironi, T., Anjos, L., Pinto, P. I., Dimopoulos, G., Santos, S., Santa, C., Manadas, B., Canario, A., Taoukis P., & Power, D. (2019). High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. Journal of Food Engineering, 262, 83-91. https://doi.org/10.1016/j.jfoodeng.2019.05.010
  • Arnaud, C., de Lamballerie, M., & Pottier, L. (2018). Effect of high pressure processing on the preservation of frozen and re-thawed sliced cod (Gadus morhua) and salmon (Salmo salar) fillets. High Pressure Research, 38(1), 62-79. https://doi.org/10.1080/08957959.2017.1399372
  • Uçak, İ., & Gökoǧlu, N. (2017). Effect of high hydrostatic pressure on sensory quality of marinated herring (Clupea harengus). Journal of Food Processing and Preservation, 41(2), e12784. https://doi.org/10.1111/jfpp.12784
  • Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35. https://doi.org/10.1016/j.tifs.2017.05.011
  • Erafşar, F. K., & Çınar, İ. (2018). Gıda işlemede ısısal olmayan uygulamalar: vurgulu elektrik alan. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 26-33.
  • Ağçam, E., Akyıldız, A., Evrendilek, G. A. (2014). Vurgulu elektrik alan teknolojisi pef: sistem ve uygulama odacıkları. Akademik Gıda, 12(2), 69-78.
  • Zhou, Y., He, Q., & Zhou, D. (2017). Optimization extraction of protein from mussel by high‐Intensity pulsed electric fields. Journal of Food Processing and Preservation, 41(3), e12962. https://doi.org/10.1111/jfpp.12962
  • Shiekh, K. A., & Benjakul, S. (2020). Effect of pulsed electric field treatments on melanosis and quality changes of Pacific white shrimp during refrigerated storage. Journal of Food Processing and Preservation, 44(1), e14292. https://doi.org/10.1111/jfpp.14292
  • Wang, J., Wang, Q., Xu, L., & Sun, D. W. (2022). Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. LWT, 169, 113937. https://doi.org/10.1016/j.lwt.2022.113937
  • Canbaz, E. A., Üçgül, B., & Seydim, A. C. (2023). Vurgulu elektrik alanın sardalya (Sardina pilchardus Walbaum, 1792) balıklarında tuz transferi üzerine etkisi. Ege Journal of Fisheries & Aquatic Sciences (EgeJFAS)/Su Ürünleri Dergisi, 40(2). https://doi.org/10.12714/egejfas.40.2.09
  • Alkan, H. (2006). Gıda ışınlama yöntemi ile gıdaların mikroorganizmalardan temizlenmesi. Gıda Teknolojisi Dergisi, Mart, 60-61.
  • Webb, M., & Penner, K. (2000). Food irradiation (MF-2426). Kansas State University. https://www.ksre.k-state.edu/historicpublications/pubs/mf2426.pdf
  • Codex Alimentarius Commission. (1985). General standard for the labelling of prepackaged foods (CXS 1-1985). FAO/WHO. 6 Nisan 2025. https://www.fao.org/faowhocodexalimentarius/shproxy/fr/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS%2B1-1985%2FCXS_001e.pdf.
  • Türkiye Atom Enerjisi Kurumu. (2007). Gıda ışınlama. Türkiye Atom Enerjisi Kurumu.
  • Australia New Zealand Food Authority. (2001). Legibility requirements for food labels: ANZFA user guides to the new food standards code. Food Standards Australia New Zealand.
  • Varlık, C., Erkan, N., Özden, Ö., Mol, S., Baygar, T. (2004). Su Ürünleri İşleme Teknolojisi. İstanbul Üniversitesi.
  • Kim, J. H., Ahn, H. J., Yook, H. S., Kim, K. S., Rhee, M. S., Ryu, G. H., & Byun, M. W. (2004). Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce. Radiation Physics and Chemistry, 69(2), 179-187.
  • Altan, C. O., & Turan, H. (2016). Synergistic effect of freezing and irradiation on Bonito fish (Sarda sarda Bloch, 1793). Journal of Food Protection, 79(12), 2136-2142. https://doi.org/10.4315/0362-028X.JFP-16-026
  • Mahmoud, B. S., Nannapaneni, R., Chang, S., Wu, Y., & Coker, R. (2016). Improving the safety and quality of raw tuna fillets by X-ray irradiation. Food Control, 60, 569-574. https://doi.org/10.1016/j.foodcont.2015.08.039
  • Li, H. L., Huang, J. J., Li, M. J., Chen, Y. N., Xiong, G. Q., Cai, J., & Zu, X. Y. (2023). Effects of cobalt-sourced γ-irradiation on the meat quality and storage stability of crayfishes (Procambarus clarkii). Food Science and Technology, 43, e104222. https://doi.org/10.1590/fst.104222
  • Cenci, M. P., Marchetti, M. D., Felix, M. L., Cova, M. C., Loredo, A. B. G., & Tomac, A. (2025). Screening the effect of ionizing radiation on microbiological quality, sensory acceptability and shelf-life extension of lean fish fillets. Radiation Physics and Chemistry, 228, 112408. https://doi.org/10.1016/j.radphyschem.2024.112408
  • Mason, T. J., & Cintas, P. (2002). Sonochemistry. Handbook of Green Chemistry and Technology. https://doi.org/10.1002/9780470988305
  • Nagarajarao, R. C. (2016). Recent advances in processing and packaging of fishery products: A review. Aquatic Procedia, 7, 201-213. https://doi.org/10.1016/j.aqpro.2016.07.028
  • Knorr, D., Zenker, M., Heinz, V., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261-266. https://doi.org/10.1016/j.tifs.2003.12.001
  • Thakur, B. R., & Nelson, P. E. (1997). Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation. Food/Nahrung, 41(5), 299-301. https://doi.org/10.1002/food.19970410510
  • Wang, T., Ning, Z., Wang, X., Zhang, Y., & Zhang, Y. (2018). Effects of ultrasound on the physicochemical properties and microstructure of salted‐dried grass carp (Ctenopharyngodon idella). Journal of Food Process Engineering, 41(1), e12643. https://doi.org/10.1111/jfpe.12643
  • Gündüz, H., Hisar, Ş. A., & Gündüz, F. (2019). The effect of different ultrasound powers treatment on some quality parameters of sardines (Sardina pilchardus) packed in vacuum packaging. Gıda, 44(6), 1071-1080. https://doi.org/10.15237/gida.GD19114
  • Ayvaz, Z., Çakır, F., Gündüz, H., & Erdağ, M. (2019). Determination of the effect of different frequency ultrasound waves on the color and shelf life of vacuum packaged marinated anchovy (Engraulis encrasicolus). Turkish Journal of Agriculture- Food Science and Technology, 7(3), 405–416. https://doi.org/10.24925/turjaf.v7i3.405-416.2341
  • Siewe, F. B., Kudre, T. G., & Narayan, B. (2021). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chemistry, 334, 127498. https://doi.org/10.1016/j.foodchem.2020.127498
  • Mohan, C. O., Ravishankar, C. N., & Srinivasagopal, T. K. (2016). Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol, 2(1), 13-25.
  • Kocatepe, D., Turan, H., Altan, C. O., & Göknar, G. (2014). Effect of the vacuum packaging on the shelf life of Lakerda. International Journal of Food Science Nutrition and Dietetics, 3(9), 157-159.
  • Lee, Y. C., Tseng, P. H., Hwang, C. C., Kung, H. F., Huang, Y. L., Lin, C. S., Wei, C.C., & Tsai, Y. H. (2019). Effect of vacuum packaging on histamine production in Japanese Spanish mackerel (Scomberomorus niphonius) stored at various temperatures. Journal of Food Protection, 82(11), 1931-1937. https://doi.org/10.4315/0362-028X.JFP-19-143
  • Aberoumand, A., & Baesi, F. (2020). Effects of vacuum packaging in freezer on oxidative spoilage indexes of fish Lethrinus atkinsoni. Food Science & Nutrition, 8(8), 4145-4150. https://doi.org/10.1002/fsn3.1704
  • Silbande, A., Adenet, S., Chopin, C., Cornet, J., Smith-Ravin, J., Rochefort, & K., Leroi, F. (2018). Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4 C. International Journal of Food Microbiology, 266, 31-41. https://doi.org/10.1016/j.ijfoodmicro.2017.10.015
  • Kocatepe, D., & Turan, H. (2011). Su ürünlerinin muhafazasında modifiye atmosfer paketleme teknolojisinin kullanımı. Gıda, 36(4), 233-240.
  • Oğuzhan, P., Angiş, S. (2008, Mayıs 21-23). Su Ürünlerinin Paketlenmesi. Türkiye 10. Gıda Kongresi Erzurum Türkiye, 10, 21-23. https://www.gidadernegi.org/TR/Genel/BelgeGoster8bf7.html?F6E10F8892433CFFAAF6AA849816B2EF9B26DB8A4F93DD83
  • Sivertsvik, M., Rosnes, J. T., & Bergslien, H. (2002). Modified atmosphere packaging. Minimal Processing Technologies in the Food Industry, 61-86.
  • Laorenza, Y., Chonhenchob, V., Bumbudsanpharoke, N., Jittanit, W., Sae-Tan, S., Rachtanapun, C., Chanput, WP; Charoensiddhi, S.; Srisa, A.; Promhuad, K., Wongphan, P., & Harnkarnsujarit, N. (2022). Polymeric packaging applications for seafood products: Packaging-deterioration relevance, technology and trends. Polymers, 14(18), 3706. https://doi.org/10.3390/polym14183706
  • Pagarkar, A. U., Gaikwad, B. V., Kudale, A. S., Chogale, N. D., Satam, S. B., Pol, V. R., Shingare, P. E., Sawant, S. K., Rathod, N. B., Bhosale, B. P., Yadav B. M., Shinde, K. M., & Sawant, N. H. (2020). Modified atmosphere packaging: an approach to seafood industry. Journal of Experimental Zoology India, 23.
  • Kontominas, M. G., Badeka, A. V., Kosma, I. S., & Nathanailides, C. I. (2021). Recent developments in seafood packaging technologies. Foods, 10(5), 940. https://doi.org/10.3390/foods10050940
  • Çorapcı, B., & Kocatepe, D. (2019). Modifiye atmosfer (MA) paketlenmiş kırlangıç (Chelidonichthys lucerna Linnaeus, 1758) sotenin kalite özellikleri. Gıda, 44(6), 1059-1070. https://doi.org/10.15237/gida.GD19093
  • Wang, Z. C., Yan, Y., Fang, Z., Nisar, T., Sun, L., Guo, Y., Xia, N., Wang, H., & Chen, D. W. (2019). Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets. Food Control, 98, 209-215. https://doi.org/10.1016/j.foodcont.2018.11.043
  • Turan, H., & Kocatepe, D. (2013). Different MAP Conditions to Improve the Shelf Life of Sea Bass. Food Science and Biotechnology. 22(6): 1589-1599. https://doi.org/10.1007/s10068-013-0255-x
  • Otles, S., & Yalcin, B. (2008). Intelligent food packaging. LogForum, 4(4), 3. http://www.logforum.net/vol4/issue4/no3
  • Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of Food Science, 70(1), R1-R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
  • Sobhan, A., Muthukumarappan, K., & Wei, L. (2022). A biopolymer-based pH indicator film for visually monitoring beef and fish spoilage. Food Bioscience, 46, 101523. https://doi.org/10.1016/j.fbio.2021.101523
  • Li, Y., Wu, K., Wang, B., & Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules, 174, 370-376. https://doi.org/10.1016/j.ijbiomac.2021.01.182
  • Yu, D., Wu, L., Regenstein, J. M., Jiang, Q., Yang, F., Xu, Y., & Xia, W. (2020). Recent advances in quality retention of non-frozen fish and fishery products: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1747-1759. https://doi.org/10.1080/10408398.2019.1596067
  • Pereira de Abreu, D. A., Cruz, J. M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187. https://doi.org/10.1080/87559129.2011.595022
  • Hempel, A. W., Papkovsky, D. B., & Kerry, J. P. (2013). Use of optical oxygen sensors in non-destructively determining the levels of oxygen present in combined vacuum and modified atmosphere packaged pre-cooked convenience-style foods and the use of ethanol emitters to extend product shelf-life. Foods, 2(4), 507-520. https://doi.org/10.3390/foods2040507
  • Göncü, A., & Özkal, S. G. (2017). Ekmeklerde aktif paketleme uygulamaları. Turkish Journal of Agriculture-Food Science and Technology, 5(11), 1264-1273. https://doi.org/10.24925/turjaf.v5i11.1264-1273.1247
  • Ghalehjooghi, H. D., Tajik, H., & Shahbazi, Y. (2023). Development and characterization of active packaging nanofiber mats based on gelatin sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets. International Journal of Food Microbiology, 384, 109984. https://doi.org/10.1016/j.ijfoodmicro.2022.109984
  • Remya, S., Mohan, C. O., Venkateshwarlu, G., Sivaraman, G. K., & Ravishankar, C. N. (2017). Combined effect of O2 scavenger and antimicrobial film on shelf life of fresh cobia (Rachycentron canadum) fish steaks stored at 2oC. Food Control, 71, 71-78. https://doi.org/10.1016/j.foodcont.2016.05.038
  • Dursun, S., & Erkan, N. (2009). Yenilebilir protein filmler ve su ürünlerinde kullanımı. Journal of FisheriesSciences.com, 3(4), 352.
  • Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
  • Khalil, Y. R., & Ogunkalu, O. A. (2019). Edible films in seafood. Eurasian J. agric. Res, 1, 85-94.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları ve kaslı gıdalarda kullanımları. Akademik Gıda, 15(1), 84-94. https://doi.org/10.24323/akademik-gida.306077
  • Rostamzad, H., Abbasi Mesrdashti, R., Akbari Nargesi, E., & Fakouri, Z. (2019). Shelf life of refrigerated silver carp, Hypophthalmichthys molitrix, fillets treated with chitosan film and coating incorporated with ginger extract. Caspian Journal of Environmental Sciences, 17(2), 143-153. https://doi.org/10.22124/cjes.2019.3408
  • Kılınç, B., Sürengil, G., & Yalçın, T. (2023). The impact of edible film coatings with lemon and orange peel extracts on microbiological quality and shelf-life of squid (Loligo vulgaris) rings and rainbow trout (Oncorhynchus mykiss) fillets. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(1), 172-182. https://doi.org/10.18016/ksutarimdoga.vi.995995
  • Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J. M., & Diaz, O. (2011). Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chemistry, 128(1), 187-194. https://doi.org/10.1016/j.foodchem.2011.03.026
  • Ramezani, Z., Zarei, M., & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, 51, 43-48.
  • Gharibzahedi, S. M. T., & Mohammadnabi, S. (2017). Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International journal of biological macromolecules, 95, 769-777.
  • Schellekens, M. (1996). New research issues in sous-vide cooking. Trends in Food Science & Technology, 7(8), 256-262. https://doi.org/10.1016/0924-2244(96)10027-3
  • Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15-30. https://doi.org/10.1016/j.ijgfs.2011.11.002
  • Haskaraca, G., & Kolsarıcı, N. (2013). Sous vide pişirme ve et teknolojisinde uygulama olanakları. Akademik Gıda, 11(2), 94-101.
  • Kocatepe, D., Turan, H., Şengor, G.F.U., Corapcı, B., Altan, C. O., & Kostekli, B. (2025). Effects of Innovative Cooking Techniques on the Physico-Chemical, Color, Structural and Sensory Properties of the Rainbow Trout (O. mykiss). Journal of Culinary Science & Technology, 1-15. https://doi.org/10.1080/15428052.2024.2373767
  • Gu, M., Tu, C., Jiang, H., Li, T., Xu, N., Shui, S., Benjakul, S., & Zhang, B. (2024). Physicochemical characteristics and microbial diversity of sous vide scallops (Chlamys farreri) during chilled storage. LWT, 204, 116437. https://doi.org/10.1016/j.lwt.2024.116437
  • Öztürk, F., Gündüz, H., & Sürengil, G. (2021). The effects of essential oils on inactivation of Listeria monocytogenes in rainbow trout cooked with sous‐vide. Journal of Food Processing and Preservation, 45(10), e15878. https://doi.org/10.1111/jfpp.15878
  • Köklü, R. (2023). Levrek balığının raf ömrü ve besin kompozisyonu üzerine kombine işleme (sıvı duman ve sous vide) tekniklerinin etkisi. (Tez no. 843797). [Yüksek Lisans Tezi, Sinop Üniversitesi]
  • Candan, T., & Bağdatlı, A. (2018). Et teknolojisinde alternatif ısıtma yöntemleri. El-Cezeri, 5(2), 656-670. https://doi.org/10.31202/ecjse.403806
  • Ravishankar, C. N. (2019). Advances in processing and packaging of fish and fishery products. Advanced Agricultural Research & Technology Journal, 3(2), 168-181.
  • Aniesrani Delfiya, D. S., Sneha, R., Prashob, K., Murali, S., Alfiya, P. V., & Samuel, M. P. (2022). Hot air‐assisted continuous infrared dryer for anchovy fish drying. Journal of Food Process Engineering, 45(6), e13824. https://doi.org/10.1111/jfpe.13824
  • Prashob, K., Aniesrani Delfiya, D. S., Murali, S., Alfiya, P. V., & Samuel, M. P. (2022). Drying of shrimp using hot air‐assisted continuous infrared drying system. Journal of Food Processing and Preservation, 46(9), e16364. https://doi.org/10.1111/jfpp.16364
  • Viji, P., Rao, B. M., Debbarma, J., & Ravishankar, C. N. (2022). Research developments in the applications of microwave energy in fish processing: A review. Trends in Food Science & Technology, 123, 222-232. https://doi.org/10.1016/j.tifs.2022.03.010
  • Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243-261. https://doi.org/10.1016/j.foodres.2013.02.033
  • Ulusoy, Ş., Üçok Alakavuk, D., Mol, S., & Coşansu, S. (2019). Effect of microwave cooking on foodborne pathogens in fish. Journal of Food Processing and Preservation, 43(8), e14045. https://doi.org/10.1111/jfpp.14045
  • Marinopoulou, A., & Petridis, D. (2022). A comparative study of the effect of different cooking methods on the quality and shucking of mussels. Journal of Food Processing and Preservation, 46(10), e15875. https://doi.org/10.1111/jfpp.15875
  • Yan, B., Jiao, X., Zhu, H., Wang, Q., Huang, J., Zhao, J., Cao, H., Zhou, W., Zhang W., Ye, W., Zhang H., & Fan, D. (2020). Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism. Food Hydrocolloids, 105, 105779. https://doi.org/10.1016/j.foodhyd.2020.105779
  • Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K. H., Knorr, D., Vogel, R. F., Bandick, N., Kulling, S., & Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science & Technology, 55, 84-97. https://doi.org/10.1016/j.tifs.2016.07.007
  • Fattahi, S., & Zamindar, N. (2020). Effect of immersion ohmic heating on thawing rate and properties of frozen tuna fish. Food Science and Technology International, 26(5), 453-461. https://doi.org/10.1177/1082013219895884
  • Kim, H. J., DeWitt, C. A. M., & Park, J. W. (2023). Application of ohmic heating for accelerating Pacific whiting fish sauce fermentation. LWT, 174, 114299. https://doi.org/10.1016/j.lwt.2022.114299
  • Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology, 4(1), 163-190. https://doi.org/10.1146/annurev-food-030212-182535
  • Carocho, M., Morales, P., & Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284-295 https://doi.org/10.1016/j.tifs.2015.06.007
  • Olatunde, O. O., & Benjakul, S. (2018). Natural preservatives for extending the shelf‐life of seafood: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1595-1612. https://doi.org/10.1111/1541-4337.12390
  • Qian, Z.G., Jiang, L.F., & Rui, L. (2013). Catfish preservation using porphyra yezoensis composites preservatives. Advance Journal of Food Science and Technology, 5(9): 1255-1259. https://doi.org/10.19026/ajfst.5.3092
  • Giarratana, F., Muscolino, D., Beninati, C., Ziino, G., Giuffrida, A., & Panebianco, A. (2016). Activity of R (+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets. International Journal of Food Microbiology, 237, 109-113. https://doi.org/10.1016/j.ijfoodmicro.2016.08.023
  • Corapci, B., Kocatepe, D., Altan, C. O., Ceylan, Z., Kostekli, B., & Turan, H. (2025). Effects of lemon oil-based nanoemulsion on sensory and microbiological quality of vacuum packed raw versus steam cooked trout (Oncorhynchus mykiss, Walbaum 1792) stored at + 4±2°C. Journal of Food Science and Technology, 1-13. https://doi.org/10.1007/s13197-025-06352-6
  • Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55(1-3), 181-186. https://doi.org/10.1016/S0168-1605(00)001616
  • Leroi, F., Amarita, F., Arboleya, J. C., Bjørkevoll, I., Cruz, Z., Dousset, X., Izurieta E., Joffraud, J.J., Lasagabaster, A., Lauzon, H.L., Lorentzen, G., Martínez de Marañón, I., Matamoros S., Miranda I, Nuin, M., Olabarrieta, I., Olsen, R., Pilet, M. F., Prevost, H., & Skjerdal, T. (2008). Hurdle technology to ensure the safety of seafood products. Improving Seafood Products for the Consumer (book), (19), 399-425.
  • Choulitoudi, E., Ganiari, S., Tsironi, T., Ntzimani, A., Tsimogiannis, D., Taoukis, P., & Oreopoulou, V. (2017). Edible coating enriched with rosemary extracts to enhance oxidative and microbial stability of smoked eel fillets. Food Packaging and Shelf Life, 12, 107-113. https://doi.org/10.1016/j.fpsl.2017.04.009
  • Ahmad, I., & Traynor, M. P. (2022). Impact of high-pressure processing and sous vide cooking on the physicochemical, sensorial, and textural properties of fresh whiteleg shrimp (Litopenaeus setiferus). Journal of Aquatic Food Product Technology, 31(6), 508-524. https://doi.org/10.1080/10498850.2022.2077157

Su Ürünlerinde Uygulanan Minimal İşleme Yöntemleri

Yıl 2025, Cilt: 10 Sayı: 2, 709 - 730, 24.12.2025
https://doi.org/10.33484/sinopfbd.1768673

Öz

Sağlıklı beslenme için insan hayatında çok önemli bir yere sahip olan su ürünleri, dünya genelinde daha çok taze/işlenmemiş olarak tüketilmektedir. Bununla birlikte, çağımızın değişmekte olan yaşam biçimi ve tüketici yönelimlerinden ortaya çıkan taleplerle işlenmiş su ürünlerine olan ihtiyaç gün geçtikçe artış göstermektedir. Diğer et türlerine göre çok daha hassas bir yapıya sahip olan su ürünleri, çabuk bozulmaya elverişlidir. Geleneksel ya da klasik endüstriyel işleme yöntemleri ile işlendiklerinde yüksek besinsel kayıplar meydana gelebilmekte, uzun depolama ömrü için kullanılan katkı maddeleri ise tüketici algısını olumsuz yönde etkileyebilmektedir. Bu nedenle artık klasik işleme yöntemlerinin yerini besinsel değerlerde en az kayıp ve maksimum koruma sağlayan yeni teknolojiler almaktadır. Bu teknolojiler, genel olarak su ürünlerinin işleme kalitesini artıran, raf ömrünü uzatan minimal işleme teknikleri olarak tanımlanmaktadır. Minimal işleme yöntemleri ürünlerin işlenmesi, depolanması ve paketlenmesine kadar her aşamada uygulanabilmektedir. Su ürünlerinde kullanılan minimal işleme yöntemleri, ısıl olmayan işlemler (yüksek hidrostatik basınç, vurgulu elektrik alan, ışınlama, ultrases, paketleme), ısıl işlemler (sous vide, kızılötesi ısıtma, mikrodalga ısıtma, ohmik ısıtma) ve doğal antimikrobiyaller başlıkları altında incelenmiştir. Ayrıca minimal işlemeyi mümkün kılan uygulamaların birlikte kullanılabildiği hurdle teknolojisi (çoklu engel teknolojisi) de ele alınmıştır. Bu derleme makalesinde minimal işleme yöntemlerinin temel prensipleri, kullanım alanları ve konu ile ilgili yapılan araştırmalar hakkında bilgi verilmiştir.

Kaynakça

  • Dean, L. M. (1990). Nutrition and preparation. In R. E. Martin, G. J. Flick (eds.), The seafood industry. Chap.16. Published Van Nostrand Rainhold, (p. 255-267) New York. https://link.springer.com/chapter/10.1007/978-1-4615-2041-2_16#citeas
  • Love, R. M. (1982). Basic facts about fish. In A. Aitken, I. M. Mackie, J. H. Merritt & M. L. Windsor (eds.), Fish handling & Processing. Chap 2. Ministry of Agriculture, Fisheries & Food. Torry Research Station, (p. 2-19). Edinburgh.
  • Thakur, A., Dhiman, A. K., Thakur, N. S., Hamid, C. M., & Gautam, S. (2019). An introduction to seafood and recent advances in the processing of seafood products. International Archive of Applied Sciences and Technoogy, 10, 169-180. https://doi.org/10.15515/iaast.0976-4828.10.2.169180
  • Pal, J., Shukla, B. N., Maurya, A. K., Verma, H. O., Pandey, G., & Amitha, A. (2018). A review on role of fish in human nutrition with special emphasis to essential fatty acid. International journal of fisheries and aquatic studies,6(2), 427-430.
  • Pigott, G.M., & B.W. Tucker. (1990). Seafood effects of technology on nutrition. Marcel Dekker, Inc. New York.
  • Knirsch, M. C., Dos Santos, C. A., de Oliveira Soares, A. A. M., & Penna, T. C. V. (2010). Ohmic heating–a review. Trends in Food Science & Technology, 21(9), 436-441. https://doi.org/10.1016/j.tifs.2010.06.003
  • Gordon, D.T., Ratliff. V. (1992). The implications of omega 3 fatty acids in human health. In G.J. Flick, R.E. Martin (eds.), Advances in seafood biochemistry composition and quality, Technomic Publishing Co. Inc. (p. 69-98).
  • Turan, H., Kaya, Y., & Sönmez, G. (2006). Balık etinin besin değeri ve insan sağlığındaki yeri. E.Ü. Su Ürünleri Dergisi. 23, Ek. (1/3): 505-508.
  • Ghaly, A. E., Dave, D., Budge, S., & Brooks, M. S. (2010). Fish spoilage mechanisms and preservation techniques. American Journal of Applied Sciences,7(7), 859.
  • Ekonomou, S. I., & Boziaris, I. S. (2021). Non-thermal methods for ensuring the microbiological quality and safety of seafood. Applied Sciences, 11(2), 833. https://doi.org/10.3390/app11020833
  • Abel, N., Rotabakk, B. T., & Lerfall, J. (2022). Mild processing of seafood A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 340-370. https://doi.org/10.1111/1541-4337.12876
  • Banerjee, R., & Verma, A. K. (2014). Minimally processed meat and fish products. In Minimally Processed Foods: Technologies for Safety, Quality, and Convenience. Cham: Springer International Publishing. (p. 193-250).
  • Khouryieh, H. A. (2021). Novel and emerging technologies used by the US food processing industry. Innovative Food Science & Emerging Technologies, 67, 102559. https://doi.org/10.1016/j.ifset.2020.102559
  • Uçak, İ. (2018). Su ürünleri işleme ve muhafazasında yüksek hidrostatik basınç kullanımı. Journal of Limnology and Freshwater Fisheries Research, 4(1), 47-57. https://doi.org/10.17216/limnofish.340039
  • Roobab, U., Fidalgo, L. G., Arshad, R. N., Khan, A. W., Zeng, X. A., Bhat, Z. F., Bekhit A. E. A., Batool, Z., & Aadil, R. M. (2022). High‐pressure processing of fish and shellfish products: Safety, quality, and research prospects. Comprehensive Reviews in Food Science and Food Safety, 21(4), 3297-3325. https://doi.org/10.1111/1541-4337.12977
  • Patterson, M. F. (2014). Food Technologies: High Pressure Processing. Encyclopedia of Food Safety, 196–201.
  • Hendrickx, M., Ludikhuyze, L., Van den Broeck, I., & Weemaes, C. (1998). Effects of high pressure on enzymes related to food quality. Trends in Food Science & Technology, 9(5), 197-203. https://doi.org/10.1016/S0924-2244(98)00039-9
  • de Oliveira, F. A., Neto, O. C., dos Santos, L. M. R., Ferreira, E. H. R., & Rosenthal, A. (2017). Effect of high pressure on fish meat quality–A review. Trends in Food Science & Technology, 66, 1-19. https://doi.org/10.1016/j.tifs.2017.04.014
  • Chen, L., Jiao, D., Liu, H., Zhu, C., Sun, Y., Wu, J., Zheng, M., & Zhang, D. (2022). Effects of water distribution and protein degradation on the texture of high pressure-treated shrimp (Penaeus monodon) during chilled storage. Food Control, 132, 108555. https://doi.org/10.1016/j.foodcont.2021.108555
  • Cartagena, L., Puertolas, E., & Martinez de Maranon, I. (2021). Highpressure pretreatment in albacore (Thunnus alalunga) for reducing freeze-driven weight losses with minimal quality changes. Journal of the Science of Food and Agriculture, 101(7), 2704–2711. https://doi.org/10.1002/jsfa.10895
  • Tsironi, T., Anjos, L., Pinto, P. I., Dimopoulos, G., Santos, S., Santa, C., Manadas, B., Canario, A., Taoukis P., & Power, D. (2019). High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. Journal of Food Engineering, 262, 83-91. https://doi.org/10.1016/j.jfoodeng.2019.05.010
  • Arnaud, C., de Lamballerie, M., & Pottier, L. (2018). Effect of high pressure processing on the preservation of frozen and re-thawed sliced cod (Gadus morhua) and salmon (Salmo salar) fillets. High Pressure Research, 38(1), 62-79. https://doi.org/10.1080/08957959.2017.1399372
  • Uçak, İ., & Gökoǧlu, N. (2017). Effect of high hydrostatic pressure on sensory quality of marinated herring (Clupea harengus). Journal of Food Processing and Preservation, 41(2), e12784. https://doi.org/10.1111/jfpp.12784
  • Barba, F. J., Koubaa, M., do Prado-Silva, L., Orlien, V., & de Souza Sant’Ana, A. (2017). Mild processing applied to the inactivation of the main foodborne bacterial pathogens: A review. Trends in Food Science & Technology, 66, 20-35. https://doi.org/10.1016/j.tifs.2017.05.011
  • Erafşar, F. K., & Çınar, İ. (2018). Gıda işlemede ısısal olmayan uygulamalar: vurgulu elektrik alan. Gıda ve Yem Bilimi Teknolojisi Dergisi, (19), 26-33.
  • Ağçam, E., Akyıldız, A., Evrendilek, G. A. (2014). Vurgulu elektrik alan teknolojisi pef: sistem ve uygulama odacıkları. Akademik Gıda, 12(2), 69-78.
  • Zhou, Y., He, Q., & Zhou, D. (2017). Optimization extraction of protein from mussel by high‐Intensity pulsed electric fields. Journal of Food Processing and Preservation, 41(3), e12962. https://doi.org/10.1111/jfpp.12962
  • Shiekh, K. A., & Benjakul, S. (2020). Effect of pulsed electric field treatments on melanosis and quality changes of Pacific white shrimp during refrigerated storage. Journal of Food Processing and Preservation, 44(1), e14292. https://doi.org/10.1111/jfpp.14292
  • Wang, J., Wang, Q., Xu, L., & Sun, D. W. (2022). Effects of extremely low frequency pulsed electric field (ELF-PEF) on the quality and microstructure of tilapia during cold storage. LWT, 169, 113937. https://doi.org/10.1016/j.lwt.2022.113937
  • Canbaz, E. A., Üçgül, B., & Seydim, A. C. (2023). Vurgulu elektrik alanın sardalya (Sardina pilchardus Walbaum, 1792) balıklarında tuz transferi üzerine etkisi. Ege Journal of Fisheries & Aquatic Sciences (EgeJFAS)/Su Ürünleri Dergisi, 40(2). https://doi.org/10.12714/egejfas.40.2.09
  • Alkan, H. (2006). Gıda ışınlama yöntemi ile gıdaların mikroorganizmalardan temizlenmesi. Gıda Teknolojisi Dergisi, Mart, 60-61.
  • Webb, M., & Penner, K. (2000). Food irradiation (MF-2426). Kansas State University. https://www.ksre.k-state.edu/historicpublications/pubs/mf2426.pdf
  • Codex Alimentarius Commission. (1985). General standard for the labelling of prepackaged foods (CXS 1-1985). FAO/WHO. 6 Nisan 2025. https://www.fao.org/faowhocodexalimentarius/shproxy/fr/?lnk=1&url=https%3A%2F%2Fworkspace.fao.org%2Fsites%2Fcodex%2FStandards%2FCXS%2B1-1985%2FCXS_001e.pdf.
  • Türkiye Atom Enerjisi Kurumu. (2007). Gıda ışınlama. Türkiye Atom Enerjisi Kurumu.
  • Australia New Zealand Food Authority. (2001). Legibility requirements for food labels: ANZFA user guides to the new food standards code. Food Standards Australia New Zealand.
  • Varlık, C., Erkan, N., Özden, Ö., Mol, S., Baygar, T. (2004). Su Ürünleri İşleme Teknolojisi. İstanbul Üniversitesi.
  • Kim, J. H., Ahn, H. J., Yook, H. S., Kim, K. S., Rhee, M. S., Ryu, G. H., & Byun, M. W. (2004). Color, flavor, and sensory characteristics of gamma-irradiated salted and fermented anchovy sauce. Radiation Physics and Chemistry, 69(2), 179-187.
  • Altan, C. O., & Turan, H. (2016). Synergistic effect of freezing and irradiation on Bonito fish (Sarda sarda Bloch, 1793). Journal of Food Protection, 79(12), 2136-2142. https://doi.org/10.4315/0362-028X.JFP-16-026
  • Mahmoud, B. S., Nannapaneni, R., Chang, S., Wu, Y., & Coker, R. (2016). Improving the safety and quality of raw tuna fillets by X-ray irradiation. Food Control, 60, 569-574. https://doi.org/10.1016/j.foodcont.2015.08.039
  • Li, H. L., Huang, J. J., Li, M. J., Chen, Y. N., Xiong, G. Q., Cai, J., & Zu, X. Y. (2023). Effects of cobalt-sourced γ-irradiation on the meat quality and storage stability of crayfishes (Procambarus clarkii). Food Science and Technology, 43, e104222. https://doi.org/10.1590/fst.104222
  • Cenci, M. P., Marchetti, M. D., Felix, M. L., Cova, M. C., Loredo, A. B. G., & Tomac, A. (2025). Screening the effect of ionizing radiation on microbiological quality, sensory acceptability and shelf-life extension of lean fish fillets. Radiation Physics and Chemistry, 228, 112408. https://doi.org/10.1016/j.radphyschem.2024.112408
  • Mason, T. J., & Cintas, P. (2002). Sonochemistry. Handbook of Green Chemistry and Technology. https://doi.org/10.1002/9780470988305
  • Nagarajarao, R. C. (2016). Recent advances in processing and packaging of fishery products: A review. Aquatic Procedia, 7, 201-213. https://doi.org/10.1016/j.aqpro.2016.07.028
  • Knorr, D., Zenker, M., Heinz, V., & Lee, D. U. (2004). Applications and potential of ultrasonics in food processing. Trends in Food Science & Technology, 15(5), 261-266. https://doi.org/10.1016/j.tifs.2003.12.001
  • Thakur, B. R., & Nelson, P. E. (1997). Inactivation of lipoxygenase in whole soy flour suspension by ultrasonic cavitation. Food/Nahrung, 41(5), 299-301. https://doi.org/10.1002/food.19970410510
  • Wang, T., Ning, Z., Wang, X., Zhang, Y., & Zhang, Y. (2018). Effects of ultrasound on the physicochemical properties and microstructure of salted‐dried grass carp (Ctenopharyngodon idella). Journal of Food Process Engineering, 41(1), e12643. https://doi.org/10.1111/jfpe.12643
  • Gündüz, H., Hisar, Ş. A., & Gündüz, F. (2019). The effect of different ultrasound powers treatment on some quality parameters of sardines (Sardina pilchardus) packed in vacuum packaging. Gıda, 44(6), 1071-1080. https://doi.org/10.15237/gida.GD19114
  • Ayvaz, Z., Çakır, F., Gündüz, H., & Erdağ, M. (2019). Determination of the effect of different frequency ultrasound waves on the color and shelf life of vacuum packaged marinated anchovy (Engraulis encrasicolus). Turkish Journal of Agriculture- Food Science and Technology, 7(3), 405–416. https://doi.org/10.24925/turjaf.v7i3.405-416.2341
  • Siewe, F. B., Kudre, T. G., & Narayan, B. (2021). Optimisation of ultrasound-assisted enzymatic extraction conditions of umami compounds from fish by-products using the combination of fractional factorial design and central composite design. Food Chemistry, 334, 127498. https://doi.org/10.1016/j.foodchem.2020.127498
  • Mohan, C. O., Ravishankar, C. N., & Srinivasagopal, T. K. (2016). Packaging interventions in low temperature preservation of fish-a review. MOJ Food Process Technol, 2(1), 13-25.
  • Kocatepe, D., Turan, H., Altan, C. O., & Göknar, G. (2014). Effect of the vacuum packaging on the shelf life of Lakerda. International Journal of Food Science Nutrition and Dietetics, 3(9), 157-159.
  • Lee, Y. C., Tseng, P. H., Hwang, C. C., Kung, H. F., Huang, Y. L., Lin, C. S., Wei, C.C., & Tsai, Y. H. (2019). Effect of vacuum packaging on histamine production in Japanese Spanish mackerel (Scomberomorus niphonius) stored at various temperatures. Journal of Food Protection, 82(11), 1931-1937. https://doi.org/10.4315/0362-028X.JFP-19-143
  • Aberoumand, A., & Baesi, F. (2020). Effects of vacuum packaging in freezer on oxidative spoilage indexes of fish Lethrinus atkinsoni. Food Science & Nutrition, 8(8), 4145-4150. https://doi.org/10.1002/fsn3.1704
  • Silbande, A., Adenet, S., Chopin, C., Cornet, J., Smith-Ravin, J., Rochefort, & K., Leroi, F. (2018). Effect of vacuum and modified atmosphere packaging on the microbiological, chemical and sensory properties of tropical red drum (Sciaenops ocellatus) fillets stored at 4 C. International Journal of Food Microbiology, 266, 31-41. https://doi.org/10.1016/j.ijfoodmicro.2017.10.015
  • Kocatepe, D., & Turan, H. (2011). Su ürünlerinin muhafazasında modifiye atmosfer paketleme teknolojisinin kullanımı. Gıda, 36(4), 233-240.
  • Oğuzhan, P., Angiş, S. (2008, Mayıs 21-23). Su Ürünlerinin Paketlenmesi. Türkiye 10. Gıda Kongresi Erzurum Türkiye, 10, 21-23. https://www.gidadernegi.org/TR/Genel/BelgeGoster8bf7.html?F6E10F8892433CFFAAF6AA849816B2EF9B26DB8A4F93DD83
  • Sivertsvik, M., Rosnes, J. T., & Bergslien, H. (2002). Modified atmosphere packaging. Minimal Processing Technologies in the Food Industry, 61-86.
  • Laorenza, Y., Chonhenchob, V., Bumbudsanpharoke, N., Jittanit, W., Sae-Tan, S., Rachtanapun, C., Chanput, WP; Charoensiddhi, S.; Srisa, A.; Promhuad, K., Wongphan, P., & Harnkarnsujarit, N. (2022). Polymeric packaging applications for seafood products: Packaging-deterioration relevance, technology and trends. Polymers, 14(18), 3706. https://doi.org/10.3390/polym14183706
  • Pagarkar, A. U., Gaikwad, B. V., Kudale, A. S., Chogale, N. D., Satam, S. B., Pol, V. R., Shingare, P. E., Sawant, S. K., Rathod, N. B., Bhosale, B. P., Yadav B. M., Shinde, K. M., & Sawant, N. H. (2020). Modified atmosphere packaging: an approach to seafood industry. Journal of Experimental Zoology India, 23.
  • Kontominas, M. G., Badeka, A. V., Kosma, I. S., & Nathanailides, C. I. (2021). Recent developments in seafood packaging technologies. Foods, 10(5), 940. https://doi.org/10.3390/foods10050940
  • Çorapcı, B., & Kocatepe, D. (2019). Modifiye atmosfer (MA) paketlenmiş kırlangıç (Chelidonichthys lucerna Linnaeus, 1758) sotenin kalite özellikleri. Gıda, 44(6), 1059-1070. https://doi.org/10.15237/gida.GD19093
  • Wang, Z. C., Yan, Y., Fang, Z., Nisar, T., Sun, L., Guo, Y., Xia, N., Wang, H., & Chen, D. W. (2019). Application of nitric oxide in modified atmosphere packaging of tilapia (Oreschromis niloticus) fillets. Food Control, 98, 209-215. https://doi.org/10.1016/j.foodcont.2018.11.043
  • Turan, H., & Kocatepe, D. (2013). Different MAP Conditions to Improve the Shelf Life of Sea Bass. Food Science and Biotechnology. 22(6): 1589-1599. https://doi.org/10.1007/s10068-013-0255-x
  • Otles, S., & Yalcin, B. (2008). Intelligent food packaging. LogForum, 4(4), 3. http://www.logforum.net/vol4/issue4/no3
  • Yam, K. L., Takhistov, P. T., & Miltz, J. (2005). Intelligent packaging: concepts and applications. Journal of Food Science, 70(1), R1-R10. https://doi.org/10.1111/j.1365-2621.2005.tb09052.x
  • Sobhan, A., Muthukumarappan, K., & Wei, L. (2022). A biopolymer-based pH indicator film for visually monitoring beef and fish spoilage. Food Bioscience, 46, 101523. https://doi.org/10.1016/j.fbio.2021.101523
  • Li, Y., Wu, K., Wang, B., & Li, X. (2021). Colorimetric indicator based on purple tomato anthocyanins and chitosan for application in intelligent packaging. International Journal of Biological Macromolecules, 174, 370-376. https://doi.org/10.1016/j.ijbiomac.2021.01.182
  • Yu, D., Wu, L., Regenstein, J. M., Jiang, Q., Yang, F., Xu, Y., & Xia, W. (2020). Recent advances in quality retention of non-frozen fish and fishery products: A review. Critical Reviews in Food Science and Nutrition, 60(10), 1747-1759. https://doi.org/10.1080/10408398.2019.1596067
  • Pereira de Abreu, D. A., Cruz, J. M., & Paseiro Losada, P. (2012). Active and intelligent packaging for the food industry. Food Reviews International, 28(2), 146-187. https://doi.org/10.1080/87559129.2011.595022
  • Hempel, A. W., Papkovsky, D. B., & Kerry, J. P. (2013). Use of optical oxygen sensors in non-destructively determining the levels of oxygen present in combined vacuum and modified atmosphere packaged pre-cooked convenience-style foods and the use of ethanol emitters to extend product shelf-life. Foods, 2(4), 507-520. https://doi.org/10.3390/foods2040507
  • Göncü, A., & Özkal, S. G. (2017). Ekmeklerde aktif paketleme uygulamaları. Turkish Journal of Agriculture-Food Science and Technology, 5(11), 1264-1273. https://doi.org/10.24925/turjaf.v5i11.1264-1273.1247
  • Ghalehjooghi, H. D., Tajik, H., & Shahbazi, Y. (2023). Development and characterization of active packaging nanofiber mats based on gelatin sodium alginate containing probiotic microorganisms to improve the shelf-life and safety quality of silver carp fillets. International Journal of Food Microbiology, 384, 109984. https://doi.org/10.1016/j.ijfoodmicro.2022.109984
  • Remya, S., Mohan, C. O., Venkateshwarlu, G., Sivaraman, G. K., & Ravishankar, C. N. (2017). Combined effect of O2 scavenger and antimicrobial film on shelf life of fresh cobia (Rachycentron canadum) fish steaks stored at 2oC. Food Control, 71, 71-78. https://doi.org/10.1016/j.foodcont.2016.05.038
  • Dursun, S., & Erkan, N. (2009). Yenilebilir protein filmler ve su ürünlerinde kullanımı. Journal of FisheriesSciences.com, 3(4), 352.
  • Dehghani, S., Hosseini, S. V., & Regenstein, J. M. (2018). Edible films and coatings in seafood preservation: A review. Food Chemistry, 240, 505-513. https://doi.org/10.1016/j.foodchem.2017.07.034
  • Khalil, Y. R., & Ogunkalu, O. A. (2019). Edible films in seafood. Eurasian J. agric. Res, 1, 85-94.
  • Tural, S., Sarıcaoğlu, F. T., & Turhan, S. (2017). Yenilebilir film ve kaplamalar: Üretimleri, uygulama yöntemleri, fonksiyonları ve kaslı gıdalarda kullanımları. Akademik Gıda, 15(1), 84-94. https://doi.org/10.24323/akademik-gida.306077
  • Rostamzad, H., Abbasi Mesrdashti, R., Akbari Nargesi, E., & Fakouri, Z. (2019). Shelf life of refrigerated silver carp, Hypophthalmichthys molitrix, fillets treated with chitosan film and coating incorporated with ginger extract. Caspian Journal of Environmental Sciences, 17(2), 143-153. https://doi.org/10.22124/cjes.2019.3408
  • Kılınç, B., Sürengil, G., & Yalçın, T. (2023). The impact of edible film coatings with lemon and orange peel extracts on microbiological quality and shelf-life of squid (Loligo vulgaris) rings and rainbow trout (Oncorhynchus mykiss) fillets. Kahramanmaraş Sütçü İmam Üniversitesi Tarım ve Doğa Dergisi, 26(1), 172-182. https://doi.org/10.18016/ksutarimdoga.vi.995995
  • Rodriguez-Turienzo, L., Cobos, A., Moreno, V., Caride, A., Vieites, J. M., & Diaz, O. (2011). Whey protein-based coatings on frozen Atlantic salmon (Salmo salar): Influence of the plasticiser and the moment of coating on quality preservation. Food Chemistry, 128(1), 187-194. https://doi.org/10.1016/j.foodchem.2011.03.026
  • Ramezani, Z., Zarei, M., & Raminnejad, N. (2015). Comparing the effectiveness of chitosan and nanochitosan coatings on the quality of refrigerated silver carp fillets. Food Control, 51, 43-48.
  • Gharibzahedi, S. M. T., & Mohammadnabi, S. (2017). Effect of novel bioactive edible coatings based on jujube gum and nettle oil-loaded nanoemulsions on the shelf-life of Beluga sturgeon fillets. International journal of biological macromolecules, 95, 769-777.
  • Schellekens, M. (1996). New research issues in sous-vide cooking. Trends in Food Science & Technology, 7(8), 256-262. https://doi.org/10.1016/0924-2244(96)10027-3
  • Baldwin, D. E. (2012). Sous vide cooking: A review. International Journal of Gastronomy and Food Science, 1(1), 15-30. https://doi.org/10.1016/j.ijgfs.2011.11.002
  • Haskaraca, G., & Kolsarıcı, N. (2013). Sous vide pişirme ve et teknolojisinde uygulama olanakları. Akademik Gıda, 11(2), 94-101.
  • Kocatepe, D., Turan, H., Şengor, G.F.U., Corapcı, B., Altan, C. O., & Kostekli, B. (2025). Effects of Innovative Cooking Techniques on the Physico-Chemical, Color, Structural and Sensory Properties of the Rainbow Trout (O. mykiss). Journal of Culinary Science & Technology, 1-15. https://doi.org/10.1080/15428052.2024.2373767
  • Gu, M., Tu, C., Jiang, H., Li, T., Xu, N., Shui, S., Benjakul, S., & Zhang, B. (2024). Physicochemical characteristics and microbial diversity of sous vide scallops (Chlamys farreri) during chilled storage. LWT, 204, 116437. https://doi.org/10.1016/j.lwt.2024.116437
  • Öztürk, F., Gündüz, H., & Sürengil, G. (2021). The effects of essential oils on inactivation of Listeria monocytogenes in rainbow trout cooked with sous‐vide. Journal of Food Processing and Preservation, 45(10), e15878. https://doi.org/10.1111/jfpp.15878
  • Köklü, R. (2023). Levrek balığının raf ömrü ve besin kompozisyonu üzerine kombine işleme (sıvı duman ve sous vide) tekniklerinin etkisi. (Tez no. 843797). [Yüksek Lisans Tezi, Sinop Üniversitesi]
  • Candan, T., & Bağdatlı, A. (2018). Et teknolojisinde alternatif ısıtma yöntemleri. El-Cezeri, 5(2), 656-670. https://doi.org/10.31202/ecjse.403806
  • Ravishankar, C. N. (2019). Advances in processing and packaging of fish and fishery products. Advanced Agricultural Research & Technology Journal, 3(2), 168-181.
  • Aniesrani Delfiya, D. S., Sneha, R., Prashob, K., Murali, S., Alfiya, P. V., & Samuel, M. P. (2022). Hot air‐assisted continuous infrared dryer for anchovy fish drying. Journal of Food Process Engineering, 45(6), e13824. https://doi.org/10.1111/jfpe.13824
  • Prashob, K., Aniesrani Delfiya, D. S., Murali, S., Alfiya, P. V., & Samuel, M. P. (2022). Drying of shrimp using hot air‐assisted continuous infrared drying system. Journal of Food Processing and Preservation, 46(9), e16364. https://doi.org/10.1111/jfpp.16364
  • Viji, P., Rao, B. M., Debbarma, J., & Ravishankar, C. N. (2022). Research developments in the applications of microwave energy in fish processing: A review. Trends in Food Science & Technology, 123, 222-232. https://doi.org/10.1016/j.tifs.2022.03.010
  • Chandrasekaran, S., Ramanathan, S., & Basak, T. (2013). Microwave food processing—A review. Food Research International, 52(1), 243-261. https://doi.org/10.1016/j.foodres.2013.02.033
  • Ulusoy, Ş., Üçok Alakavuk, D., Mol, S., & Coşansu, S. (2019). Effect of microwave cooking on foodborne pathogens in fish. Journal of Food Processing and Preservation, 43(8), e14045. https://doi.org/10.1111/jfpp.14045
  • Marinopoulou, A., & Petridis, D. (2022). A comparative study of the effect of different cooking methods on the quality and shucking of mussels. Journal of Food Processing and Preservation, 46(10), e15875. https://doi.org/10.1111/jfpp.15875
  • Yan, B., Jiao, X., Zhu, H., Wang, Q., Huang, J., Zhao, J., Cao, H., Zhou, W., Zhang W., Ye, W., Zhang H., & Fan, D. (2020). Chemical interactions involved in microwave heat-induced surimi gel fortified with fish oil and its formation mechanism. Food Hydrocolloids, 105, 105779. https://doi.org/10.1016/j.foodhyd.2020.105779
  • Jaeger, H., Roth, A., Toepfl, S., Holzhauser, T., Engel, K. H., Knorr, D., Vogel, R. F., Bandick, N., Kulling, S., & Steinberg, P. (2016). Opinion on the use of ohmic heating for the treatment of foods. Trends in Food Science & Technology, 55, 84-97. https://doi.org/10.1016/j.tifs.2016.07.007
  • Fattahi, S., & Zamindar, N. (2020). Effect of immersion ohmic heating on thawing rate and properties of frozen tuna fish. Food Science and Technology International, 26(5), 453-461. https://doi.org/10.1177/1082013219895884
  • Kim, H. J., DeWitt, C. A. M., & Park, J. W. (2023). Application of ohmic heating for accelerating Pacific whiting fish sauce fermentation. LWT, 174, 114299. https://doi.org/10.1016/j.lwt.2022.114299
  • Davidson, P. M., Critzer, F. J., & Taylor, T. M. (2013). Naturally occurring antimicrobials for minimally processed foods. Annual Review of Food Science and Technology, 4(1), 163-190. https://doi.org/10.1146/annurev-food-030212-182535
  • Carocho, M., Morales, P., & Ferreira, I. C. (2015). Natural food additives: Quo vadis? Trends in Food Science & Technology, 45(2), 284-295 https://doi.org/10.1016/j.tifs.2015.06.007
  • Olatunde, O. O., & Benjakul, S. (2018). Natural preservatives for extending the shelf‐life of seafood: A revisit. Comprehensive Reviews in Food Science and Food Safety, 17(6), 1595-1612. https://doi.org/10.1111/1541-4337.12390
  • Qian, Z.G., Jiang, L.F., & Rui, L. (2013). Catfish preservation using porphyra yezoensis composites preservatives. Advance Journal of Food Science and Technology, 5(9): 1255-1259. https://doi.org/10.19026/ajfst.5.3092
  • Giarratana, F., Muscolino, D., Beninati, C., Ziino, G., Giuffrida, A., & Panebianco, A. (2016). Activity of R (+) limonene on the maximum growth rate of fish spoilage organisms and related effects on shelf-life prolongation of fresh gilthead sea bream fillets. International Journal of Food Microbiology, 237, 109-113. https://doi.org/10.1016/j.ijfoodmicro.2016.08.023
  • Corapci, B., Kocatepe, D., Altan, C. O., Ceylan, Z., Kostekli, B., & Turan, H. (2025). Effects of lemon oil-based nanoemulsion on sensory and microbiological quality of vacuum packed raw versus steam cooked trout (Oncorhynchus mykiss, Walbaum 1792) stored at + 4±2°C. Journal of Food Science and Technology, 1-13. https://doi.org/10.1007/s13197-025-06352-6
  • Leistner, L. (2000). Basic aspects of food preservation by hurdle technology. International Journal of Food Microbiology, 55(1-3), 181-186. https://doi.org/10.1016/S0168-1605(00)001616
  • Leroi, F., Amarita, F., Arboleya, J. C., Bjørkevoll, I., Cruz, Z., Dousset, X., Izurieta E., Joffraud, J.J., Lasagabaster, A., Lauzon, H.L., Lorentzen, G., Martínez de Marañón, I., Matamoros S., Miranda I, Nuin, M., Olabarrieta, I., Olsen, R., Pilet, M. F., Prevost, H., & Skjerdal, T. (2008). Hurdle technology to ensure the safety of seafood products. Improving Seafood Products for the Consumer (book), (19), 399-425.
  • Choulitoudi, E., Ganiari, S., Tsironi, T., Ntzimani, A., Tsimogiannis, D., Taoukis, P., & Oreopoulou, V. (2017). Edible coating enriched with rosemary extracts to enhance oxidative and microbial stability of smoked eel fillets. Food Packaging and Shelf Life, 12, 107-113. https://doi.org/10.1016/j.fpsl.2017.04.009
  • Ahmad, I., & Traynor, M. P. (2022). Impact of high-pressure processing and sous vide cooking on the physicochemical, sensorial, and textural properties of fresh whiteleg shrimp (Litopenaeus setiferus). Journal of Aquatic Food Product Technology, 31(6), 508-524. https://doi.org/10.1080/10498850.2022.2077157
Toplam 111 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Su Ürünleri Teknolojileri
Bölüm Derleme
Yazarlar

Rukiye Köklü 0000-0001-6146-5125

Hülya Turan 0000-0002-2944-1032

Gönderilme Tarihi 19 Ağustos 2025
Kabul Tarihi 25 Kasım 2025
Yayımlanma Tarihi 24 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 10 Sayı: 2

Kaynak Göster

APA Köklü, R., & Turan, H. (2025). Su Ürünlerinde Uygulanan Minimal İşleme Yöntemleri. Sinop Üniversitesi Fen Bilimleri Dergisi, 10(2), 709-730. https://doi.org/10.33484/sinopfbd.1768673


Sinopfbd' de yayınlanan makaleler CC BY-NC 4.0 ile lisanslanmıştır.