Araştırma Makalesi
PDF Zotero Mendeley EndNote BibTex Kaynak Göster

Yüksek Yağlı Diyetle Beslenen Meyve Sineği Modelinde Besin Olarak Kabak Çekirdeği Zarının Değerlendirilmesi

Yıl 2021, Cilt 47, Sayı 2, 168 - 180, 30.10.2021
https://doi.org/10.35238/sufefd.957837

Öz

Çalışma atık olarak geri dönüştürülebilen ve su tutma oranı yüksek olan kabak çekirdeği zarı (PSM), hedef-dışı canlılar açısından kullanılması ve direnç oluşumuna etkisinin belirlenmesi amacıyla yapılmıştır. Beslenme yoluyla yağ alımının giderek arttığı günümüzde, artan yağ kullanımı bireyi strese karşı savunmasız hale getirmektedir. Obez bireylerde ek alınan atık/besin maddelerinin oksidatif stres üzerindeki etkisi de çalışma ile belirlenmiştir. Çalışmada model organizmada yağlı diyet ve kabak çekirdeği etkisi denenmiştir. Drosophila melanogaster diyetine %20 yağ ve farklı oranlarda PSM (0.05-2 g) eklenerek larva, pupa ve yetişkin bireylerde Malondialdehit (MDA) ve toplam oksidasyon (TOS) miktarı, toplam antioksidan etki (TAS) ve glutatyon-S-transferaz (GST) aktivitesi hesaplanmıştır. Elde edilen verilere göre: Oksidatif stres indeksinin (OSI) en yüksek olduğu dönemin pupa (pupa>larva>dişi>erkek) olduğu, kadınlarda lipid peroksidasyon (MDA) miktarının daha yüksek olduğu, ayrıca üçüncü larva en dirençli evre olduğu belirlenmiştir. Sonuçlar, kullanım sınırlaması nedeniyle tohum zarı atıklarının in vivo besin maddesi olarak yararlı olamayacağını göstermiştir.

Kaynakça

  • Alshehry GA (2020). Preparation And Nutritional Properties Of Cookies From The Partial Replacement Of Wheat Flour Using Pumpkin Seeds Powder. WJEB 9(2): 48-56.
  • Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, Banihani SA,Azab MA, Alrabadi N (2018a). The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Physiol behav 96: 1-7.
  • Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF (2018b). Melatonin prevents memory impairment induced by high-fat diet: role of oxidative stress. Behav Brain Res 336: 93-98.
  • Bendor CD, Bardugo A, Pinhas-Hamiel O, Afek A, Twig G (2020). Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovas Diabetol 19 (1): 1-14.
  • Blüher M (2020). Metabolically healthy obesity. Endocr Rev 41 (3): 405-420.
  • Bocharova OV and Teplyakova ED (2020). Children and adolescents’ obesity is the 21st century health problem. Kazan Med Journal 101 (3): 381-388.
  • Chen L, Liu L, Li C, Hu C, Su F, Liu R, Zeng M, Zhao D, Liu J, Guo Y, Long J (2017). A mix of apple pomace polysaccharide improves mitochondrial function and reduces oxidative stress in the liver of high‐fat diet‐induced obese mice. Mol Nutr Food Res 61 (3): 1600433.
  • Chung AP, Gurtu S, Chakravarthi S, Moorthy M, Palanisamy UD (2018). Geraniin protects high-fat diet-induced oxidative stress in Sprague Dawley rats. Front Nutr 5: 17.
  • Cormier RJ, Strang R, Menail H, Touaibia M, Pichaud N (2021). Systemic and mitochondrial effects of metabolic inflexibility induced by high fat diet in Drosophila melanogaster. Insect Biochem Mol Biol 103556.
  • Çankaya N and Muciz Ö (2017). A new functional additive obtaıned by using jet pulse fılters: pumpkin seed membrane. International Congress on Medicinal and Aromatic Plants (Tabkon), 343, Konya/Turkey.
  • Çolak DA and Uysal H (2018). Evaluation of the Lifespan of Fruit Fly Drosophila melanogaster Exposed to Dioxins. Agric Nat 21(5): 715.
  • De Moed GH, Kruitwagen CLJJ, De Jong G, Scharloo W (1999). Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation. J Evol Biol 12 (5): 852-858.
  • Durusoy M, Diril N, Bozcuk AN (1995). Age-related activity of glutathione S-transferase in three different genotypes of Drosophila melanogaster. Turkish J Biol 19: 337-342.
  • Erel O (2005). A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12): 1103-1111.
  • Etuh MA, Aguiyi JC, Ochala SO, Simeon O, Oyeniran OI, Oshibanjo OD, Pam D (2019). The In vivo antioxidant protective activity of Mangifera indica cold aqueous leaf extract in Drosophila melanogaster. J Adv Biol Biotechnol 22(2): 1-7.
  • Filimonau V, Nghiem VN, Wang LE (2021). Food waste management in ethnic food restaurants. Int J Hosp Manag 92: 102731.
  • Fışkın K and Asma D (1996). Drosophila melanogaster Oregon (OR), yabanıl tipi (wt) ve vestigial (vg) mutantının ömür uzunluklarının karşılaştırılması. Antioksidatif enzimlerin ve ACE vitamin kompleksinin yaşlanma ile ilişkisi. Turkish J Biol 20: 99-110.
  • Genç C and Köse B (2019). [Obesity and Impulsivity]. Başkent University Faculty of Health Sci J 4(2): 95-104. (Article in Turkish)
  • Guan XL, Wu PF, Wang S, Zhang JJ, Shen ZC, Luo H, Chen H, Long LH, Chen JG, Wang F (2017). Dimethyl sulfide protects against oxidative stress and extends lifespan via a methionine sulfoxide reductase A‐dependent catalytic mechanism. Aging Cell 16(2): 226-236.
  • Güneş E and Buyukguzel E (2017). Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turk Entomol Derg 41(1): 3-15.
  • Güneş E (2020). Extended Longevity of Drosophila melanogaster by Natural Waste Citrullus lanatus Seed. IJEPEM 3(4): 144-146.
  • Güneş E (2021). Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol148: 111935.
  • Güneş Eand Biçer Bayram Ş (2021). Determining the Effect of Pumpkin Seed Membrane on Survival, Development Longevity in Animal Model. KSÜ Agric Nat (accepted and in string).
  • Güneş E (2016a). [Drosophila in Food and Nutrition Studies]. KSÜ Agric Nat 19(3): 236-243.(Article in Turkish)
  • Güneş E (2016b). [The Effect of Quinoa (Chenopodium quinoa Willd.) on the Total Oxidative Stress Drosophila melanogaster Meigen (Diptera: Drosophilidae) ]. KSÜ Agric Nat 19(3): 261-267. (Article in Turkish)
  • Güneş E and Biçer Bayram Ş (2019). Kabak Çekirdeği Zarının In Vivo Kullanımı. Ganud International Conference On Gastronomy, Nutrition And Dietetics, 303-310, Gaziantep/Turkey.
  • Güneysu S (2020).[Change of Domestic Food Waste and Packages in COVID-19 Process in Istanbul]. National Environ Sci Res J 3 (4): 175-180. (Article in Turkish)
  • Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249 (22): 7130-7139.
  • Hazır C, Bora G, Yurter HE (2021). [Drosophila melanogaster Model in Neurodegenerative Disease Research]. UUJFE 46 (2): 237-245. (Article in Turkish)
  • Heinrichsen ET, Zhang H, Robinson JE, Ngo J, Diop S, Bodmer R, Joiner WJ, Metallo CM, Haddad GG (2014). Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol Metab 3 (1): 42-54.
  • Jain SK and Levine SN (1995). Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radic Biol Med 18(2): 337-341.
  • Jordens RG, Berry MD, Gillott C, Boulton AA (1999). Prolongation of life in an experimental model of aging in Drosophila melanogaster. Neurochem Res 24 (2): 227-233.
  • Koh T, Machino M, Murakami Y, Umemura N, Sakagami H (2013). Cytotoxicity of dental compounds towards human oral squamous cell carcinoma and normal oral cells. In Vivo 27 (1): 85-95.
  • Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, Hffrench-Constant R, Feyereisen R (2006). Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36(8): 674-682.
  • Liu H, He J, Zhao R, Chi C, Bao Y (2015). A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus. Ecotoxicol Environ Saf 118: 47-54.
  • Llana-Ruiz-Cabello M, Gutiérrez-Praen D, Puerto M, Pichardo S, Jos Á, Cameán AM (2015). In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol ın Vitro 29(4): 647-656.
  • Lorizola IM, Furlan CP, Portovedo M, Milanski M, Botelho PB, Bezerra R, Capitani CD (2018). Beet stalks and leaves (Beta vulgaris L.) protect against high-fat diet-induced oxidative damage in the liver in mice. Nutrients 10(7): 872.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  • Lüersen K, Röder T, Rimbach G (2019). Drosophila melanogaster in nutrition research—the importance of standardizing experimental diets. Genes Nutr 14(1), 1-5.
  • Maduagwuna CA, Omale S, Etuh MA, Gyang SS (2020). Antioxidant activity of nHexane extract of Caryota no seed using Drosophila melanogaster model. J Advan Biol Biotechnol 39-47.
  • Majid AK, Ahmed Z, Khan R (2020). Effect of pumpkin seed oil on cholesterol fractions and systolic/diastolic blood pressure. Food Sci Technol (AHEAD), 40(3): 769-777.
  • Matthews BJ, Vosshall LB, Dickinson MH, Dow JA (2020). How to turn an organism into a model organism in 10 ‘easy’steps. J Exp Biol 223(Suppl_1).
  • Missirlis F. Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, Phillips JK, Jäckle H (2003). A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. J Biol Chem 384(3): 463-472.
  • Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, Ho WY, Sharifuddin SA, Long K, Alitheen NB (2020). Pineapple Vinegar Regulates Obesity-Related Genes and Alters the Gut Microbiota in High-Fat Diet (HFD) C57BL/6 Obese Mice. Evid Based Compl Altern Med1257962: 1-13.
  • Nainu F, Rahmatika D, Emran TB, Harapan H (2020). Potential Application of Drosophila melanogaster as a Model Organism in COVID-19-Related Research. Front Pharmacol 11: 1415.
  • Nkosi CZ, Opoku AR, Terblanche SE (2006). Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4‐Induced liver injury in low‐protein fed rats. PUBDB 20(11): 935-940.
  • Özgün E, Özgün GS, Eskiocak S, Yalçın Ö, Gökmen SS (2013). Effect of L-carnitine on serum paraoxonase, arylesterase and lactonase activities and oxidative status in experimental colitis. Turk J Biochem 38(2):145-153.
  • Perez Gutierrez RM (2016). Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med Chem 6(1): 012-021.
  • Piccoli BC, Segatto ALA, Oliveira CS, da Silva FDA, Aschner M, Da Roch JBT (2019). Simultaneous exposure to vinylcyclohexene and methylmercury in Drosophila melanogaster: biochemical and molecular analyses. BMC Pharmacol Toxicol 20(1): 1-17.
  • Poças GM, Crosbie AE, Mirth CK (2020). When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J Insect Physiol 104051.
  • Qiu S, Wang S, Xiao C, Ge S (2019). Assessment of microalgae as a new feeding additive for fruit fly Drosophila melanogaster. Sci Total Environ 667: 455-463. Sağlam Ö and Soylu Y (2019) [Investigation of the relationship between childhood traumas and adult obesity due to child rearing styles]. Turk J Social Work 3(2): 136-150.(Article in Turkish)
  • Salama AA, Ismael NM, Bedewy M (2020). The Anti-inflammatory and Antiatherogenic In Vivo Effects of Pomegranate Peel Powder: From Waste to Medicinal Food. J Med Food 24(2): 145-150.
  • Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A (2005). Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline Comet assay. Mutagenesis 20(4): 285-290.
  • Sisodia S and Singh BN (2012). Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae. PloS one 7(10): e46131.
  • Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010). Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45(3): 243-251.
  • Syed QA, Akram M, Shukat R (2019). Nutritional and therapeutic importance of the pumpkin seeds. Biomedical Journal of Scientific & Technical Research, 21(2), 15798-15803.
  • Töke LB and Ergülen A (2020). [Approaches to Solve the Waste Problem Caused by Globalization]. Çukurova Üniversitesi İBBF Derg 24(2): 201-215.(Article in Turkish)
  • Unckless RL, Rottschaefer SM, Lazzaro BP (2015). The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet 11(3): 1-26.
  • Uysal H and Çelik H (2021). [Determination of ın vivo chronic effects of astaxanthin in different strains of drosophila melanogaster]. GUFBED 11(1): 135-146. (Article in Turkish)
  • Valdez-Arjona LP and Ramírez-Mella M (2019). Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals 9(10): 769.
  • Vorojeikina D, Broberg K, Love TM, Davidson PW, van Wijngaarden E, Rand MD (2017). Editor's highlight: glutathione S-transferase activity moderates methylmercury toxicity during development in Drosophila. Toxicol Sci 157(1): 211-221.
  • Wohlenberg VC and Lopes-da-Silva M (2009). Effect of Chenopodium ambrosioides L.(Chenopodiaceae) aqueous extract on reproduction and life span of Drosophila melanogaster (Meigen)(Diptera: Drosophilidae). Bioscience 25(6): 129-132.
  • Yeşilada E and Gelegen L (2000). The Effect of Cadmium Nitrate on the Longevity of Drosophila Melanogaster. Turk J Biol 24(3): 593-600.
  • Zhang J, Liu X, Pan J, Zhao Q, Li Y, Gao W, Zhang Z (2020). Anti-aging effect of brown black wolfberry on Drosophila melanogaster and D-galactose-induced aging mice. J Funct Foods 65: 103724.

Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet

Yıl 2021, Cilt 47, Sayı 2, 168 - 180, 30.10.2021
https://doi.org/10.35238/sufefd.957837

Öz

The pumpkin seed membrane (PSM), which is high in water retention in the study, was recycled as waste, intended to be used in terms of target-non-target creatures and to determine its effect on resistance formation. Nowadays, when fat intake is steadily increasing through nutrition, increased use of fat makes an individual vulnerable to stress. The study determined the effect of additional taken waste/nutrients on oxidative stress in obese individuals. The fatty diet and pumpkin seed effect were trialed in the model organism in the study. The amount of Malondialdehyde (MDA) and total oxidation (TOS) and total antioxidant effect (TAS) and glutathione-S-transferase (GST) activity in larvae, pupae, and adult of Drosophila melanogaster were calculated by adding different proportions of PSM (0.05-2 g) and fat (20%) to the diet. According to the data obtained: It was determined that the period with the highest oxidative stress index (OSI) is the pupae (pupae> larvae> female> male), the amount of lipid peroxidation (MDA) is higher in females, moreover, the third larvae is the most resistant stage. The results have shown that waste of seed mambrane can't be useful in vivo as a nutrient due to usage limitation.

Kaynakça

  • Alshehry GA (2020). Preparation And Nutritional Properties Of Cookies From The Partial Replacement Of Wheat Flour Using Pumpkin Seeds Powder. WJEB 9(2): 48-56.
  • Alzoubi KH, Hasan ZA, Khabour OF, Mayyas FA, Al Yacoub ON, Banihani SA,Azab MA, Alrabadi N (2018a). The effect of high-fat diet on seizure threshold in rats: role of oxidative stress. Physiol behav 96: 1-7.
  • Alzoubi KH, Mayyas FA, Mahafzah R, Khabour OF (2018b). Melatonin prevents memory impairment induced by high-fat diet: role of oxidative stress. Behav Brain Res 336: 93-98.
  • Bendor CD, Bardugo A, Pinhas-Hamiel O, Afek A, Twig G (2020). Cardiovascular morbidity, diabetes and cancer risk among children and adolescents with severe obesity. Cardiovas Diabetol 19 (1): 1-14.
  • Blüher M (2020). Metabolically healthy obesity. Endocr Rev 41 (3): 405-420.
  • Bocharova OV and Teplyakova ED (2020). Children and adolescents’ obesity is the 21st century health problem. Kazan Med Journal 101 (3): 381-388.
  • Chen L, Liu L, Li C, Hu C, Su F, Liu R, Zeng M, Zhao D, Liu J, Guo Y, Long J (2017). A mix of apple pomace polysaccharide improves mitochondrial function and reduces oxidative stress in the liver of high‐fat diet‐induced obese mice. Mol Nutr Food Res 61 (3): 1600433.
  • Chung AP, Gurtu S, Chakravarthi S, Moorthy M, Palanisamy UD (2018). Geraniin protects high-fat diet-induced oxidative stress in Sprague Dawley rats. Front Nutr 5: 17.
  • Cormier RJ, Strang R, Menail H, Touaibia M, Pichaud N (2021). Systemic and mitochondrial effects of metabolic inflexibility induced by high fat diet in Drosophila melanogaster. Insect Biochem Mol Biol 103556.
  • Çankaya N and Muciz Ö (2017). A new functional additive obtaıned by using jet pulse fılters: pumpkin seed membrane. International Congress on Medicinal and Aromatic Plants (Tabkon), 343, Konya/Turkey.
  • Çolak DA and Uysal H (2018). Evaluation of the Lifespan of Fruit Fly Drosophila melanogaster Exposed to Dioxins. Agric Nat 21(5): 715.
  • De Moed GH, Kruitwagen CLJJ, De Jong G, Scharloo W (1999). Critical weight for the induction of pupariation in Drosophila melanogaster: genetic and environmental variation. J Evol Biol 12 (5): 852-858.
  • Durusoy M, Diril N, Bozcuk AN (1995). Age-related activity of glutathione S-transferase in three different genotypes of Drosophila melanogaster. Turkish J Biol 19: 337-342.
  • Erel O (2005). A new automated colorimetric method for measuring total oxidant status. Clin Biochem 38(12): 1103-1111.
  • Etuh MA, Aguiyi JC, Ochala SO, Simeon O, Oyeniran OI, Oshibanjo OD, Pam D (2019). The In vivo antioxidant protective activity of Mangifera indica cold aqueous leaf extract in Drosophila melanogaster. J Adv Biol Biotechnol 22(2): 1-7.
  • Filimonau V, Nghiem VN, Wang LE (2021). Food waste management in ethnic food restaurants. Int J Hosp Manag 92: 102731.
  • Fışkın K and Asma D (1996). Drosophila melanogaster Oregon (OR), yabanıl tipi (wt) ve vestigial (vg) mutantının ömür uzunluklarının karşılaştırılması. Antioksidatif enzimlerin ve ACE vitamin kompleksinin yaşlanma ile ilişkisi. Turkish J Biol 20: 99-110.
  • Genç C and Köse B (2019). [Obesity and Impulsivity]. Başkent University Faculty of Health Sci J 4(2): 95-104. (Article in Turkish)
  • Guan XL, Wu PF, Wang S, Zhang JJ, Shen ZC, Luo H, Chen H, Long LH, Chen JG, Wang F (2017). Dimethyl sulfide protects against oxidative stress and extends lifespan via a methionine sulfoxide reductase A‐dependent catalytic mechanism. Aging Cell 16(2): 226-236.
  • Güneş E and Buyukguzel E (2017). Oxidative effects of boric acid on different developmental stages of Drosophila melanogaster Meigen, 1830 (Diptera: Drosophilidae). Turk Entomol Derg 41(1): 3-15.
  • Güneş E (2020). Extended Longevity of Drosophila melanogaster by Natural Waste Citrullus lanatus Seed. IJEPEM 3(4): 144-146.
  • Güneş E (2021). Antioxidant effects of ankaferd blood stopper doped polyvinyl pyrolidon in an experimental model created in insect. Food Chem Toxicol148: 111935.
  • Güneş Eand Biçer Bayram Ş (2021). Determining the Effect of Pumpkin Seed Membrane on Survival, Development Longevity in Animal Model. KSÜ Agric Nat (accepted and in string).
  • Güneş E (2016a). [Drosophila in Food and Nutrition Studies]. KSÜ Agric Nat 19(3): 236-243.(Article in Turkish)
  • Güneş E (2016b). [The Effect of Quinoa (Chenopodium quinoa Willd.) on the Total Oxidative Stress Drosophila melanogaster Meigen (Diptera: Drosophilidae) ]. KSÜ Agric Nat 19(3): 261-267. (Article in Turkish)
  • Güneş E and Biçer Bayram Ş (2019). Kabak Çekirdeği Zarının In Vivo Kullanımı. Ganud International Conference On Gastronomy, Nutrition And Dietetics, 303-310, Gaziantep/Turkey.
  • Güneysu S (2020).[Change of Domestic Food Waste and Packages in COVID-19 Process in Istanbul]. National Environ Sci Res J 3 (4): 175-180. (Article in Turkish)
  • Habig WH, Pabst MJ, Jakoby WB (1974). Glutathione S-transferases: the first enzymatic step in mercapturic acid formation. J Biol Chem 249 (22): 7130-7139.
  • Hazır C, Bora G, Yurter HE (2021). [Drosophila melanogaster Model in Neurodegenerative Disease Research]. UUJFE 46 (2): 237-245. (Article in Turkish)
  • Heinrichsen ET, Zhang H, Robinson JE, Ngo J, Diop S, Bodmer R, Joiner WJ, Metallo CM, Haddad GG (2014). Metabolic and transcriptional response to a high-fat diet in Drosophila melanogaster. Mol Metab 3 (1): 42-54.
  • Jain SK and Levine SN (1995). Elevated lipid peroxidation and vitamin E-quinone levels in heart ventricles of streptozotocin-treated diabetic rats. Free Radic Biol Med 18(2): 337-341.
  • Jordens RG, Berry MD, Gillott C, Boulton AA (1999). Prolongation of life in an experimental model of aging in Drosophila melanogaster. Neurochem Res 24 (2): 227-233.
  • Koh T, Machino M, Murakami Y, Umemura N, Sakagami H (2013). Cytotoxicity of dental compounds towards human oral squamous cell carcinoma and normal oral cells. In Vivo 27 (1): 85-95.
  • Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, Sofer L, Audant P, Hffrench-Constant R, Feyereisen R (2006). Xenobiotic response in Drosophila melanogaster: sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36(8): 674-682.
  • Liu H, He J, Zhao R, Chi C, Bao Y (2015). A novel biomarker for marine environmental pollution of pi-class glutathione S-transferase from Mytilus coruscus. Ecotoxicol Environ Saf 118: 47-54.
  • Llana-Ruiz-Cabello M, Gutiérrez-Praen D, Puerto M, Pichardo S, Jos Á, Cameán AM (2015). In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol ın Vitro 29(4): 647-656.
  • Lorizola IM, Furlan CP, Portovedo M, Milanski M, Botelho PB, Bezerra R, Capitani CD (2018). Beet stalks and leaves (Beta vulgaris L.) protect against high-fat diet-induced oxidative damage in the liver in mice. Nutrients 10(7): 872.
  • Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951). Protein measurement with the Folin phenol reagent. J Biol Chem 193: 265-275.
  • Lüersen K, Röder T, Rimbach G (2019). Drosophila melanogaster in nutrition research—the importance of standardizing experimental diets. Genes Nutr 14(1), 1-5.
  • Maduagwuna CA, Omale S, Etuh MA, Gyang SS (2020). Antioxidant activity of nHexane extract of Caryota no seed using Drosophila melanogaster model. J Advan Biol Biotechnol 39-47.
  • Majid AK, Ahmed Z, Khan R (2020). Effect of pumpkin seed oil on cholesterol fractions and systolic/diastolic blood pressure. Food Sci Technol (AHEAD), 40(3): 769-777.
  • Matthews BJ, Vosshall LB, Dickinson MH, Dow JA (2020). How to turn an organism into a model organism in 10 ‘easy’steps. J Exp Biol 223(Suppl_1).
  • Missirlis F. Rahlfs S, Dimopoulos N, Bauer H, Becker K, Hilliker A, Phillips JK, Jäckle H (2003). A putative glutathione peroxidase of Drosophila encodes a thioredoxin peroxidase that provides resistance against oxidative stress but fails to complement a lack of catalase activity. J Biol Chem 384(3): 463-472.
  • Mohamad NE, Yeap SK, Ky H, Liew NWC, Beh BK, Boo SY, Ho WY, Sharifuddin SA, Long K, Alitheen NB (2020). Pineapple Vinegar Regulates Obesity-Related Genes and Alters the Gut Microbiota in High-Fat Diet (HFD) C57BL/6 Obese Mice. Evid Based Compl Altern Med1257962: 1-13.
  • Nainu F, Rahmatika D, Emran TB, Harapan H (2020). Potential Application of Drosophila melanogaster as a Model Organism in COVID-19-Related Research. Front Pharmacol 11: 1415.
  • Nkosi CZ, Opoku AR, Terblanche SE (2006). Antioxidative effects of pumpkin seed (Cucurbita pepo) protein isolate in CCl4‐Induced liver injury in low‐protein fed rats. PUBDB 20(11): 935-940.
  • Özgün E, Özgün GS, Eskiocak S, Yalçın Ö, Gökmen SS (2013). Effect of L-carnitine on serum paraoxonase, arylesterase and lactonase activities and oxidative status in experimental colitis. Turk J Biochem 38(2):145-153.
  • Perez Gutierrez RM (2016). Review of Cucurbita pepo (pumpkin) its phytochemistry and pharmacology. Med Chem 6(1): 012-021.
  • Piccoli BC, Segatto ALA, Oliveira CS, da Silva FDA, Aschner M, Da Roch JBT (2019). Simultaneous exposure to vinylcyclohexene and methylmercury in Drosophila melanogaster: biochemical and molecular analyses. BMC Pharmacol Toxicol 20(1): 1-17.
  • Poças GM, Crosbie AE, Mirth CK (2020). When does diet matter? The roles of larval and adult nutrition in regulating adult size traits in Drosophila melanogaster. J Insect Physiol 104051.
  • Qiu S, Wang S, Xiao C, Ge S (2019). Assessment of microalgae as a new feeding additive for fruit fly Drosophila melanogaster. Sci Total Environ 667: 455-463. Sağlam Ö and Soylu Y (2019) [Investigation of the relationship between childhood traumas and adult obesity due to child rearing styles]. Turk J Social Work 3(2): 136-150.(Article in Turkish)
  • Salama AA, Ismael NM, Bedewy M (2020). The Anti-inflammatory and Antiatherogenic In Vivo Effects of Pomegranate Peel Powder: From Waste to Medicinal Food. J Med Food 24(2): 145-150.
  • Siddique HR, Chowdhuri DK, Saxena DK, Dhawan A (2005). Validation of Drosophila melanogaster as an in vivo model for genotoxicity assessment using modified alkaline Comet assay. Mutagenesis 20(4): 285-290.
  • Sisodia S and Singh BN (2012). Experimental evidence for nutrition regulated stress resistance in Drosophila ananassae. PloS one 7(10): e46131.
  • Sun X, Seeberger J, Alberico T, Wang C, Wheeler CT, Schauss AG, Zou S (2010). Açai palm fruit (Euterpe oleracea Mart.) pulp improves survival of flies on a high fat diet. Exp Gerontol 45(3): 243-251.
  • Syed QA, Akram M, Shukat R (2019). Nutritional and therapeutic importance of the pumpkin seeds. Biomedical Journal of Scientific & Technical Research, 21(2), 15798-15803.
  • Töke LB and Ergülen A (2020). [Approaches to Solve the Waste Problem Caused by Globalization]. Çukurova Üniversitesi İBBF Derg 24(2): 201-215.(Article in Turkish)
  • Unckless RL, Rottschaefer SM, Lazzaro BP (2015). The complex contributions of genetics and nutrition to immunity in Drosophila melanogaster. PLoS Genet 11(3): 1-26.
  • Uysal H and Çelik H (2021). [Determination of ın vivo chronic effects of astaxanthin in different strains of drosophila melanogaster]. GUFBED 11(1): 135-146. (Article in Turkish)
  • Valdez-Arjona LP and Ramírez-Mella M (2019). Pumpkin waste as livestock feed: Impact on nutrition and animal health and on quality of meat, milk, and egg. Animals 9(10): 769.
  • Vorojeikina D, Broberg K, Love TM, Davidson PW, van Wijngaarden E, Rand MD (2017). Editor's highlight: glutathione S-transferase activity moderates methylmercury toxicity during development in Drosophila. Toxicol Sci 157(1): 211-221.
  • Wohlenberg VC and Lopes-da-Silva M (2009). Effect of Chenopodium ambrosioides L.(Chenopodiaceae) aqueous extract on reproduction and life span of Drosophila melanogaster (Meigen)(Diptera: Drosophilidae). Bioscience 25(6): 129-132.
  • Yeşilada E and Gelegen L (2000). The Effect of Cadmium Nitrate on the Longevity of Drosophila Melanogaster. Turk J Biol 24(3): 593-600.
  • Zhang J, Liu X, Pan J, Zhao Q, Li Y, Gao W, Zhang Z (2020). Anti-aging effect of brown black wolfberry on Drosophila melanogaster and D-galactose-induced aging mice. J Funct Foods 65: 103724.

Ayrıntılar

Birincil Dil İngilizce
Konular Biyoloji
Bölüm Araştırma Makaleleri
Yazarlar

Eda GÜNEŞ (Sorumlu Yazar)
Necmettin Erbakan Üniversitesi
0000-0001-7422-9375
Türkiye


Şerife BİÇER BAYRAM
NECMETTIN ERBAKAN UNIVERSITY
0000-0002-5199-4100
Türkiye

Destekleyen Kurum -
Proje Numarası -
Teşekkür -
Yayımlanma Tarihi 30 Ekim 2021
Yayınlandığı Sayı Yıl 2021, Cilt 47, Sayı 2

Kaynak Göster

Bibtex @araştırma makalesi { sufefd957837, journal = {Selçuk Üniversitesi Fen Fakültesi Fen Dergisi}, issn = {}, eissn = {2458-9411}, address = {Selçuk Üniversitesi Fen Fakültesi Biyoloji Bölümü 3. Kat No: 324, Selçuklu, 42250, KONYA}, publisher = {Selçuk Üniversitesi}, year = {2021}, volume = {47}, pages = {168 - 180}, doi = {10.35238/sufefd.957837}, title = {Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet}, key = {cite}, author = {Güneş, Eda and Biçer Bayram, Şerife} }
APA Güneş, E. & Biçer Bayram, Ş. (2021). Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet . Selçuk Üniversitesi Fen Fakültesi Fen Dergisi , 47 (2) , 168-180 . DOI: 10.35238/sufefd.957837
MLA Güneş, E. , Biçer Bayram, Ş. "Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet" . Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47 (2021 ): 168-180 <https://dergipark.org.tr/tr/pub/sufefd/issue/65581/957837>
Chicago Güneş, E. , Biçer Bayram, Ş. "Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet". Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47 (2021 ): 168-180
RIS TY - JOUR T1 - Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet AU - Eda Güneş , Şerife Biçer Bayram Y1 - 2021 PY - 2021 N1 - doi: 10.35238/sufefd.957837 DO - 10.35238/sufefd.957837 T2 - Selçuk Üniversitesi Fen Fakültesi Fen Dergisi JF - Journal JO - JOR SP - 168 EP - 180 VL - 47 IS - 2 SN - -2458-9411 M3 - doi: 10.35238/sufefd.957837 UR - https://doi.org/10.35238/sufefd.957837 Y2 - 2021 ER -
EndNote %0 Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet %A Eda Güneş , Şerife Biçer Bayram %T Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet %D 2021 %J Selçuk Üniversitesi Fen Fakültesi Fen Dergisi %P -2458-9411 %V 47 %N 2 %R doi: 10.35238/sufefd.957837 %U 10.35238/sufefd.957837
ISNAD Güneş, Eda , Biçer Bayram, Şerife . "Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet". Selçuk Üniversitesi Fen Fakültesi Fen Dergisi 47 / 2 (Ekim 2021): 168-180 . https://doi.org/10.35238/sufefd.957837
AMA Güneş E. , Biçer Bayram Ş. Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet. sufefd. 2021; 47(2): 168-180.
Vancouver Güneş E. , Biçer Bayram Ş. Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet. Selçuk Üniversitesi Fen Fakültesi Fen Dergisi. 2021; 47(2): 168-180.
IEEE E. Güneş ve Ş. Biçer Bayram , "Evaluation of the Pumpkin Seed Membrane as a Nutrient in the Fruit Fly Model, Fed With High Fat Diet", Selçuk Üniversitesi Fen Fakültesi Fen Dergisi, c. 47, sayı. 2, ss. 168-180, Eki. 2021, doi:10.35238/sufefd.957837


Selçuk Üniversitesi Fen Fakültesi Adına Dekan Prof. Dr. Semahat KÜÇÜKKOLBAŞI
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi temel bilimlerde ve diğer uygulamalı bilimlerde özgün sonuçları olan Türkçe ve İngilizce makaleleri kabul eder. Dergide ayrıca güncel yenilikleri içeren derlemelere de yer verilebilir.
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi;
İlk olarak 1981 yılında S.Ü. Fen-Edebiyat Fakültesi Dergisi olarak yayın hayatına başlamış; 1984 yılına kadar (Sayı 1-4) bu adla yayınlanmıştır.
1984 yılında S.Ü. Fen-Edeb. Fak. Fen Dergisi olarak adı değiştirilmiş 5. sayıdan itibaren bu isimle yayınlanmıştır.
3 Aralık 2008 tarih ve 27073 sayılı Resmi Gazetede yayımlanan 2008/4344 sayılı Bakanlar Kurulu Kararı ile Fen-Edebiyat Fakültesi; Fen Fakültesi ve Edebiyat Fakültesi olarak ayrılınca 2009 yılından itibaren dergi Fen Fakültesi Fen Dergisi olarak çıkmıştır.


Creative Commons Lisansı
Selçuk Üniversitesi Fen Fakültesi Fen Dergisi Creative Commons Atıf 4.0 Uluslararası Lisansı ile lisanslanmıştır.