Araştırma Makalesi
BibTex RIS Kaynak Göster

A SYSTEMATIC REVIEW OF THE STUDIES ON MACHINE TRANSLATION IN TÜRKİYE: METHODOLOGICAL PROBLEMS AND RECOMMENDATIONS FOR FUTURE RESEARCH

Yıl 2025, Sayı: Çeviribilim Özel Sayısı II, 113 - 132, 25.03.2025
https://doi.org/10.29110/soylemdergi.1597647

Öz

Recent developments in translation technologies have made translation scholars become more interested in this field of study and this, in turn, has led to a proliferation of machine translation research. In this context, the review of the literature shows that there has been a great number of product-oriented studies in recent years. However, the fact that the field is a more emerging one compared to other subfields within Translation Studies and an abrupt interest of researchers in the field have brought about methodological problems as well. Especially since 2016, when Neural Machine Translation systems became visible, there has been an understanding that the quality of translation has increased. Although this increase in quality has been proven in some text types, it is clear that machine translation does not yet give a human-quality translation product, especially for texts that have not been pre-edited, and this renders post-editing an inevitable part of the translation process. In addition to processes such as pre-editing and controlled language rules, the context of a text also has an effect on the raw machine translation output, and therefore, changing a part of a complete text may cause a change in the raw translation output. However, the analysis of the studies on machine translation in Türkiye shows that the studies mostly focus on comparing the translations of a section of the specified text using different machine translation engines, and fail to ensure methodological consistency, and the parameters that may affect the final quality of the text are left out when a part of a text is translated by machine translation. Against this background, employing a systematic review of the literature, this study aims to give an overview of the studies on machine translation in Türkiye since 2016 and tries to explain methodological problems encountered and presents recommendations for future research.

Kaynakça

  • Arianna, López Pereira. (2018, Mayıs 28). Determining translators’ perception, productivity and post-editing effort when using SMT and NMT systems. 21st Annual Conference of the European Association for Machine Translation.
  • Austermühl, Frank. (2011). On clouds and crowds: Current developments in translation technology. Translation in Transition, 9, s. 1-26.
  • Bowker, Lynne. (2005). Productivity vs quality? A pilot study on the impact of translation memory systems. Localization Focus, 4(1), s. 13-20.
  • Bowker, Lynne. (2024). Teaching Machine Translation Literacy to Non-translation Students: A Case Study at a Canadian University. Içinde Ursula Böser, Sharon Deane-Cox, & Marion Winters (Ed.), Translation, Interpreting and Technological Change: Innovations in Research, Practice and Training, s. 180-200. Bloomsbury Publishing.
  • Castilho, Sheila, Doherty, Stephen, Gaspari, Federico, & Moorkens, Joss. (2018). Approaches to Human and Machine Translation Quality Assessment. Içinde Joss Moorkens, Sheila Castilho, Federico Gaspari, & Stephen Doherty (Ed.), Translation Quality Assessment: From Principles to Practice ,s. 9-38. Springer International Publishing.
  • Castilho, Sheila, Moorkens, Joss, Gaspari, Federico, Calixto, Iacer, Tinsley, John, & Way, Andy. (2017). Is neural machine translation the new state of the art? The Prague Bulletin of Mathematical Linguistics, s. 108.
  • Chan, Sin-wai. (2015). The development of translation technology: 1967–2013. İçinde Sin-wai Chan (Ed.), The Routledge Encylopedia of Translation Technology, s. 3-32. Routledge.
  • Christensen, T., & Schjoldager, A. (2011). The Impact of Translation-Memory (TM) Technology on Cognitive Processes: Student-Translators’ Retrospective Comments in an Online Questionnaire. Copenhagen Studies in Language, 41, s. 119-130.
  • Colina, Sonia. (2008). Translation Quality Evaluation Empirical Evidence for a Functionalist Approach. The Translator, 14(1), s. 97-134.
  • Çetin, Özge. (2009). Çeviride İnsan Zekâsı ve Yapay Zekâ [Yayımlanmamış Yüksek Lisans Tezi]. Muğla Sıtkı Koçman Üniversitesi.
  • Çetiner, Caner. (2019). Makine çevirisi sonrası düzeltme işlemine (post-editing) yönelik kapsamlı bir inceleme. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi, s. 462-472.
  • Çetiner, Caner. (2022). Bilgisayar Destekli Çeviri (BDÇ) Araçlarındaki Kalite Güvence İşlevinin Çevirmen Eğitimindeki Etkileri. Turkish Studies - Language and Literature, 17(1), s. 167-185. https://doi.org/10.7827/TurkishStudies.57411
  • Dede, Volkan. (2022). Temporal and Technical Effort in Post-editing Compared to Editing and Translation from Scratch [Master Thesis]. Hacettepe University.
  • Depraetere, Ilse. (2011). A contrastive analysis of MT evaluation techniques. Içinde Annely Rothkegel & John Laffling (Ed.), Perspectives on Translation Quality. s. 101-125. De Gruyter Mouton.
  • Doherty, Stephen. (2012). Investigating the effects of controlled language on the reading and comprehension of machine translated texts: A mixed-methods approach [Ph.D. Thesis]. Dublin City University.
  • Dragsted, Barbara. (2004). Segmentation in translation and translation memory systems: An empirical investigation of cognitive segmentation and effects of integrating a TM system into the translation process. Samfundslitteratur.
  • Forcada, Mikel L. (2017). Making sense of neural machine translation. TS Translation Spaces, 6(2), s. 291-309.
  • Fullford, Heather. (2002). Freelance translators and machine translation: An investigation of perceptions, uptake, experience and training needs. Teaching machine translation, s. 117-122.
  • Ghassemiazghandi, Mozhgan, & Mahadi, Tengku Sepora Tengku. (2018). Quality estimation of machine translation for literature. İçinde Chan Sin-wai (Ed.), The Human Factor in Machine Translation, s. 183-209. Routledge.
  • Gordin, Michael D. (2016). The dostoevsky machine in georgetown: Scientific translation in the cold war. Annals of Science., s. 208-223.
  • Gough, David, Oliver, Sandy, & Thomas, James. (2012). An Introduction to Systematic Reviews. SAGE Publications.
  • Gürses, Sabri, Şahin, Mehmet, Hodzik, Ena, Güngör, Tunga, Dallı, Harun, & Dursun, Olgun. (2024). Çeviribilim Çalışmalarında Çevirmenin Üslubu ve Makinenin Üslubu. Çeviribilim ve Uygulamaları Dergisi, 36, s. 100-124. https://doi.org/10.37599/ceviri.1468718
  • Hutchins, John, & Somers, Harold L. (1992). An introduction to machine translation. Academic Press.
  • Melby, Alan. (1992). The translator workstation. İçinde John Newton (Ed.), Computers in Translation A Practical Appraisal. Routledge.
  • Mellinger, Christopher D. (2017). Translators and machine translation: Knowledge and skills gaps in translator pedagogy. The Interpreter and Translator Trainer, 11(4), s. 280-293. htps://doi.org/10.1080/1750399X.2017.1359760
  • Moorkens, Joss. (2018). What to expect from Neural Machine Translation: A practical in-class translation evaluation exercise. The Interpreter and Translator Trainer, 12(4), s. 375-387.
  • Nirenburg, Sergey, Somers, Harold L., & Yorick, Wilks (Ed.). (2003). Readings in Machine Translation. The MIT Press.
  • Pastor, Diana González. (2021). Introducing Machine Translation in the Translation Classroom: A Survey on Students’ Attitudes and Perceptions. Tradumàtica: tecnologies de la traducció, 19, s. 47-65.
  • Poibeau, Thierry. (2018). Machine Translation. The MIT Press.
  • Quah, Chiew Kin. (2006). Translation and technology. Palgrave Macmillan.
  • Qun, Liu, & Xiaojun, Zhang. (2015). Machine Translation General. Içinde Sin-wai Chan (Ed.), The Routledge encyclopedia of translation technology.
  • Reichert, Corinne. (2016, Eylül 28). Google announces Neural Machine Translation to improve Google Translate. https://www.zdnet.com/article/google-announces-neural-machine-translation-to-improve-google-translate/
  • Rivera-Trigueros, Irene. (2022). Machine translation systems and quality assessment: A systematic review. Language Resources and Evaluation, 56(2), s. 593-619. https://doi.org/10.1007/s10579-021-09537-5
  • Şahin, Mehmet. (2013a). Using MT post-editing for translator training. Tralogy II, Session 6 - Teaching around MT. Trouver le sens : où sont nos manques et nos besoins respectifs?, Paris, France. https://hal.archives-ouvertes.fr/hal-02497609/document
  • Şahin, Mehmet. (2013b). Çeviri ve teknoloji. İzmir Ekonomi Üniversitesi Yayınları.
  • Şahin, Mehmet. (2013c). Technology in translator training: The case of Turkey. Hacettepe University Journal of Faculty of Letters, 30(2), s. 173-189.
  • Şahin, Mehmet. (2015). Çevirmen adaylarının gözünden İngilizce-türkçe bilgisayar çevirisi ve bilgisayar destekli çeviri: Google deneyi. Hacettepe Üniversitesi Çeviribilim ve Uygulamaları Dergisi, 21, s. 43-60.
  • Şahin, Mehmet. (2023). Yapay Çeviri. Çeviribilim.
  • Topping, Suzanne. (2000). Sharing Translation Database Information: Considerations for developing an ethical and viable exchange of data. MultiLingual Computing & Technology, 11(5), s. 59-61.
  • Toral, Antonio, & Way, Andy. (2018). What Level of Quality Can Neural Machine Translation Attain on Literary Text? Içinde Joss Moorkens, Sheila Castilho, Federico Gaspari, & Stephen Doherty (Ed.), Translation Quality Assessment: From Principles to Practice, s. 263-287. Springer International Publishing. https://doi.org/10.1007/978-3-319-91241-7_12
  • Williams, Malcolm. (2013). A holistic-componential model for assessing translation student performance and competency. Mutatis Mutandis, 6(2), s. 419-443.
  • Yamada, Masaru. (2011). The effect of translation memory databases on productivity. Translation research projects, 3, s. 63-73.
  • Yamada, Masaru. (2019). The impact of Google neural machine translation on post-editing by student translators. The Journal of Specialised Translation, 31(1), s. 87-106.
  • Yazıcı, Tayfun., & Bartan, Özgür Şen. (2024). Makine Çevirisi Sonrası Düzeltme İşleminin Zamansal ve Teknik Efor Açısından İncelenmesi: Google ve DeepL Çeviri. Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, 14(2), s. 365-381.

Türkiye’de Makine Çevirisi Üzerine Yapılan Çalışmaların Sistematik İncelenmesi: Yöntemsel Sorunlar ve Çözüm Önerileri

Yıl 2025, Sayı: Çeviribilim Özel Sayısı II, 113 - 132, 25.03.2025
https://doi.org/10.29110/soylemdergi.1597647

Öz

Çeviri teknolojilerindeki gelişmeler, Çeviribilim araştırmacılarının bu alana yönelmesinde bir etken olarak özellikle son yıllarda makine çevirisi konulu çalışmaları yaygın hale getirmiştir. Bu bağlamda literatür incelendiğinde özellikle ürün odaklı çalışmaların sayıca fazla olduğu göze çarpmaktadır. Ancak alanın Çeviribilim içerisindeki diğer alt çalışma alanlarına kıyasla daha güncel bir çalışma alanı olması ve araştırmacıların alana günden güne artan ilgisi ortaya konan çalışmalarda metodolojik sorunları da beraberinde getirmiştir. Özellikle Nöral Makine Çevirisi sistemlerinin görünür hale geldiği 2016 yılından beri çeviride kalitenin arttığına yönelik bir algı oluşmuştur. Kalitedeki bu artış her ne kadar bazı metin türlerinde kanıtlansa da makine çevirisinin özellikle ön-düzeltme işlemi yapılmamış çoğu metin için henüz insan çevirisi kalitesinde ürün ortaya koymadığı ve makine çevirisi sonrası düzeltme işlemine gerek duyulduğu açıktır. Ayrıca ön düzeltme, kontrollü dil kuralları gibi işlemlerin yanı sıra bir metnin bağlamının da makine çevirisinden çıkan ham çeviri metnin üzerinde etkisinin olduğu dolayısıyla tam bir metnin çevrilecek kısmının değişmesinin ham çeviri çıktısı üzerinde değişikliğe neden olabileceği bilinmektedir. Ancak Türkiye özelinde yapılan çalışmalara bakıldığında çalışmaların daha çok belirlenen metnin bir kesitinin farklı makine çevirisi motorlarındaki çevirilerinin kıyaslanmasına odaklandığı, metodolojik olarak bir tutarlılığın temin edilmesine çalışılmadığı, bu kesitler makine çevirisine verilirken metnin nihai kalitesi üzerinde etki edebilecek parametrelerin dışarıda bırakıldığı gözlemlenmiştir. Bu çalışmada 2016 yılından günümüze değin makine çevirisi konulu çalışmalar incelenip metodolojik sorunlar ve bu sorunlara yönelik çözüm önerileri sunulmaya çalışılmıştır.

Kaynakça

  • Arianna, López Pereira. (2018, Mayıs 28). Determining translators’ perception, productivity and post-editing effort when using SMT and NMT systems. 21st Annual Conference of the European Association for Machine Translation.
  • Austermühl, Frank. (2011). On clouds and crowds: Current developments in translation technology. Translation in Transition, 9, s. 1-26.
  • Bowker, Lynne. (2005). Productivity vs quality? A pilot study on the impact of translation memory systems. Localization Focus, 4(1), s. 13-20.
  • Bowker, Lynne. (2024). Teaching Machine Translation Literacy to Non-translation Students: A Case Study at a Canadian University. Içinde Ursula Böser, Sharon Deane-Cox, & Marion Winters (Ed.), Translation, Interpreting and Technological Change: Innovations in Research, Practice and Training, s. 180-200. Bloomsbury Publishing.
  • Castilho, Sheila, Doherty, Stephen, Gaspari, Federico, & Moorkens, Joss. (2018). Approaches to Human and Machine Translation Quality Assessment. Içinde Joss Moorkens, Sheila Castilho, Federico Gaspari, & Stephen Doherty (Ed.), Translation Quality Assessment: From Principles to Practice ,s. 9-38. Springer International Publishing.
  • Castilho, Sheila, Moorkens, Joss, Gaspari, Federico, Calixto, Iacer, Tinsley, John, & Way, Andy. (2017). Is neural machine translation the new state of the art? The Prague Bulletin of Mathematical Linguistics, s. 108.
  • Chan, Sin-wai. (2015). The development of translation technology: 1967–2013. İçinde Sin-wai Chan (Ed.), The Routledge Encylopedia of Translation Technology, s. 3-32. Routledge.
  • Christensen, T., & Schjoldager, A. (2011). The Impact of Translation-Memory (TM) Technology on Cognitive Processes: Student-Translators’ Retrospective Comments in an Online Questionnaire. Copenhagen Studies in Language, 41, s. 119-130.
  • Colina, Sonia. (2008). Translation Quality Evaluation Empirical Evidence for a Functionalist Approach. The Translator, 14(1), s. 97-134.
  • Çetin, Özge. (2009). Çeviride İnsan Zekâsı ve Yapay Zekâ [Yayımlanmamış Yüksek Lisans Tezi]. Muğla Sıtkı Koçman Üniversitesi.
  • Çetiner, Caner. (2019). Makine çevirisi sonrası düzeltme işlemine (post-editing) yönelik kapsamlı bir inceleme. RumeliDE Dil ve Edebiyat Araştırmaları Dergisi, s. 462-472.
  • Çetiner, Caner. (2022). Bilgisayar Destekli Çeviri (BDÇ) Araçlarındaki Kalite Güvence İşlevinin Çevirmen Eğitimindeki Etkileri. Turkish Studies - Language and Literature, 17(1), s. 167-185. https://doi.org/10.7827/TurkishStudies.57411
  • Dede, Volkan. (2022). Temporal and Technical Effort in Post-editing Compared to Editing and Translation from Scratch [Master Thesis]. Hacettepe University.
  • Depraetere, Ilse. (2011). A contrastive analysis of MT evaluation techniques. Içinde Annely Rothkegel & John Laffling (Ed.), Perspectives on Translation Quality. s. 101-125. De Gruyter Mouton.
  • Doherty, Stephen. (2012). Investigating the effects of controlled language on the reading and comprehension of machine translated texts: A mixed-methods approach [Ph.D. Thesis]. Dublin City University.
  • Dragsted, Barbara. (2004). Segmentation in translation and translation memory systems: An empirical investigation of cognitive segmentation and effects of integrating a TM system into the translation process. Samfundslitteratur.
  • Forcada, Mikel L. (2017). Making sense of neural machine translation. TS Translation Spaces, 6(2), s. 291-309.
  • Fullford, Heather. (2002). Freelance translators and machine translation: An investigation of perceptions, uptake, experience and training needs. Teaching machine translation, s. 117-122.
  • Ghassemiazghandi, Mozhgan, & Mahadi, Tengku Sepora Tengku. (2018). Quality estimation of machine translation for literature. İçinde Chan Sin-wai (Ed.), The Human Factor in Machine Translation, s. 183-209. Routledge.
  • Gordin, Michael D. (2016). The dostoevsky machine in georgetown: Scientific translation in the cold war. Annals of Science., s. 208-223.
  • Gough, David, Oliver, Sandy, & Thomas, James. (2012). An Introduction to Systematic Reviews. SAGE Publications.
  • Gürses, Sabri, Şahin, Mehmet, Hodzik, Ena, Güngör, Tunga, Dallı, Harun, & Dursun, Olgun. (2024). Çeviribilim Çalışmalarında Çevirmenin Üslubu ve Makinenin Üslubu. Çeviribilim ve Uygulamaları Dergisi, 36, s. 100-124. https://doi.org/10.37599/ceviri.1468718
  • Hutchins, John, & Somers, Harold L. (1992). An introduction to machine translation. Academic Press.
  • Melby, Alan. (1992). The translator workstation. İçinde John Newton (Ed.), Computers in Translation A Practical Appraisal. Routledge.
  • Mellinger, Christopher D. (2017). Translators and machine translation: Knowledge and skills gaps in translator pedagogy. The Interpreter and Translator Trainer, 11(4), s. 280-293. htps://doi.org/10.1080/1750399X.2017.1359760
  • Moorkens, Joss. (2018). What to expect from Neural Machine Translation: A practical in-class translation evaluation exercise. The Interpreter and Translator Trainer, 12(4), s. 375-387.
  • Nirenburg, Sergey, Somers, Harold L., & Yorick, Wilks (Ed.). (2003). Readings in Machine Translation. The MIT Press.
  • Pastor, Diana González. (2021). Introducing Machine Translation in the Translation Classroom: A Survey on Students’ Attitudes and Perceptions. Tradumàtica: tecnologies de la traducció, 19, s. 47-65.
  • Poibeau, Thierry. (2018). Machine Translation. The MIT Press.
  • Quah, Chiew Kin. (2006). Translation and technology. Palgrave Macmillan.
  • Qun, Liu, & Xiaojun, Zhang. (2015). Machine Translation General. Içinde Sin-wai Chan (Ed.), The Routledge encyclopedia of translation technology.
  • Reichert, Corinne. (2016, Eylül 28). Google announces Neural Machine Translation to improve Google Translate. https://www.zdnet.com/article/google-announces-neural-machine-translation-to-improve-google-translate/
  • Rivera-Trigueros, Irene. (2022). Machine translation systems and quality assessment: A systematic review. Language Resources and Evaluation, 56(2), s. 593-619. https://doi.org/10.1007/s10579-021-09537-5
  • Şahin, Mehmet. (2013a). Using MT post-editing for translator training. Tralogy II, Session 6 - Teaching around MT. Trouver le sens : où sont nos manques et nos besoins respectifs?, Paris, France. https://hal.archives-ouvertes.fr/hal-02497609/document
  • Şahin, Mehmet. (2013b). Çeviri ve teknoloji. İzmir Ekonomi Üniversitesi Yayınları.
  • Şahin, Mehmet. (2013c). Technology in translator training: The case of Turkey. Hacettepe University Journal of Faculty of Letters, 30(2), s. 173-189.
  • Şahin, Mehmet. (2015). Çevirmen adaylarının gözünden İngilizce-türkçe bilgisayar çevirisi ve bilgisayar destekli çeviri: Google deneyi. Hacettepe Üniversitesi Çeviribilim ve Uygulamaları Dergisi, 21, s. 43-60.
  • Şahin, Mehmet. (2023). Yapay Çeviri. Çeviribilim.
  • Topping, Suzanne. (2000). Sharing Translation Database Information: Considerations for developing an ethical and viable exchange of data. MultiLingual Computing & Technology, 11(5), s. 59-61.
  • Toral, Antonio, & Way, Andy. (2018). What Level of Quality Can Neural Machine Translation Attain on Literary Text? Içinde Joss Moorkens, Sheila Castilho, Federico Gaspari, & Stephen Doherty (Ed.), Translation Quality Assessment: From Principles to Practice, s. 263-287. Springer International Publishing. https://doi.org/10.1007/978-3-319-91241-7_12
  • Williams, Malcolm. (2013). A holistic-componential model for assessing translation student performance and competency. Mutatis Mutandis, 6(2), s. 419-443.
  • Yamada, Masaru. (2011). The effect of translation memory databases on productivity. Translation research projects, 3, s. 63-73.
  • Yamada, Masaru. (2019). The impact of Google neural machine translation on post-editing by student translators. The Journal of Specialised Translation, 31(1), s. 87-106.
  • Yazıcı, Tayfun., & Bartan, Özgür Şen. (2024). Makine Çevirisi Sonrası Düzeltme İşleminin Zamansal ve Teknik Efor Açısından İncelenmesi: Google ve DeepL Çeviri. Kırıkkale Üniversitesi Sosyal Bilimler Dergisi, 14(2), s. 365-381.
Toplam 44 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Çeviri ve Yorum Çalışmaları
Bölüm ARAŞTIRMA MAKALELERİ
Yazarlar

Caner Çetiner 0000-0003-0414-8451

Erken Görünüm Tarihi 23 Mart 2025
Yayımlanma Tarihi 25 Mart 2025
Gönderilme Tarihi 6 Aralık 2024
Kabul Tarihi 9 Şubat 2025
Yayımlandığı Sayı Yıl 2025 Sayı: Çeviribilim Özel Sayısı II

Kaynak Göster

APA Çetiner, C. (2025). Türkiye’de Makine Çevirisi Üzerine Yapılan Çalışmaların Sistematik İncelenmesi: Yöntemsel Sorunlar ve Çözüm Önerileri. Söylem Filoloji Dergisi(Çeviribilim Özel Sayısı II), 113-132. https://doi.org/10.29110/soylemdergi.1597647