Araştırma Makalesi
BibTex RIS Kaynak Göster

A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS

Yıl 2019, Cilt: 7 Sayı: 2, 405 - 419, 01.06.2019
https://doi.org/10.15317/Scitech.2019.208

Öz

Many real-world problems can be formulated as an optimization problem and
they have some constraints generally. To overcome these constraints, bio-inspired
algorithms are adapted to constrained optimization using constraint handling
methods and some modifications. In this study, a new approach is developed to
solve constrained optimization problems with elephant herding optimization
algorithm which is a newly-emerging optimization technique. Besides the basic
EHO, two EHO variants (EHO-NoB and GL-EHO) are adapted to constrained
optimization with this approach. The well-known thirteen constrained benchmark
functions are used to analysis the performances of algorithms. Experimental
results show that the GL-EHO has a better performance than the basic EHO and
other algorithms. In addition, the results of GL-EHO are comparable level with
the result of another EHO variant in the literature.

Kaynakça

  • Alihodzic, A., Tuba, E., Capor-Hrosik, R., Dolicanin, E., Tuba, M., 2017, "Unmanned Aerial Vehicle Path Planning Problem by Adjusted Elephant Herding Optimization", 2017 25th Telecommunication Forum (Telfor), 804-807.
  • Asafuddoula, M., Ray, T., Sarker, R., 2014, "An adaptive hybrid differential evolution algorithm for single objective optimization", Applied Mathematics and Computation, 231, 601-618. doi:10.1016/j.amc.2014.01.041
  • Babalik, A., Cinar, A. C., Kiran, M. S., 2018, "A modification of tree-seed algorithm using Deb's rules for constrained optimization", Applied Soft Computing, 63, 289-305. doi:10.1016/j.asoc.2017.10.013
  • Deb, K., 2000, "An efficient constraint handling method for genetic algorithms", Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311-338. doi:Doi 10.1016/S0045-7825(99)00389-8
  • Farnad, B., Jafarian, A., Baleanu, D., 2018, "A new hybrid algorithm for continuous optimization problem", Applied Mathematical Modelling, 55, 652-673. doi:10.1016/j.apm.2017.10.001
  • Garg, H., 2016, "A hybrid PSO-GA algorithm for constrained optimization problems", Applied Mathematics and Computation, 274, 292-305. doi:10.1016/j.amc.2015.11.001
  • Hakli, H., "An improved elephant herding optimization by balancing local and global search for continuous optimization", 15th International Conference on Informatics and Information Technologies, CIIT 2018, Mavrovo, Macedonia. In Press. 2018.
  • Hakli, H., Uguz, H., 2017, "A novel approach for automated land partitioning using genetic algorithm", Expert Systems with Applications, 82, 10-18. doi:10.1016/j.eswa.2017.03.067
  • Jiao, R. W., Zeng, S. Y., Alkasassbeh, J. S., Li, C. H., 2017, "Dynamic multi-objective evolutionary algorithms for single-objective optimization", Applied Soft Computing, 61, 793-805. doi:10.1016/j.asoc.2017.08.030
  • Karaboga, D., (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from Technical Report-TR06, Erciyes University, Engineering Faculty, Comput. Eng.Dep.:
  • Kennedy, J., Eberhart, R., "Particle swarm optimization", Sixth International Symposium on Micro Machine and Human Science, Nagoya,Japan. 39–43. 1995.
  • Kiran, M. S., 2015, "TSA: Tree-seed algorithm for continuous optimization", Expert Systems with Applications, 42(19), 6686-6698. doi:10.1016/j.eswa.2015.04.055
  • Kohli, M., Arora, S., 2017, "Chaotic grey wolf optimization algorithm for constrained optimization problems", Journal of Computational Design and Engin eering, In Press. doi:10.1016/j.jcde.2017.02.005
  • Koziel, S., Michalewicz, Z., 1999, "Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization", Evolutionary Computation, 7(1), 19-44. doi:DOI 10.1162/evco.1999.7.1.19
  • Lin, C. H., 2013, "A rough penalty genetic algorithm for constrained optimization", Information Sciences, 241, 119-137. doi:10.1016/j.ins.2013.04.001
  • Luo, J. P., Yang, Y., Liu, Q. Q., Li, X., Chen, M. R., Gao, K. Z., 2018, "A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization", Information Sciences, 448, 164-186. doi:10.1016/j.ins.2018.03.012
  • Meena, N. K., Parashar, S., Swarnkar, A., Gupta, N., Niazi, K. R., 2018, "Improved Elephant Herding Optimization for Multiobjective DER Accommodation in Distribution Systems", Ieee Transactions on Industrial Informatics, 14(3), 1029-1039. doi:10.1109/Tii.2017.2748220
  • Mezura-Montes, E., Coello, C. A. C., 2011, "Constraint-handling in nature-inspired numerical optimization: Past, present and future", Swarm and Evolutionary Computation, 1(4), 173-194. doi:10.1016/j.swevo.2011.10.001
  • Niu, B., Wang, J. W., Wang, H., 2015, "Bacterial-inspired algorithms for solving constrained optimization problems", Neurocomputing, 148, 54-62. doi:10.1016/j.neucom.2012.07.064
  • Parashar, S., Swarnkar, A., Niazi, K. R., Gupta, N., 2017, "A Modified Elephant Herding Optimization For Economic Generation Co-Ordination Of DERs And BESS In Grid Connected Microgrid", Journal of Engineering-Joe.
  • Runarsson, T. P., Yao, X., 2000, "Stochastic ranking for constrained evolutionary optimization", Ieee Transactions on Evolutionary Computation, 4(3), 284-294. doi:Doi 10.1109/4235.873238
  • Sambariya, D. K., Fagna, R., 2017, "A novel Elephant Herding Optimization based PID controller design for Load Frequency Control in Power System", 2017 International Conference on Computer, Communications and Electronics (Comptelix), 595-600.
  • Sharma, A., Kumar, R., Panigrahi, B. K., Das, S., 2017, "Termite spatial correlation based particle swarm optimization for unconstrained optimization", Swarm and Evolutionary Computation, 33, 93-107. doi:10.1016/j.swevo.2016.11.001
  • Strumberger, I., Bacanin, N., Tomic, S., Beko, M., Tuba, M., 2017, "Static Drone Placement by Elephant Herding Optimization Algorithm", 2017 25th Telecommunication Forum (Telfor), 808-811.
  • Strumberger, I., Bacanin, N., Tuba, M., "Hybridized Elephant Herding Optimization Algorithm for Constrained Optimization", Cham. 158-166. 2018.
  • Tuba, E., Alihodzic, A., Tuba, M., 2017, "Multilevel Image Thresholding Using Elephant Herding Optimization Algorithm", 2017 14th International Conference on Engineering of Modern Electric Systems (Emes), 240-243.
  • Wang, B.-C., Li, H.-X., Feng, Y., 2018, "An improved teaching-learning-based optimization for constrained evolutionary optimization", Information Sciences, 456, 131–144. Wang, G. G., Deb, S., Coelho, L. D., 2015, "Elephant Herding Optimization", 2015 3rd International Symposium on Computational and Business Intelligence (Iscbi 2015), 1-5. doi:10.1109/Iscbi.2015.8
  • Xu, B., Chen, X., Tao, L. L., 2018, "Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization", Information Sciences, 435, 240-262. doi:10.1016/j.ins.2018.01.014

Kısıtlı Optimizasyon Problemleri için Fil Sürüsü Optimizasyonu Tabanlı Yeni Bir Yaklaşım

Yıl 2019, Cilt: 7 Sayı: 2, 405 - 419, 01.06.2019
https://doi.org/10.15317/Scitech.2019.208

Öz

Birçok gerçek dünya problemi bir optimizasyon problemi olarak formüle
edilebilir ve genel olarak bazı kısıtlamalara sahiptirler. Bu kısıtlamaların
üstesinden gelmek için, kısıtlama yöntemleri ve bazı modifikasyonlar kullanarak
doğa esinli algoritmalar kısıtlı optimizasyona uyarlanmıştır. Bu çalışmada,
yeni ortaya çıkan bir optimizasyon tekniği olan fil sürü optimizasyonu
algoritması ile kısıtlı optimizasyon problemlerini çözmek için yeni bir
yaklaşım geliştirilmiştir. Temel EHO'nun yanı sıra, iki EHO varyantı (EHO-NoB
ve GL-EHO) bu yaklaşımla kısıtlı optimizasyona uyarlanmıştır. İyi bilinen on üç
kısıtlı test fonksiyonu, algoritmaların performanslarını analiz etmek için
kullanılmıştır. Deneysel sonuçlar, GL-EHO'nun temel EHO ve diğer
algoritmalardan daha iyi bir performansa sahip olduğunu göstermektedir. Ayrıca,
GL-EHO sonuçları literatürdeki başka bir EHO varyantının sonucuyla
karşılaştırılabilir düzeydedir.

Kaynakça

  • Alihodzic, A., Tuba, E., Capor-Hrosik, R., Dolicanin, E., Tuba, M., 2017, "Unmanned Aerial Vehicle Path Planning Problem by Adjusted Elephant Herding Optimization", 2017 25th Telecommunication Forum (Telfor), 804-807.
  • Asafuddoula, M., Ray, T., Sarker, R., 2014, "An adaptive hybrid differential evolution algorithm for single objective optimization", Applied Mathematics and Computation, 231, 601-618. doi:10.1016/j.amc.2014.01.041
  • Babalik, A., Cinar, A. C., Kiran, M. S., 2018, "A modification of tree-seed algorithm using Deb's rules for constrained optimization", Applied Soft Computing, 63, 289-305. doi:10.1016/j.asoc.2017.10.013
  • Deb, K., 2000, "An efficient constraint handling method for genetic algorithms", Computer Methods in Applied Mechanics and Engineering, 186(2-4), 311-338. doi:Doi 10.1016/S0045-7825(99)00389-8
  • Farnad, B., Jafarian, A., Baleanu, D., 2018, "A new hybrid algorithm for continuous optimization problem", Applied Mathematical Modelling, 55, 652-673. doi:10.1016/j.apm.2017.10.001
  • Garg, H., 2016, "A hybrid PSO-GA algorithm for constrained optimization problems", Applied Mathematics and Computation, 274, 292-305. doi:10.1016/j.amc.2015.11.001
  • Hakli, H., "An improved elephant herding optimization by balancing local and global search for continuous optimization", 15th International Conference on Informatics and Information Technologies, CIIT 2018, Mavrovo, Macedonia. In Press. 2018.
  • Hakli, H., Uguz, H., 2017, "A novel approach for automated land partitioning using genetic algorithm", Expert Systems with Applications, 82, 10-18. doi:10.1016/j.eswa.2017.03.067
  • Jiao, R. W., Zeng, S. Y., Alkasassbeh, J. S., Li, C. H., 2017, "Dynamic multi-objective evolutionary algorithms for single-objective optimization", Applied Soft Computing, 61, 793-805. doi:10.1016/j.asoc.2017.08.030
  • Karaboga, D., (2005). An idea based on honey bee swarm for numerical optimization. Retrieved from Technical Report-TR06, Erciyes University, Engineering Faculty, Comput. Eng.Dep.:
  • Kennedy, J., Eberhart, R., "Particle swarm optimization", Sixth International Symposium on Micro Machine and Human Science, Nagoya,Japan. 39–43. 1995.
  • Kiran, M. S., 2015, "TSA: Tree-seed algorithm for continuous optimization", Expert Systems with Applications, 42(19), 6686-6698. doi:10.1016/j.eswa.2015.04.055
  • Kohli, M., Arora, S., 2017, "Chaotic grey wolf optimization algorithm for constrained optimization problems", Journal of Computational Design and Engin eering, In Press. doi:10.1016/j.jcde.2017.02.005
  • Koziel, S., Michalewicz, Z., 1999, "Evolutionary Algorithms, Homomorphous Mappings, and Constrained Parameter Optimization", Evolutionary Computation, 7(1), 19-44. doi:DOI 10.1162/evco.1999.7.1.19
  • Lin, C. H., 2013, "A rough penalty genetic algorithm for constrained optimization", Information Sciences, 241, 119-137. doi:10.1016/j.ins.2013.04.001
  • Luo, J. P., Yang, Y., Liu, Q. Q., Li, X., Chen, M. R., Gao, K. Z., 2018, "A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization", Information Sciences, 448, 164-186. doi:10.1016/j.ins.2018.03.012
  • Meena, N. K., Parashar, S., Swarnkar, A., Gupta, N., Niazi, K. R., 2018, "Improved Elephant Herding Optimization for Multiobjective DER Accommodation in Distribution Systems", Ieee Transactions on Industrial Informatics, 14(3), 1029-1039. doi:10.1109/Tii.2017.2748220
  • Mezura-Montes, E., Coello, C. A. C., 2011, "Constraint-handling in nature-inspired numerical optimization: Past, present and future", Swarm and Evolutionary Computation, 1(4), 173-194. doi:10.1016/j.swevo.2011.10.001
  • Niu, B., Wang, J. W., Wang, H., 2015, "Bacterial-inspired algorithms for solving constrained optimization problems", Neurocomputing, 148, 54-62. doi:10.1016/j.neucom.2012.07.064
  • Parashar, S., Swarnkar, A., Niazi, K. R., Gupta, N., 2017, "A Modified Elephant Herding Optimization For Economic Generation Co-Ordination Of DERs And BESS In Grid Connected Microgrid", Journal of Engineering-Joe.
  • Runarsson, T. P., Yao, X., 2000, "Stochastic ranking for constrained evolutionary optimization", Ieee Transactions on Evolutionary Computation, 4(3), 284-294. doi:Doi 10.1109/4235.873238
  • Sambariya, D. K., Fagna, R., 2017, "A novel Elephant Herding Optimization based PID controller design for Load Frequency Control in Power System", 2017 International Conference on Computer, Communications and Electronics (Comptelix), 595-600.
  • Sharma, A., Kumar, R., Panigrahi, B. K., Das, S., 2017, "Termite spatial correlation based particle swarm optimization for unconstrained optimization", Swarm and Evolutionary Computation, 33, 93-107. doi:10.1016/j.swevo.2016.11.001
  • Strumberger, I., Bacanin, N., Tomic, S., Beko, M., Tuba, M., 2017, "Static Drone Placement by Elephant Herding Optimization Algorithm", 2017 25th Telecommunication Forum (Telfor), 808-811.
  • Strumberger, I., Bacanin, N., Tuba, M., "Hybridized Elephant Herding Optimization Algorithm for Constrained Optimization", Cham. 158-166. 2018.
  • Tuba, E., Alihodzic, A., Tuba, M., 2017, "Multilevel Image Thresholding Using Elephant Herding Optimization Algorithm", 2017 14th International Conference on Engineering of Modern Electric Systems (Emes), 240-243.
  • Wang, B.-C., Li, H.-X., Feng, Y., 2018, "An improved teaching-learning-based optimization for constrained evolutionary optimization", Information Sciences, 456, 131–144. Wang, G. G., Deb, S., Coelho, L. D., 2015, "Elephant Herding Optimization", 2015 3rd International Symposium on Computational and Business Intelligence (Iscbi 2015), 1-5. doi:10.1109/Iscbi.2015.8
  • Xu, B., Chen, X., Tao, L. L., 2018, "Differential evolution with adaptive trial vector generation strategy and cluster-replacement-based feasibility rule for constrained optimization", Information Sciences, 435, 240-262. doi:10.1016/j.ins.2018.01.014
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Hüseyin Haklı Bu kişi benim

Yayımlanma Tarihi 1 Haziran 2019
Yayımlandığı Sayı Yıl 2019 Cilt: 7 Sayı: 2

Kaynak Göster

APA Haklı, H. (2019). A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, 7(2), 405-419. https://doi.org/10.15317/Scitech.2019.208
AMA Haklı H. A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS. sujest. Haziran 2019;7(2):405-419. doi:10.15317/Scitech.2019.208
Chicago Haklı, Hüseyin. “A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7, sy. 2 (Haziran 2019): 405-19. https://doi.org/10.15317/Scitech.2019.208.
EndNote Haklı H (01 Haziran 2019) A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7 2 405–419.
IEEE H. Haklı, “A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS”, sujest, c. 7, sy. 2, ss. 405–419, 2019, doi: 10.15317/Scitech.2019.208.
ISNAD Haklı, Hüseyin. “A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi 7/2 (Haziran 2019), 405-419. https://doi.org/10.15317/Scitech.2019.208.
JAMA Haklı H. A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS. sujest. 2019;7:405–419.
MLA Haklı, Hüseyin. “A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS”. Selçuk Üniversitesi Mühendislik, Bilim Ve Teknoloji Dergisi, c. 7, sy. 2, 2019, ss. 405-19, doi:10.15317/Scitech.2019.208.
Vancouver Haklı H. A NOVEL APPROACH BASED ON ELEPHANT HERDING OPTIMIZATION FOR CONSTRAINED OPTIMIZATION PROBLEMS. sujest. 2019;7(2):405-19.

MAKALELERINIZI 

http://sujest.selcuk.edu.tr

uzerinden gonderiniz