Araştırma Makalesi
BibTex RIS Kaynak Göster

Malatya Fayı’nın morfometrik özellikleri

Yıl 2020, Sayı: 75, 107 - 118, 31.12.2020
https://doi.org/10.17211/tcd.818850

Öz

Malatya Fayı (MF), Orta Anadolu ‘ova’ Bölgesi’nin en doğu kesimlerinde yaklaşık K20°D doğrultusuna sahip ve 140 km uzunluğunda sol yanal doğrultu atımlı bir tektonik yapıdır. Beş farklı geometrik segmentten oluşan MF, bölgedeki diğer yapılar ile etkileşimi ve geometrisi yüzünden farklı deformasyon özelliklerine sahiptir. Bu tektonik yapının yer yüzü şekillerine olan etkisinin anlaşılması için, MF ve yakın civarında belirlenen toplam 27 adet akaçlama havzası üzerinde hipsometri (HI), konkavlık ve normalize diklik (θ, ksn) ve boyuna profillerin integral (χ) analizleri gibi morfometrik indisler çalışılmıştır. Elde edilen sonuçlara göre, MF’nin en kuzey kesimini oluşturan FS1 segmenti ve civarı en yüksek düşey hareketlerin görüldüğü alandır. Bunu güneye doğru FS2 ve FS3 izler. FS2 genel olarak orta-yüksek HI ve ksn ile dikkati çekerken, FS2 ve FS3’ün sınırında hesaplanan düşük değerler bu iki segmentin açılmalı sıçrama yaparak yerel bir gerilmeye sebep olmasından kaynaklanır. FS3’ün kuzey ve güney kesimlerinde tektonizma ve erozyon arasında göreceli bir denge söz konusuyken, orta kesimlerinde 0.3’den düşük elde edilen HI değerlerine göre aşınmanın baskın olduğu görülmüştür. Birbirlerine paralel FS4 ve FS5 segmentleri boyunca yapılan analizler erozyon ve tektonik kuvvetler arasında bir dengeye işaret eder. Seçilmiş havzalar için yapılan χ analizinde, elde edilen yükselme ve durgunluk süreçleri ile sahada gözlenen taraça oluşumları arasında bir uyum söz konusudur. MF özelinde uygulanan morfometrik indisler, fayın farklı kesimleri için düşey topoğrafya değişimi hakkında bilgi vermekle kalmamış, aynı zamanda birbirini takip eden yükselme ve duraksama süreçlerine ve yer şekillerinin daha iyi anlaşılması için yeni çalışma noktalarına işaret etmiştir.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

114Y580

Teşekkür

Bu çalışma TÜBİTAK 114Y580 no’lu proje kapsamında gerçekleştirilmiştir. Yazar, yayının düzeltilmesi konusunda tenkitleri ve ilgileri için sayın editör Cihan Bayrakdar ve hakemlere teşekkürü bir borç bilir.

Kaynakça

  • Acarel, D., Cambaz, M. D., Turhan, F., Mutlu, A. K. ve Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosci. 11(1): 1098-1111.
  • Aktuğ, B., Parmaksız, E., Kurt, M., Lenk, O., Kılıçoğlu, A., Gürdal, M. A. ve Özdemir, S. (2013). Deformation of Central Anatolia: GPS implications. Journal of Geodynamics 67: 78–96.
  • Akyüz, H. S., Uçarkuş, G., Altunel, E., Doğan, B. ve Dikbaş, A. (2012). Paleoseismological investigations on a slow-moving active fault in Central Anatolia, Tecer Fault, Sivas. Ann. Geophys. 55: 847–857. Armijo, R., Meyer, B., Hubert-Ferrari, A. ve Barka, A. A. (1999).
  • Westward propagation of North Anatolian Fault into the Northern Agean: timing and kinematcis. Geology 27: 267–270.
  • Bilgiç, T. (2002). 1:500000 Ölçekli Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü. Ankara.
  • Bozkurt, E. (2001). Neotectonics of Turkey; a synthesis. Geodinamica Acta 14: 3–30.
  • Bubenzer, O. Ve Bolten, A. (2008). The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology 102(2): 221-231.
  • Burbank, D.W. ve Anderson, R.S. (2011). Tectonic Geomorphology. West Sussex: John Wiley & Sons. xiv+454 s.
  • Castillo, M., Muñoz-Salinas, E. ve Ferrari, L. (2014). Response of a landscape to tectonics using channel steepness indices (ksn) and OSL: A case of study from the Jalisco Block, Western Mexico. Geomorphology 221: 204–214.
  • Chen, Y. C., Sung, Q. Ve Cheng, K. Y. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56: 109-137.
  • Chorowicz, J., Dhont, D. ve Gündogdu, N. (1999). Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. J. Struct. Geol. 21: 511–532.
  • Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23: TC1006.
  • Çılğın, Z. ve Bayrakdar, C. (2020). Teke Yarımadası’ndaki (Güneybatı Anadolu) glasiyal sirklerin morfometrik özellikleri. Türk Coğrafya Dergisi 74: 107-121.
  • Denizman, C. (2003). Morphometric and spatial distribution parameters of karstic depressions, Lower Suwannee River Basin, Florida. Journal of Cave and Karst Studies 65(1): 29-35.
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F. (2013). Açıklamalı Türkiye Diri Fay Haritası Ölçek 1:1250000 (Active Fault Map of Turkey with an Explanatory Text 1:1250000 scale). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Faccenna, C., Becker, T. W., Jolivet, L. ve Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 375: 254–269.
  • Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res. 10: 969–973.
  • García-Ruiz, J. M., Gómez-Villar, A., Ortigosa, L. ve Martí-Bono, C. (2000). Morphometry of glacial cirques in the central Spanish Pyreenes. Geografiska Annaler: Series A. Physical Geography. 82(4): 433-442.
  • Hack, J. T. (1957). Studies of Longitudinal Stream Profiles in Virginia and Maryland. vol. 294. US Government Printing Office. Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. J. Res. US Geol. Surv. 1: 421–429.
  • Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakçı, N., Gosse, J. C. ve Cosca, M. A. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics 34: 2118–2141.
  • Kaymakçı, N., İnceöz, M. ve Ertepınar, P. (2006). 3-D Architecture and Neogene Evolution of the Malatya Basin: Inferences for the Kinematics of the Malatya and Ovacık Fault Zone. Turkish J. Earth Sci. 15: 123–154.
  • Keller, E. A. ve Pinter, N. (1996). Active Tectonics. New Jersey: Prentice Hall. King, C. A. M. (1982). Morphometry in glacial geomorphology in: Coates, D. R. (ed) Glacial Geomorphology. Dodrect: Springer 147-162.
  • Kirby, E. ve Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology 29(5): 415–418.
  • Kirby, E., Whipple, K. X., Tang, W. ve Chen, Z. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 108(B4): 2217.
  • Kirby, E., Johnson, C., Furlong, K. ve Heimsath, A. (2007). Transient channel incision along Bolinas Ridge, California: evidence for differential rock uplift adjacent to the San Andreas fault. J. Geophys. Res. Earth Surf. 112: F03S07.
  • Koçyiğit, A. ve Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284: 317–336.
  • Le Pichon, X. ve Kreemer, C. (2010). The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annu. Rev. Earth Planet. Sci. 38: 323–351.
  • McKenzie, D. (1972). Active Tectonics of the Mediterranean Region. Geophys. J. R. Astron. Soc. 30: 109–185.
  • Miller, S. R., Baldwin, S. L. ve Fitzgerald, P. G. (2012). Transient fluvial incision and active surface uplift in the Woodlark Rift of eastern Papua New Guinea. Lithosphere 4: 131–149.
  • Molin, P., Pazzaglia, F.J. ve Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy. Am. J. Sci. 304: 559–589.
  • Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W. D. ve Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. J. Geophys. Res. Earth Surf. 119: 138–152.
  • Mudd, S. M., Clubb, F. J., Gailleton, B. ve Hurst, M. D. (2018). How concave are river channels? Earth Surf. Dyn. 6: 505–523.
  • Ouimet, W. B., Whipple, K. X. ve Granger, D. E. (2009). Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37(7): 579–582.
  • Özener, H., Arpat, E., Ergintav, S., Doğru, A., Çakmak, R., Turgut, B. ve Doğan, U. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. J. Geodyn. 49: 141–150.
  • Özeren, M. S. ve Holt, W. E. (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophys. J. Int. 183: 1165–1184.
  • Öztürk, M. Z. (2018). Karstik kapalı depresyonların (dolinlerin) morfometrik analizleri. Coğrafya Dergisi 35: 17-27
  • Pandey, P. Manickam, S., Bhattacharya A., Ramanathan, A. L., Singh, G. ve Venkataraman, G. (2017). Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain. Geocarto International 32(4): 442-454.
  • Paul, A., Karabulut, H., Mutlu, A.K. ve Salaün, G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth Planet. Sci. Lett. 389: 14–22.
  • Pérez-Peña, J. V., Azañón, J. M., Azor, A., Tuccimei, P., Della Seta, M. ve Soligo, M. (2009). Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology 106: 206–218.
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. ve Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119: 74–87.
  • Perron, J. T. ve Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surf. Process. Landforms 38: 570–576.
  • Philippon, M., Brun, J.-P., Gueydan, F. ve Sokoutis, D. (2014). The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene. Tectonophysics 631: 176–188.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V, Gomez, F., Al-Ghazzi, R. ve Karam, G. (2006). GPS constraints on continental deformation in the Africa- Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 111: B05411.
  • Sağlam Selçuk, A. (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology 270: 9–21.
  • Sançar, T. (2018). Yüksekova Havzası’nın (Güneydoğu Türkiye) yükselim hızı tarihçesinin araştırılması. Türkiye Jeoloij Bülteni 61: 207-240.
  • Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M. ve Akyüz, H. S. (2019). Geometry and Paleoseismology of the Malatya Fault (Malatya- Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. J. Seismol. 23: 319–340.
  • Sançar, T., Zabcı, C., Akçar, N., Karabacak, V., Yeşilyurt, S., Yazıcı, M., Serdar Akyüz, H., Önal, A.Ö., Ivy-Ochs, S., Christl, M. ve Vockenhuber, C. (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). J. Asian Earth Sci. 188: 104091.
  • Sarıkaya, M. A., Yıldırım, C. ve Çiner, A. (2015). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics 649: 33–46.
  • Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C. ve Chen, L. (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geol. Soc. Am. Bull. 116: 895–909.
  • Schwanghart, W. ve Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 25: 770–781.
  • Schwanghart, W. ve Scherler, D. (2014). Short Communication: Topo- Toolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dynam. 2(1): 1–7.
  • Scotti, V. N., Molin, P., Faccenna, C., Soligo, M. ve Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): quantitative geomorphological analysis and geochronology. Geomorphology 206: 37-57.
  • Snyder, N. P., Whipple, K. X., Tucker, G. E. ve Merritts, D. J. (2000). Landscape response to tectonic forcing: digital elevation model analysis of streamprofiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 112: 1250–1263.
  • Sreedevi, P. D., Owais, S., Khan, H. H. ve Ahmed, S., 2009, Morphometric analysis of a watershed of South India using SRTM Data and GIS, Journal Geological Society of India 73: 543-552.
  • Strahler, A. N. (1952). Hypsometrıc (Area-Altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 63: 1117–1142.
  • Şengör, A. M. C. (1980). Türkiye’nin neotektoniğinin esasları (Principles of the Neotectonism of Turkey). Türkiye Jeoloji Kurumu Konferans Serisi, Ankara.
  • Şengör, A. M. C., Görür, N. ve Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in: Biddle, K.T., Christie-Blick, N. (eds.), Strike- Slip Deformation, Basin Formation, and Sedimentation, Oklahoma: Soc. Econ. Paleontol. Spec. Publ. Society of Economic Paleontologists and Mineralogists. 227–264.
  • Şengör, A. M. C. ve Zabcı, C. (2019). The North Anatolian Fault and the North Anatolian Shear Zone, in: Kuzucuoğlu, C., Çiner, A., Kazancı, N. (Eds.), Landscapes and Landforms of Turkey. Cham: Springer International Publishing, s. 481–494.
  • Topal, S. (2019a). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): insights from geomorphic indices and drainage analysis. Journal of Mountain Science 16: 909-923.
  • Topal, S. (2019b). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(1): 37-48.
  • Walcott, R. C. ve Summerfield, M. A. (2008). Scale dependence of hypsometric integrals: an analysis of southeast African basins. Geomorphology 96: 174–186.
  • Westaway, R. ve Arger, J. (2001). Kinematics of the Malatya–Ovacık Fault Zone. Geodin. Acta 14: 103–131.
  • Westaway, R., Demir, T. ve Seyrek, A. (2008). Geometry of the Turkey- Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: the role of the Malatya-Ovacık Fault Zone in eastern Turkey. eEarth 3: 27–35.
  • Whipple, K. X ve Tucker, G. E. (1999). Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research – Solid Earth 104: 17661-17674.
  • Whitney, B. B. ve Hengesh, J. V. (2015). Geomorphological evidence of neotectonic deformation in the Carnarvon Basin, Western Australia. Geomorphology 228: 579-596.
  • Whittaker, A. C. (2012). How do landscapes record tectonics and climate? Lithosphere 4(2): 160–164.
  • Williams, P. W. (1972). Morphpmetric analysis of polygonal karst in New Guinea. GSA Bulletin 83(3): 761-796.
  • Willett, S. D., Hovius, N., Brandon, M. T. ve Fisher, D. M. (2006). Tectonics, Climate and Landscape Evolution. Geological Society of America Special Paper 398. Penrose Conference Series, xi+434.
  • Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B. ve Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Geol. Soc. Am. Spec. Pap. 398: 55–74.
  • Yazıcı, M., Zabcı, C., Sançar, T. ve Natal’in B. A. (2018a). The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology 321: 129-145.
  • Yazıcı, M., Zabcı, C., Natal’in, B., Sançar, T. ve Akyüz, H. S. (2018b). Strike-slip deformation in a converging setting: insights from the Ovacık Fault (Anatolia, Turkey), European Geoscience Union General Assembly. EGU2018-1052.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of the Tuzgölü Fault Zone; Central Anatolia, Turkey. Tectonophysics 630: 183-192.
  • Yıldırım, C., Sarıkaya, M. A. ve Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics 35: 1446–1464.
  • Zabcı, C., Sançar, T., Tikhomirov, D., Ivy-Ochs, S., Vockenhuber, C., Friedrich, M.A., Yazıcı, M. ve Akçar, N. (2017). Cosmogenic 36 Cl geochronology of offset terraces along the Ovacık Fault (Malatya- Ovacık Fault Zone, Eastern Turkey): implications for the intra- plate deformation of the Anatolian block. The International Conference on Astronomy and Geophysics, 330-334, Ulanbatar, Moğolistan

Morphometric characteristics of the Malatya Fault

Yıl 2020, Sayı: 75, 107 - 118, 31.12.2020
https://doi.org/10.17211/tcd.818850

Öz

Malatya Fault (MF) is a 140 km-long sinistral structure, which strikes of about N20°E in the most eastern parts the Central Anatolia ‘ova’ Province. The MF is made of five geometric segments that have distinct deformation properties. I defined a total of 27 drainage basins (H01 to H27) along with this tectonic structure and applied the basic morphometric indices, such as hypsometry (HI), concavity and normalised steepness (θ, ksn) and channel profile integral analyses (χ) to quantify the evolution of the landscape along the fault. The results of this study represent that the northernmost segment, FS1, and the surrounding region are strongly shaped under the effect of the vertical motions. Further to the south, the drainage basins the FS2 and FS3 relatively display moderate values, except the H10 that is located at the extensional step-over boundary between these two segments. Morphometric values suggest a balance between tectonics and erosion for the northern and southern sections of the FS3, whereas The HI values with lower than 0.3 suggest a dominant erosion for its central parts. My analyses along two sub-parallel segments, FS4 and FS5, also point a balance between erosional and tectonic forces with amoderate to low HI and ksn values. In addition to quantification of the vertical motions, I tried to determine the successive uplifting and quiescence periods by using the channel profile integral analyses (χ). The estimated series of uplifting and quiescence periods well correlate with terrace formations, which are observed in the field. The study along the MF shows that morphometric analyses are important tools, particularly where there is none or limited field-based geomorphological and/or geological data. In this study, my results do not provide information only for the evolution of the landscape along the MF, but it also shows a potential for similar intra-plate settings in the earth.

Proje Numarası

114Y580

Kaynakça

  • Acarel, D., Cambaz, M. D., Turhan, F., Mutlu, A. K. ve Polat, R. (2019). Seismotectonics of Malatya Fault, Eastern Turkey. Open Geosci. 11(1): 1098-1111.
  • Aktuğ, B., Parmaksız, E., Kurt, M., Lenk, O., Kılıçoğlu, A., Gürdal, M. A. ve Özdemir, S. (2013). Deformation of Central Anatolia: GPS implications. Journal of Geodynamics 67: 78–96.
  • Akyüz, H. S., Uçarkuş, G., Altunel, E., Doğan, B. ve Dikbaş, A. (2012). Paleoseismological investigations on a slow-moving active fault in Central Anatolia, Tecer Fault, Sivas. Ann. Geophys. 55: 847–857. Armijo, R., Meyer, B., Hubert-Ferrari, A. ve Barka, A. A. (1999).
  • Westward propagation of North Anatolian Fault into the Northern Agean: timing and kinematcis. Geology 27: 267–270.
  • Bilgiç, T. (2002). 1:500000 Ölçekli Türkiye Jeoloji Haritası, Sivas Paftası. Maden Tetkik ve Arama Genel Müdürlüğü. Ankara.
  • Bozkurt, E. (2001). Neotectonics of Turkey; a synthesis. Geodinamica Acta 14: 3–30.
  • Bubenzer, O. Ve Bolten, A. (2008). The use of new elevation data (SRTM/ASTER) for the detection and morphometric quantification of Pleistocene megadunes (draa) in the eastern Sahara and the southern Namib. Geomorphology 102(2): 221-231.
  • Burbank, D.W. ve Anderson, R.S. (2011). Tectonic Geomorphology. West Sussex: John Wiley & Sons. xiv+454 s.
  • Castillo, M., Muñoz-Salinas, E. ve Ferrari, L. (2014). Response of a landscape to tectonics using channel steepness indices (ksn) and OSL: A case of study from the Jalisco Block, Western Mexico. Geomorphology 221: 204–214.
  • Chen, Y. C., Sung, Q. Ve Cheng, K. Y. (2003). Along-strike variations of morphotectonic features in the Western Foothills of Taiwan: tectonic implications based on stream-gradient and hypsometric analysis. Geomorphology 56: 109-137.
  • Chorowicz, J., Dhont, D. ve Gündogdu, N. (1999). Neotectonics in the eastern North Anatolian fault region (Turkey) advocates crustal extension: mapping from SAR ERS imagery and Digital Elevation Model. J. Struct. Geol. 21: 511–532.
  • Clark, M. K., Schoenbohm, L. M., Royden, L. H., Whipple, K. X., Burchfiel, B. C., Zhang, X., Tang, W., Wang, E., Chen, L. (2004). Surface uplift, tectonics, and erosion of eastern Tibet from large-scale drainage patterns. Tectonics 23: TC1006.
  • Çılğın, Z. ve Bayrakdar, C. (2020). Teke Yarımadası’ndaki (Güneybatı Anadolu) glasiyal sirklerin morfometrik özellikleri. Türk Coğrafya Dergisi 74: 107-121.
  • Denizman, C. (2003). Morphometric and spatial distribution parameters of karstic depressions, Lower Suwannee River Basin, Florida. Journal of Cave and Karst Studies 65(1): 29-35.
  • Emre, Ö., Duman, T.Y., Özalp, S., Elmacı, H., Olgun, Ş. ve Şaroğlu, F. (2013). Açıklamalı Türkiye Diri Fay Haritası Ölçek 1:1250000 (Active Fault Map of Turkey with an Explanatory Text 1:1250000 scale). Maden Tetkik ve Arama Genel Müdürlüğü, Ankara.
  • Faccenna, C., Becker, T. W., Jolivet, L. ve Keskin, M. (2013). Mantle convection in the Middle East: Reconciling Afar upwelling, Arabia indentation and Aegean trench rollback. Earth Planet. Sci. Lett. 375: 254–269.
  • Flint, J. J. (1974). Stream gradient as a function of order, magnitude, and discharge. Water Resour. Res. 10: 969–973.
  • García-Ruiz, J. M., Gómez-Villar, A., Ortigosa, L. ve Martí-Bono, C. (2000). Morphometry of glacial cirques in the central Spanish Pyreenes. Geografiska Annaler: Series A. Physical Geography. 82(4): 433-442.
  • Hack, J. T. (1957). Studies of Longitudinal Stream Profiles in Virginia and Maryland. vol. 294. US Government Printing Office. Hack, J. T. (1973). Stream-profile analysis and stream-gradient index. J. Res. US Geol. Surv. 1: 421–429.
  • Higgins, M., Schoenbohm, L. M., Brocard, G., Kaymakçı, N., Gosse, J. C. ve Cosca, M. A. (2015). New kinematic and geochronologic evidence for the Quaternary evolution of the Central Anatolian fault zone (CAFZ). Tectonics 34: 2118–2141.
  • Kaymakçı, N., İnceöz, M. ve Ertepınar, P. (2006). 3-D Architecture and Neogene Evolution of the Malatya Basin: Inferences for the Kinematics of the Malatya and Ovacık Fault Zone. Turkish J. Earth Sci. 15: 123–154.
  • Keller, E. A. ve Pinter, N. (1996). Active Tectonics. New Jersey: Prentice Hall. King, C. A. M. (1982). Morphometry in glacial geomorphology in: Coates, D. R. (ed) Glacial Geomorphology. Dodrect: Springer 147-162.
  • Kirby, E. ve Whipple, K. (2001). Quantifying differential rock-uplift rates via stream profile analysis. Geology 29(5): 415–418.
  • Kirby, E., Whipple, K. X., Tang, W. ve Chen, Z. (2003). Distribution of active rock uplift along the eastern margin of the Tibetan Plateau: inferences from bedrock channel longitudinal profiles. J. Geophys. Res. Solid Earth 108(B4): 2217.
  • Kirby, E., Johnson, C., Furlong, K. ve Heimsath, A. (2007). Transient channel incision along Bolinas Ridge, California: evidence for differential rock uplift adjacent to the San Andreas fault. J. Geophys. Res. Earth Surf. 112: F03S07.
  • Koçyiğit, A. ve Beyhan, A. (1998). A new intracontinental transcurrent structure: the Central Anatolian Fault Zone, Turkey. Tectonophysics 284: 317–336.
  • Le Pichon, X. ve Kreemer, C. (2010). The Miocene-to-Present Kinematic Evolution of the Eastern Mediterranean and Middle East and Its Implications for Dynamics. Annu. Rev. Earth Planet. Sci. 38: 323–351.
  • McKenzie, D. (1972). Active Tectonics of the Mediterranean Region. Geophys. J. R. Astron. Soc. 30: 109–185.
  • Miller, S. R., Baldwin, S. L. ve Fitzgerald, P. G. (2012). Transient fluvial incision and active surface uplift in the Woodlark Rift of eastern Papua New Guinea. Lithosphere 4: 131–149.
  • Molin, P., Pazzaglia, F.J. ve Dramis, F. (2004). Geomorphic expression of active tectonics in a rapidly-deforming forearc, Sila massif, Calabria, southern Italy. Am. J. Sci. 304: 559–589.
  • Mudd, S. M., Attal, M., Milodowski, D. T., Grieve, S. W. D. ve Valters, D. A. (2014). A statistical framework to quantify spatial variation in channel gradients using the integral method of channel profile analysis. J. Geophys. Res. Earth Surf. 119: 138–152.
  • Mudd, S. M., Clubb, F. J., Gailleton, B. ve Hurst, M. D. (2018). How concave are river channels? Earth Surf. Dyn. 6: 505–523.
  • Ouimet, W. B., Whipple, K. X. ve Granger, D. E. (2009). Beyond threshold hillslopes: channel adjustment to base-level fall in tectonically active mountain ranges. Geology 37(7): 579–582.
  • Özener, H., Arpat, E., Ergintav, S., Doğru, A., Çakmak, R., Turgut, B. ve Doğan, U. (2010). Kinematics of the eastern part of the North Anatolian Fault Zone. J. Geodyn. 49: 141–150.
  • Özeren, M. S. ve Holt, W. E. (2010). The dynamics of the eastern Mediterranean and eastern Turkey. Geophys. J. Int. 183: 1165–1184.
  • Öztürk, M. Z. (2018). Karstik kapalı depresyonların (dolinlerin) morfometrik analizleri. Coğrafya Dergisi 35: 17-27
  • Pandey, P. Manickam, S., Bhattacharya A., Ramanathan, A. L., Singh, G. ve Venkataraman, G. (2017). Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain. Geocarto International 32(4): 442-454.
  • Paul, A., Karabulut, H., Mutlu, A.K. ve Salaün, G. (2014). A comprehensive and densely sampled map of shear-wave azimuthal anisotropy in the Aegean–Anatolia region. Earth Planet. Sci. Lett. 389: 14–22.
  • Pérez-Peña, J. V., Azañón, J. M., Azor, A., Tuccimei, P., Della Seta, M. ve Soligo, M. (2009). Quaternary landscape evolution and erosion rates for an intramontane Neogene basin (Guadix–Baza basin, SE Spain). Geomorphology 106: 206–218.
  • Pérez-Peña, J. V., Azor, A., Azañón, J. M. ve Keller, E. A. (2010). Active tectonics in the Sierra Nevada (Betic Cordillera, SE Spain): insights from geomorphic indexes and drainage pattern analysis. Geomorphology 119: 74–87.
  • Perron, J. T. ve Royden, L. (2013). An integral approach to bedrock river profile analysis. Earth Surf. Process. Landforms 38: 570–576.
  • Philippon, M., Brun, J.-P., Gueydan, F. ve Sokoutis, D. (2014). The interaction between Aegean back-arc extension and Anatolia escape since Middle Miocene. Tectonophysics 631: 176–188.
  • Reilinger, R., McClusky, S., Vernant, P., Lawrence, S., Ergintav, S., Çakmak, R., Özener, H., Kadirov, F., Guliev, I., Stepanyan, R., Nadariya, M., Hahubia, G., Mahmoud, S., Sakr, K., ArRajehi, A., Paradissis, D., Al-Aydrus, A., Prilepin, M., Guseva, T., Evren, E., Dmitrotsa, A., Filikov, S. V, Gomez, F., Al-Ghazzi, R. ve Karam, G. (2006). GPS constraints on continental deformation in the Africa- Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. Solid Earth 111: B05411.
  • Sağlam Selçuk, A. (2016). Evaluation of the relative tectonic activity in the eastern Lake Van basin, East Turkey. Geomorphology 270: 9–21.
  • Sançar, T. (2018). Yüksekova Havzası’nın (Güneydoğu Türkiye) yükselim hızı tarihçesinin araştırılması. Türkiye Jeoloij Bülteni 61: 207-240.
  • Sançar, T., Zabcı, C., Karabacak, V., Yazıcı, M. ve Akyüz, H. S. (2019). Geometry and Paleoseismology of the Malatya Fault (Malatya- Ovacık Fault Zone), Eastern Turkey: Implications for intraplate deformation of the Anatolian Scholle. J. Seismol. 23: 319–340.
  • Sançar, T., Zabcı, C., Akçar, N., Karabacak, V., Yeşilyurt, S., Yazıcı, M., Serdar Akyüz, H., Önal, A.Ö., Ivy-Ochs, S., Christl, M. ve Vockenhuber, C. (2020). Geodynamic importance of the strike-slip faults at the eastern part of the Anatolian Scholle: Inferences from the uplift and slip rate of the Malatya Fault (Malatya-Ovacık Fault Zone, eastern Turkey). J. Asian Earth Sci. 188: 104091.
  • Sarıkaya, M. A., Yıldırım, C. ve Çiner, A. (2015). No surface breaking on the Ecemiş Fault, central Turkey, since Late Pleistocene (~64.5 ka); new geomorphic and geochronologic data from cosmogenic dating of offset alluvial fans. Tectonophysics 649: 33–46.
  • Schoenbohm, L. M., Whipple, K. X., Burchfiel, B. C. ve Chen, L. (2004). Geomorphic constraints on surface uplift, exhumation, and plateau growth in the Red River region, Yunnan Province, China. Geol. Soc. Am. Bull. 116: 895–909.
  • Schwanghart, W. ve Kuhn, N. J. (2010). TopoToolbox: A set of Matlab functions for topographic analysis. Environ. Model. Softw. 25: 770–781.
  • Schwanghart, W. ve Scherler, D. (2014). Short Communication: Topo- Toolbox 2 – MATLAB-based software for topographic analysis and modeling in Earth surface sciences. Earth Surf. Dynam. 2(1): 1–7.
  • Scotti, V. N., Molin, P., Faccenna, C., Soligo, M. ve Casas-Sainz, A. (2014). The influence of surface and tectonic processes on landscape evolution of the Iberian Chain (Spain): quantitative geomorphological analysis and geochronology. Geomorphology 206: 37-57.
  • Snyder, N. P., Whipple, K. X., Tucker, G. E. ve Merritts, D. J. (2000). Landscape response to tectonic forcing: digital elevation model analysis of streamprofiles in the Mendocino triple junction region, northern California. Geol. Soc. Am. Bull. 112: 1250–1263.
  • Sreedevi, P. D., Owais, S., Khan, H. H. ve Ahmed, S., 2009, Morphometric analysis of a watershed of South India using SRTM Data and GIS, Journal Geological Society of India 73: 543-552.
  • Strahler, A. N. (1952). Hypsometrıc (Area-Altitude) analysis of erosional topography. Geol. Soc. Am. Bull. 63: 1117–1142.
  • Şengör, A. M. C. (1980). Türkiye’nin neotektoniğinin esasları (Principles of the Neotectonism of Turkey). Türkiye Jeoloji Kurumu Konferans Serisi, Ankara.
  • Şengör, A. M. C., Görür, N. ve Şaroğlu, F. (1985). Strike-slip faulting and related basin formation in zones of tectonic escape: Turkey as a case study, in: Biddle, K.T., Christie-Blick, N. (eds.), Strike- Slip Deformation, Basin Formation, and Sedimentation, Oklahoma: Soc. Econ. Paleontol. Spec. Publ. Society of Economic Paleontologists and Mineralogists. 227–264.
  • Şengör, A. M. C. ve Zabcı, C. (2019). The North Anatolian Fault and the North Anatolian Shear Zone, in: Kuzucuoğlu, C., Çiner, A., Kazancı, N. (Eds.), Landscapes and Landforms of Turkey. Cham: Springer International Publishing, s. 481–494.
  • Topal, S. (2019a). Evaluation of relative tectonic activity along the Priene-Sazlı Fault (Söke Basin, southwest Anatolia): insights from geomorphic indices and drainage analysis. Journal of Mountain Science 16: 909-923.
  • Topal, S. (2019b). Karacasu Fayı’nın (GB Türkiye) göreceli tektonik aktivitesinin jeomorfik indislerle incelenmesi. Gümüşhane Üniversitesi Fen Bilimleri Enstitüsü Dergisi 9(1): 37-48.
  • Walcott, R. C. ve Summerfield, M. A. (2008). Scale dependence of hypsometric integrals: an analysis of southeast African basins. Geomorphology 96: 174–186.
  • Westaway, R. ve Arger, J. (2001). Kinematics of the Malatya–Ovacık Fault Zone. Geodin. Acta 14: 103–131.
  • Westaway, R., Demir, T. ve Seyrek, A. (2008). Geometry of the Turkey- Arabia and Africa-Arabia plate boundaries in the latest Miocene to Mid-Pliocene: the role of the Malatya-Ovacık Fault Zone in eastern Turkey. eEarth 3: 27–35.
  • Whipple, K. X ve Tucker, G. E. (1999). Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscape response timescales, and research needs. Journal of Geophysical Research – Solid Earth 104: 17661-17674.
  • Whitney, B. B. ve Hengesh, J. V. (2015). Geomorphological evidence of neotectonic deformation in the Carnarvon Basin, Western Australia. Geomorphology 228: 579-596.
  • Whittaker, A. C. (2012). How do landscapes record tectonics and climate? Lithosphere 4(2): 160–164.
  • Williams, P. W. (1972). Morphpmetric analysis of polygonal karst in New Guinea. GSA Bulletin 83(3): 761-796.
  • Willett, S. D., Hovius, N., Brandon, M. T. ve Fisher, D. M. (2006). Tectonics, Climate and Landscape Evolution. Geological Society of America Special Paper 398. Penrose Conference Series, xi+434.
  • Wobus, C., Whipple, K. X., Kirby, E., Snyder, N., Johnson, J., Spyropolou, K., Crosby, B. ve Sheehan, D. (2006). Tectonics from topography: Procedures, promise, and pitfalls. Geol. Soc. Am. Spec. Pap. 398: 55–74.
  • Yazıcı, M., Zabcı, C., Sançar, T. ve Natal’in B. A. (2018a). The role of intraplate strike-slip faults in shaping the surrounding morphology: The Ovacık Fault (eastern Turkey) as a case study. Geomorphology 321: 129-145.
  • Yazıcı, M., Zabcı, C., Natal’in, B., Sançar, T. ve Akyüz, H. S. (2018b). Strike-slip deformation in a converging setting: insights from the Ovacık Fault (Anatolia, Turkey), European Geoscience Union General Assembly. EGU2018-1052.
  • Yıldırım, C. (2014). Relative tectonic activity assessment of the Tuzgölü Fault Zone; Central Anatolia, Turkey. Tectonophysics 630: 183-192.
  • Yıldırım, C., Sarıkaya, M. A. ve Çiner, A. (2016). Late Pleistocene intraplate extension of the Central Anatolian Plateau, Turkey: Inferences from cosmogenic exposure dating of alluvial fan, landslide, and moraine surfaces along the Ecemiş Fault Zone. Tectonics 35: 1446–1464.
  • Zabcı, C., Sançar, T., Tikhomirov, D., Ivy-Ochs, S., Vockenhuber, C., Friedrich, M.A., Yazıcı, M. ve Akçar, N. (2017). Cosmogenic 36 Cl geochronology of offset terraces along the Ovacık Fault (Malatya- Ovacık Fault Zone, Eastern Turkey): implications for the intra- plate deformation of the Anatolian block. The International Conference on Astronomy and Geophysics, 330-334, Ulanbatar, Moğolistan
Toplam 74 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Cengiz Zabcı 0000-0003-0814-0422

Proje Numarası 114Y580
Yayımlanma Tarihi 31 Aralık 2020
Kabul Tarihi 10 Kasım 2020
Yayımlandığı Sayı Yıl 2020 Sayı: 75

Kaynak Göster

APA Zabcı, C. (2020). Malatya Fayı’nın morfometrik özellikleri. Türk Coğrafya Dergisi(75), 107-118. https://doi.org/10.17211/tcd.818850

Yayıncı: Türk Coğrafya Kurumu