Konferans Bildirisi
BibTex RIS Kaynak Göster

Investigation Of Effect Of Relative Density On The Liquefaction Potential Of Soils Of Saruhanlı (Manisa) Using Dynamic Triaxial Test

Yıl 2012, Cilt: 2 Sayı: 1, 26 - 41, 16.01.2012

Öz

This study includes the determination of the liquefaction potential of Manisa (Saruhanlı) region effect of relative density on liquefaction using seismic waves in field and dynamic triaxial test in laboratory. It was predicated that the Gediz Graben Fault Zone was a length of 150 km and to affect the region and approximately passed through in a distance of 33 km in the south of Saruhanlı District. In a probable earthquake effect, in case Gediz Graben was cracked 1/3 of the total length and it would produce as MW=7,1 and a max=0.28 g and the liquefaction analysis was performed and liquefaction map was prepared according to this approach. The samples were obtained from site according to the liquefaction hazard map and reconstituted basing on relative densities bounding to their own location relative densities in laboratory. They were subjected to stress-controlled cyclic loads sinusoidally according to the cyclic stress ratios obtained from site conditions conslidated to the stress which was exposed to the influence of geological overburden in-situ field stress. The tests were performed at the frequency of 0,5 Hz. In the end, under these conditions this sample was not liquefied and then in case, relative density rate reduced % 50 and redone the experiment, same sanple was liquefied. 

Kaynakça

  • Andrus, R.D., and Stokoe, K.H.,II, (2000). Liquefaction resistance of soils from sheare wave velocity.
  • Goeenvironmental Egineering ASCE, 126(11),1015- 1025. of Geotechnical
  • and [2] Bozkurt, E., 2000 Timing Of Extension on The B.Y.K Menderes Graben, Western Turkey, And İts Tectonic İmplications, In: Bozkurt, E., Winchester, J.A. And Piper, J.D.A. (Eds), Tectonics and Magmatism İn Turkey And The Surrounding Area. Geological Society, Special Publications 173, London, 385-403.
  • Bulut, İ., Sağlam, M., Bektaş, İ.A., Şahin, M.S., Demir, M., Uran, Ş., Üçkardeşler, C.,Güner, F., Araz, A.H., 2006 Saruhanlı (Manisa) Belediyesi Jeoteknik Etüt Gerektiren Alanların (Jega) İmar Planına Esas Jeolojik-Jeoteknik Etüt Raporu, İller Bankası Rapor No. ILB-I/45-039-004, Ankara, 1-53. [4] Casagrande,
  • cohesionless soils affecting the stability of slopes and earthfills”, Journal of The Boston Society of Civil Engineers, Reprinted İn Contributions To Soil Mechanics, Boston Society of Civil Engineers,1: 257- 276.
  • Castro, G., 1975 “Liquefacion and cyclic mobility of saturated sands”, Journal of The Geotechnical Engineering Division, ASCE, 101(GT6): 55-569.
  • Çiftçi, N.B., and Bozkurt, E., 2008 Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, Sedimentary Geology, 473(1-2): 234- 260. 1936
  • “Charecteristic of [7] Çiftçi, N.B., and Bozkurt, E., 2009 Evolution of the miocene sedimentary fill of the Gediz Graben, SW Turkey, Sedimentary Geology, 216(3-4): 49–79.
  • Internet: Geologismiki (2006) “LiqIT 4.7.3, Sıvılaşma Analizi Yazılımı” www.geologismiki.gr (2006).
  • Ishihara, K., 1985 “stability of natural deposits during earthquakes”, Proceedings of The 11th International Conferans on Soil Mechanics And Foundation Engineering, Sanfrancisco, 2: 321-376.
  • Iwasaki, T., K., Tokida, K., Tatsuoka, Watanabe, S., Yasuda, S., and Sato, H., 1982 Microzonation for soil liquefaction potential using simplified methods, Proceedings of the 13th International Conf. On microzonation, Seattle, USA vol. 3, 1319-1330.
  • Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y. and Chung, R. M., 1989 Pore-Water Pressure Buildup in Clean Sands Because of Cyclic Straining, Geotechnical Testing Journal, 12 (1): 77-86.
  • Liao, S. S. C. and Whitman, R. V. (1986). “Catalogue of Liquefaction and Non-liquefaction Occurrences during Earthquakes”, Research Report, Department of Civil Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • Kramer, S. L., 1996 ”Geotechnical earthquake engineering”, Prenticei-Hall, N. J., London: 45-448.
  • Mark, R. K., 1977 Application of Linear Statistical Model Of Earthquake Magnitude Versus Fault Length İn Estimating Maximum Expectable Earthquakes, Geology, 5: 464- 466.
  • Özaydın, K., 2007 Zeminlerde Sıvılaşma, Altıncı Ulusal Depem Mühendisliği Konferansı, İstanbul, 231-255, 16-20 Ekim.
  • Robertson, P.K., and Wride, C.E., 1998 Evaluating cyclic liquefaction potential using the Cone Penetration Test, Canadian Geotechnical Journal, 35(3), 442-459.
  • Sarı, C., 2003 Gravite Verilerinin Tekil Değer Ayrıştırma Yöntemiyle Ters Çözümü, Gediz Ve Büyük Menderes Grabenlerinin Tortul Kalınlıklarının Saptanması, DEÜ Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 14 (2), 11-23.
  • Seed, H.B., Idriss, I.M., 1971 Simplified procedure for evaluating soil liquefaction potential, Journal of Geotechnical Engineering, ASCE, 97(9), 1249-1273.
  • Sykora, D.W., (1987). Creating of a Data Base of Seismic Shear Wave Velocities For Correction Analysis. Geotechnical Laboratory Miscelellaneous Paper GL 87-26. U.S Army Engineer Waterways Experiment Station, Vicsburg, MS.
  • Wells, D.L. and K.J. 1994 Coppersmith, New empirical relationships amoung magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull, Seismol, Soc, America., 84, 974- 1002.
  • Ulusay, R., and Tuncay., E., and Sonmez, H., and Gokceoglu C., 2004 An attenuation relationship based on Turkish strong motion data and iso- acceleration map of Turkey, Engineering Geology. 74: 265–291.
  • ASTM D 5311-92, 2002 Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 1-10.

Rölatif Sıkılığın Saruhanlı (Manisa) İlçesi Zeminlerinin Sıvılaşmasına Etkisinin Dinamik Üç Eksenli Deneyi İle Araştırılması

Yıl 2012, Cilt: 2 Sayı: 1, 26 - 41, 16.01.2012

Öz

Bu çalışma Manisa (Saruhanlı) ilçesinde, alüvyal zeminlerin sıvılaşma potansiyelinin, sismik dalga hızı ve rölatif sıkılığın sıvılaşma üzerindeki etkisinin Dinamik üç eksenli deney kullanılarak belirlenmesininin araştırılmasını içermektedir. İlçenin yaklaşık 33 km güneyinde ve 150 km uzunluğundaki “Gediz Grabeni Fay Zonu”, bölgeyi etkileyebileceği varsayılarak, araştırmaya esas alınmıştır. Bu fay zonunun, olası bir depremde 1/3'nün kırılması tahmin edilmiş, moment magnitüdü 7,1 ve 0,28 g büyüklüğünde yatay deprem ivmesi oluşturabileceği hesaplanarak sıvılaşma analizleri yapılmış ve sıvılaşma haritası hazırlanmıştır. Risk haritasına göre sıvılaşan lokasyondan, numune alınmıştır. Laboratuvarda arazi şartlarına uygun ve lokasyondan alınan numunenin sahip olduğu rölatif sıkılık değerlerinde deney numunesi hazırlanarak arazide maruz kaldıkları efektif jeolojik yüke eşit oranda konsolide edilmiş ve gerilme kontrollü devirsel yükler sinüzoidal olarak uygulanmıştır. Boşluk suyu basıncı oluşumunu kontrol edebilmek için bütün deneyler 0,5 Hz yükleme frekansında yapılmıştır. Bu fay zonunun üretebileceği ivme şartlarında bu bölgenin sıvılaşmadığı ancak rölatif sıkılığın %50'e indirilerek tekrarlanması durumunda sıvılaşabileceği görülmüştür.

Kaynakça

  • Andrus, R.D., and Stokoe, K.H.,II, (2000). Liquefaction resistance of soils from sheare wave velocity.
  • Goeenvironmental Egineering ASCE, 126(11),1015- 1025. of Geotechnical
  • and [2] Bozkurt, E., 2000 Timing Of Extension on The B.Y.K Menderes Graben, Western Turkey, And İts Tectonic İmplications, In: Bozkurt, E., Winchester, J.A. And Piper, J.D.A. (Eds), Tectonics and Magmatism İn Turkey And The Surrounding Area. Geological Society, Special Publications 173, London, 385-403.
  • Bulut, İ., Sağlam, M., Bektaş, İ.A., Şahin, M.S., Demir, M., Uran, Ş., Üçkardeşler, C.,Güner, F., Araz, A.H., 2006 Saruhanlı (Manisa) Belediyesi Jeoteknik Etüt Gerektiren Alanların (Jega) İmar Planına Esas Jeolojik-Jeoteknik Etüt Raporu, İller Bankası Rapor No. ILB-I/45-039-004, Ankara, 1-53. [4] Casagrande,
  • cohesionless soils affecting the stability of slopes and earthfills”, Journal of The Boston Society of Civil Engineers, Reprinted İn Contributions To Soil Mechanics, Boston Society of Civil Engineers,1: 257- 276.
  • Castro, G., 1975 “Liquefacion and cyclic mobility of saturated sands”, Journal of The Geotechnical Engineering Division, ASCE, 101(GT6): 55-569.
  • Çiftçi, N.B., and Bozkurt, E., 2008 Pattern of normal faulting in the Gediz Graben, SW Turkey. Tectonophysics, Sedimentary Geology, 473(1-2): 234- 260. 1936
  • “Charecteristic of [7] Çiftçi, N.B., and Bozkurt, E., 2009 Evolution of the miocene sedimentary fill of the Gediz Graben, SW Turkey, Sedimentary Geology, 216(3-4): 49–79.
  • Internet: Geologismiki (2006) “LiqIT 4.7.3, Sıvılaşma Analizi Yazılımı” www.geologismiki.gr (2006).
  • Ishihara, K., 1985 “stability of natural deposits during earthquakes”, Proceedings of The 11th International Conferans on Soil Mechanics And Foundation Engineering, Sanfrancisco, 2: 321-376.
  • Iwasaki, T., K., Tokida, K., Tatsuoka, Watanabe, S., Yasuda, S., and Sato, H., 1982 Microzonation for soil liquefaction potential using simplified methods, Proceedings of the 13th International Conf. On microzonation, Seattle, USA vol. 3, 1319-1330.
  • Ladd, R. S., Dobry, R., Dutko, P., Yokel, F. Y. and Chung, R. M., 1989 Pore-Water Pressure Buildup in Clean Sands Because of Cyclic Straining, Geotechnical Testing Journal, 12 (1): 77-86.
  • Liao, S. S. C. and Whitman, R. V. (1986). “Catalogue of Liquefaction and Non-liquefaction Occurrences during Earthquakes”, Research Report, Department of Civil Engineering Massachusetts Institute of Technology, Cambridge, Massachusetts.
  • Kramer, S. L., 1996 ”Geotechnical earthquake engineering”, Prenticei-Hall, N. J., London: 45-448.
  • Mark, R. K., 1977 Application of Linear Statistical Model Of Earthquake Magnitude Versus Fault Length İn Estimating Maximum Expectable Earthquakes, Geology, 5: 464- 466.
  • Özaydın, K., 2007 Zeminlerde Sıvılaşma, Altıncı Ulusal Depem Mühendisliği Konferansı, İstanbul, 231-255, 16-20 Ekim.
  • Robertson, P.K., and Wride, C.E., 1998 Evaluating cyclic liquefaction potential using the Cone Penetration Test, Canadian Geotechnical Journal, 35(3), 442-459.
  • Sarı, C., 2003 Gravite Verilerinin Tekil Değer Ayrıştırma Yöntemiyle Ters Çözümü, Gediz Ve Büyük Menderes Grabenlerinin Tortul Kalınlıklarının Saptanması, DEÜ Mühendislik Fakültesi Fen Ve Mühendislik Dergisi, 14 (2), 11-23.
  • Seed, H.B., Idriss, I.M., 1971 Simplified procedure for evaluating soil liquefaction potential, Journal of Geotechnical Engineering, ASCE, 97(9), 1249-1273.
  • Sykora, D.W., (1987). Creating of a Data Base of Seismic Shear Wave Velocities For Correction Analysis. Geotechnical Laboratory Miscelellaneous Paper GL 87-26. U.S Army Engineer Waterways Experiment Station, Vicsburg, MS.
  • Wells, D.L. and K.J. 1994 Coppersmith, New empirical relationships amoung magnitude, rupture length, rupture width, rupture area, and surface displacement, Bull, Seismol, Soc, America., 84, 974- 1002.
  • Ulusay, R., and Tuncay., E., and Sonmez, H., and Gokceoglu C., 2004 An attenuation relationship based on Turkish strong motion data and iso- acceleration map of Turkey, Engineering Geology. 74: 265–291.
  • ASTM D 5311-92, 2002 Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, Annual Book of ASTM Standards, American Society for Testing and Materials, West Conshohocken, PA, 1-10.
Toplam 23 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mehmet Orhan Bu kişi benim

Ali Ateş Bu kişi benim

Yayımlanma Tarihi 16 Ocak 2012
Yayımlandığı Sayı Yıl 2012 Cilt: 2 Sayı: 1

Kaynak Göster

APA Orhan, M., & Ateş, A. (2012). Rölatif Sıkılığın Saruhanlı (Manisa) İlçesi Zeminlerinin Sıvılaşmasına Etkisinin Dinamik Üç Eksenli Deneyi İle Araştırılması. Teknik Bilimler Dergisi, 2(1), 26-41.