Araştırma Makalesi
BibTex RIS Kaynak Göster

Future predictions according to DSAS and artificial neural network models based on temporal change analysis of Uluabat Lake surface area

Yıl 2024, Sayı: 86, 25 - 43, 30.12.2024
https://doi.org/10.17211/tcd.1481187

Öz

Lakes undergo changes in terms of many characteristics due to geomorphological, hydrographic, climatological and anthropogenic factors. The aim of this study is to determine the temporal and spatial changes in the surface area and shoreline of Lake Uluabat and to produce predictions for the future under different scenarios with various techniques. In the study, Landsat satellite images were used at 5-year intervals between 1975 and 2020, and one Landsat satellite image for each month in 2023 and 2022. Water indexs analyses and threshold method were used to infer lake surface area and shoreline on multispectral images. Then, NSM, SCE, EPR and LLR statistical analyses in the DSAS tool were applied for the periods 1975-2023, 1985-2023 and 2005-2023 to produce different changes in the lake and future scenarios. Based on the period data, 10 and 20-year lake surface area estimates were made within the scope of 3 different scenarios with the Kalman Filter method. Long-term and monthly coastal change, DSAS analyses, bathymetry data and transition probabilities, 8 different criteria in total, were analysed in Artificial Neural Networks (ANN) method and lake surface area estimates were reproduced. The findings show that the surface area of the lake decreased by 20% from 1975 to 2023 and there is a 3000 m shore advance in the delta in the southern part. The ANN model predicts that the lake surface area will shrink by 8% in 2033 and 13.6% in 2043 compared to 2023.

Kaynakça

  • Akdeniz, H. B. & İnam, Ş. (2023). Spatio-temporal analysis of shoreline changes and future forecasting: the case of Küçük Menderes Delta, Türkiye. Jorunal Coast Conserv 27, 34. https://doi.org/10.1007/s11852-023-00966-8 Aksoy, E., Özsoy, G., Ulaş Karaata, E., Karaer, F., Kâtip, A., İleri, S., Onur, S., (2016). Ekosounder ve Gıs Teknikleri Kullanılarak Uluabat Gölü’nde Batimetrik Haritalama, 6. UZAKTAN ALGILAMA-CBS SEMPOZYUMU (UZAL-CBS 2016), 5-7 Ekim 2016, Adana (ss.348-356).
  • Aksoy, T. Sarı, S., Çabuk, A. (2019). Sulak Alanların Yönetimi Kapsamında Su İndeksinin Uzaktan Algılama İle Tespiti, Göller Yöresi. GSI Journals Serie B: Advancements in Business and Economics, 2 (1), https://dergipark.org.tr/tr/pub/abe/issue/44024/528568
  • Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., Sekertekin, A. (2022). Assessment of Spatio-Temporal Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, Türkiye. ISPRS International Journal of Geo-Information, 11(7), 407. https://doi.org/10.3390/ijgi11070407
  • Alevkayalı, Ç., Atayeter, Y., Yayla, O, Bilgin, T., Akpınar, H. (2023). Burdur Gölü’nde uzun dönemli kıyı çizgisi değişimleri ve iklim ilişkisi: Zamansal-mekânsal eğilimler ve tahminler. Türk Coğrafya Dergisi, (82), 37-50. https://doi.org/10.17211/tcd.1287976
  • Alfa, N. I., Adeofun, C. O., & Ologunorisa, E. T. (2008). Assessment of changes in aerial extent of Lake Chad using satellite remote sensing data. Journal of Applied Sciences and Environmental Management, 12, 101-107. https://doi.org/10.4314/jasem.v12i1.55580
  • Altan Aydın, F., & Doğu, A. F., (2018). Göl Seviye Değişimleri ve Nedenleri: Van Gölü Örneği, Sosyal Bilimler Enstitüsü Dergisi, The Journal of Social Sciences Institute, 41, 183-208.
  • Ataol, M., Kale, M.M. & Tekkanat, İ.S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Science, 78, 579. https://doi.org/10.1007/s12665-019-8591-7
  • Ataol, M. & Onmuş, O. (2021). Wetland loss in Turkey over a hundred years: implications for conservation and management, Ecosystem Health And Sustainability, 7 (1), 1-13. https://dx.doi.org/10.1080/20964129.2021.1930587
  • Aydın, F., Erlat, E., Türkeş, M. (2020). Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Reg Environ Change 20, 68. https://doi.org/10.1007/s10113-020-01656-z
  • Bahadır, M. (2013). Akşehir Gölü’nde Alansal Değişimlerin Uzaktan Algilama Teknikleri İle Belirlenmesi. Marmara Coğrafya Dergisi, (28), 246-275. https://dergipark.org.tr/tr/pub/marucog/issue/475/3933
  • Bombino, G., Barbaro, G., D’Agostino, D., Denisi, P., Foti, G., Labate, A., Zimbone, S. M. (2022). Shoreline change and coastal erosion: the role of check dams. first ındications from a case study in Calabria, Southern Italy, CATENA, 217. https://doi.org/10.1016/j.catena.2022.106494
  • Darwish, K., Smith, S.E., Torab, M., Monsef, H., Hussein, O. (2017). Geomorphological Changes along the Nile Delta Coastline between 1945 and 2015 Detected Using Satellite Remote Sensing and GIS. J. Coast. Res, 33(4), 786-794. http://dx.doi.org/10.2112/JCOASTRES-D-16-00056.1
  • Davidson, N. C., & Finlayson, C. M. (2018). Extent, Regional Distribution and Changes in Area of Different Classes of Wetlands. Marine and Freshwater Research 69, 1525-1533. http://dx.doi.org/10.1071/MF17377
  • Dereli, M. A., & Tercan, E. (2020). Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Sci Inform 13, 709-718. https://doi.org/10.1007/s12145-020-00460-x
  • Dinç, G., (2023). Unveiling shoreline dynamics and remarkable accretion rates in Lake Eğirdir (Turkey) using DSAS. The implications of climate change on lakes. Tema. Journal of Land Use, Mobility and Environment, 95, 95-108. http://dx.doi.org/10.6092/1970-9870/10111
  • Duru, U. (2017). Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey. Environ Monit Assess 189, 385. https://doi.org/10.1007/s10661-017-6112-2
  • Elmacı, A., Topaç, F. O., Teksoy, A., Özengin, N., Başkaya, H. S., (2008). Uluabat Gölü Fizikokimyasal Özelliklerinin Yönetmelikler Çerçevesinde Değerlendirilmesi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 15(1), 149-157. https://doi.org/10.17482/uujfe.34872
  • Gao, Bo-Cai (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 58 (3), 257–266. http://dx.doi.org/10.1016/S00344257(96)00067-3
  • Göncü, S., Albek, E. A., & Albek, M. (2017). Burdur, Eğirdir, Sapanca ve Tuz Gölleri Su Seviyelerinin Nonparametrik İstatistik Yöntemler ile Eğilim Analizi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(2), 555-570.
  • Grottolli, H. Biausque, M. Jackson, D. Cooper, J. A. (2023). Long-term drivers of shoreline change over two centuries on a headland-embayment beach. Earth Surface Processes and Landforms published by John Wiley & Sons, 1-21. https://doi.org/10.1002/esp.5641
  • Hakkou, M., Maanan, M., Belrhaba, T., El khalidi, K., El Ouai, D., Benmohammadi, A. (2018). Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean & Coastal Management, 163, 232–239. https://doi.org/10.1016/j.ocecoaman.2018.07.003 Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide (No. 2018-1179). US Geological Survey.
  • Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., and Farris, A.S., (2021). Digital Shoreline Analysis System (DSAS) version 5.1 user guide: U.S. Geological Survey Open-File Report 2021–1091. https://doi.org/10.3133/ofr20211091
  • Hossain, S. Yasir, M. Wang, P. Ullah, S. Jahan, M., Hui, S., Zhao, Z., (2021). Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh. Marine Geology 441, 1-15. https://doi.org/10.1016/j.margeo.2021.106628
  • Hoşgören, M. Y. (2011). Hidrograyanın Ana Çizgileri, Çantay Kitabevi, İstanbul.
  • Hoşgören, M. Y. (1994). Türkiye’nin Gölleri, Türk Coğrafya Dergisi, 29, 19-51 https://doi.org/10.17211/tcd.70549
  • Hu, X. & Wang, Y. (2020). Coastline Fractal Dimension of Mainland, Island, and Estuaries Using Multi-temporal Landsat Remote Sensing Data from 1978 to 2018: A Case Study of the Pearl River Estuary Area. Remote Sensing, 12, 2482. https://doi.org/10.3390/rs12152482
  • İzbırak, R. (1990). Sular Coğrafyası. İstanbul: Milli Eğitim Basımevi.
  • Kale, M. M., (2018). Historical Shoreline Change Assessment Using DSAS: A Case Study of Lake Akşehir, SW Turkey, Current Debates in Sustaınable Archıtecture, Urban Design Environmental Studies (Edt. Doğan, A. Gönüllü, G.), (ss. 187-196) JOPEC Publication, ISBN:978-1-912503-33-9
  • Kale, M.M., Ataol, M., Tekkanat, İ.S. (2019). Assessment of shoreline alterations using a Digital Shoreline Analysis System: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environ Monit Assess 191, 398. https://doi.org/10.1007/s10661-019-7535-8
  • Kaya, Ö. A., & Kaplan, G. (2021). Uzaktan Algılama Yöntemleri İle Burdur Gölü’ndeki Alansal Değişiminin Belirlenmesi. Doğal Afetler ve Çevre Dergisi, 7(1), 1-12. https://doi.org/10.21324/dacd.760805
  • Kaya, Y., Sanli, F.B. & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environ Sci Pollut Res 30, 117729–117747. https://doi.org/10.1007/s11356-023-30369-z
  • Kazancı, N., & Görür, N., (1997). Güney Marmara Bölgesinin Neojen ve Kuvaterner Evrimi, TÜBİTAK Projesi, No: YDABÇAG-426/G, Ankara, 251 s.
  • Kazancı, N., Emre, Ö., İleri, Ö., Erkal, T., Şahbaz, A., Varol, B., Bayhan, E., (1998). Marmara Denizi güneyi kıyı ve kıyı ardı istiflerinin stratigrafisi, sedimantolojisi ve morfotektoniği, TÜBİTAK YDABÇAG Proje No. 598 / G, 1-117
  • Kazı, H., & Karabulut, M. (2023). Monitoring the shoreline changes of the Göksu Delta (Türkiye) using geographical information technologıes and predictions for the near future. International Journal of Geography and Geography Education (50), 329-352. https://doi.org/10.32003/igge.1304403
  • Khandelwal, A., Karpatne, A., Ravirathinam, P., Ghosh, R., Wei, Z., Dugan, H. A., Hanson, P. C., Kumar, V., (2022). ReaLSAT, a global dataset of reservoir and lake surface area variations. Sci Data 9, 356. https://doi.org/10.1038/s41597-022-01449-5
  • Khorshiddoust, A. M., Patel, N., Khalilzadeh, E., Bostanaba, A. S., Tajbar, S., (2022). A comparative study of the surface level changes of Urmia Lake and Aral Lake during the period of 1988 to 2018 using satellite images. Front. Earth Science. https://doi.org/10.1007/s11707-022-1010-5
  • Kılar, H. & Çiçek, İ. (2018). Göksu Deltası Kıyı Çizgisi Değişiminin DSAS Aracı ile Belirlenmesi. Coğrafi Bilimler Dergisi, 16 (1), 89-104. https://doi.org/10.1501/Cogbil_0000000192
  • Klein, I., Dietz, A. J., Gessner, U., Galayeva, A., Myrzakhmetov, A., Kuenzer, C. (2014). Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 26, 335–349. https://doi.org/10.1016/j.jag.2013.08.004
  • Kohonen T. (1988). An Introduction to Neural Computing, Neural Networks, 1, 3-6.
  • Kuleli, T., Guneroglu, A., Karsli, F., Dihkan, M. (2011). Automaticdetection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141-1149. https://doi.org/10.1016/j.oceaneng.2011.05.006 Küçük, C., & Sarp, G. (2021). Evaluation of formation mechanism of lakes in terms of morphometric aspect; lakes region and their vicinity, SW of Turkey. Episodes, Journal of International Geoscience, 44(3), 285-297. https://doi.org/10.18814/epiiugs/2020/020089
  • Lazuardi, Z., Karim, A., Sugianto, S. (2022). Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System (DSAS) di Pesisir Timur Kota Sabang. Jurnal Ilmiah Mahasiswa Pertanian, 7(1). http://dx.doi.org/10.17969/jimfp.v7i1.18872
  • Lippman, R. (1987). An Introduction to Computing with Neural Nets.. IEEE ASSP. 4: 4-22. Livingstone, D. J., (2009). Artificial Neural Networks Methods and Applications, Humana Totowa, NJ https://doi.org/10.1007/978-1-60327-101-1
  • Liu, H., Chen, Y., Ye, Z., Li, Y., Zhang, O. (2019). Recent Lake Area Changes in Central Asia. Scientific Reposrt-Nature Research 9, 16277. https://doi.org/10.1038/s41598-019-52396-y
  • Long, J.W. & Plant, N.G., (2012). Extended Kalman Filter framework for forecasting shoreline evolution: Geophysical Research Letters, 39(13), 1-6.
  • Luo, S., Song, C., Ke, L., Zhan, P., Fan, C., Liu, K., (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, 49, e2021GL096676. https://doi.org/10.1029/2021GL096676
  • Maltby, E., & T. Barker, (2009). The Wetlands Handbook, 2 Volume Set. John Wiley & Sons.
  • Mater, B., Turoğlu, H., Uludağ, M., Cürebal, İ., Yıldırım C., (2003). Uluabat-Manyas Gölleri ve Yakın Çevresinin Jeomorfolojik Gelişim Modellemesi, İTÜ Avrasya Yerbilimleri Enstitüsü, Kuvaterner Çalıştayı.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17:7, 1425-1432, http://doi.org/10.1080/01431169608948714
  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature communications, 7(1), 13603. https://doi.org/10.1038/ncomms13603
  • Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M. (2023). Monitoring shoreline changes along the southwestern coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15 (2), 317. https://doi.org/10.3390/rs15020317
  • Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912.
  • Öztürk D., & Uzun, S. (2023). Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini. Coğrafi Bilimler Dergisi, 21(2),306-339. https://doi.org/10.33688/aucbd.1310132
  • Palanisamy, P., Sivakumar, V., Velusamy, P., Natarajan, L. (2024). Spatio-temporal analysis of shoreline changes and future forecast using remote sensing, GIS and kalman filter model: A case study of Rio de Janeiro, Brazil. Journal of South American Earth Sciences, 133, 104701. https://doi.org/10.1016/j.jsames.2023.104701
  • Pardo-Pascual, J.E., Almonacid-Caballer, J., Ruiz, L.A., Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. https://doi.org/10.1016/j.rse.2012.02.024
  • Riggs, R. M., Allen, G. H., Brinkerhoff, C. B., Sikder, M. S., Wang, J. (2023). Turning lakes into river gauges using the LakeFlow algorithm. Geophysical Research Letters, 50, e2023GL103924. https://doi.org/10.1029/2023GL103924 Sakaoğlu, E., & Çepni, O., (2022). Türkiye’deki Tektonik Kökenli Ramsar Göllerinin Uzaktan Algılama Teknikleri ile Analizi, İksad Pulished House, Ankara.
  • Salihoglu, G. & Karaer, F. (2004). Ecological risk assessment and problem formulation for Lake Uluabat, a Ramsar State in Turkey, Environmental Management, 33(6), 899-910.
  • Shen, L & Li, C, (2010). Water body extraction from Landsat ETM+ imagery using adaboost algorithm 18th International Conference on Geoinformatics, IEEE (2010), 1-4. https://doi.org/10.1109/GEOINFORMATICS.010.5567762
  • Sikder, M. S., Wang, J., Allen, G. H., Sheng, Y., Yamazaki, D., Song, C., Ding, M., Crétaux, J.-F., Pavelsky, T. M. (2023). Lake-TopoCat: a global lake drainage topology and catchment database, Earth System. Science. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023
  • Singh, K. V., Setia, R., Sahoo, S., Prasad, A., Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 1-12. https://doi.org/10.1080/10106049.2014.965757
  • Song, Y., Shen, Y., Xie, R., Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115-128. http://dx.doi.org/10.1139/anc-2020-0001
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., Yakar, M. (2023). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 1–16. https://doi.org/10.1080/00396265.2023.2257969 Tağıl, Ş. (2007). Quantifying the change detection of the Uluabat wetland, Turkey, by use of landsat images. Ekoloji, 16(64), 9-20.
  • Tağıl, Ş., Alevkayalı, Ç., Aytan, B. (2023). Gediz Deltası Sulak Alanı Boyunca Kıyı Şeridi Evrimi ve Erozyon Hassasiyetinin Değerlendirilmesi. Ege Coğrafya Dergisi, 32 (Cumhuriyet’in 100. Yılı Özel Sayısı), 127-142. https://doi.org/10.51800/ecd.1322803
  • Tang, T. C., & Chi, L. C. (2005). Neural networks analysis in business failure prediction of chinese importers: a between-countries approach. Expert Systems with Applications, 29, 244–255.
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127-150.
  • Turoğlu, H., Uludağ, M., Mater, B., (2002). Geomorphic environmental changes at Uluabat and Manyas lakes (Souther Marmara region, Turkey) from neotectonics to present time, Forth International Conferance on Environmental Problems in Coastal Regions, COASTAL ENVİRONMENT IV, WIT Press, ISBN:1-85312-921-6, ISBN:1462-6098, UK.
  • Turoğlu, H. (2017). Deniz ve Göllerde Kıyı. İçinde Turoğlu H. & Yiğitbaşoğlu, H. (Ed), Yasal ve Bilimsel Boyutlarıyla Kıyı (ss. 1-30). Jeomorfoloji Derneği Yayınları
  • Xu, H. (2006). Modification of Normalised difference water index NDWI to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033.
  • Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., Sharma, S. (2020). Global lake responses to climate change, Nature Reviews Earth & Environment, 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5
  • Yang, Y., Wu, J., Miao, Y., Wang, X., Lan, X., Zhang, Z. (2022). Lake Changes during the Past Five Decades in Central East Asia: Links with Climate Change and Climate Future Forecasting. Water, 14, 3661. https://doi.org/10.3390/w14223661
  • Yılmaz, O. S. (2023). Uzaktan Algılama Teknikleri ile Su Yüzeylerinin Tespit Edilmesinde Kullanılan Su Çıkarma İndekslerinin Performans Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(2), 242-261. https://doi.org/10.48123/rsgis.1256092
  • Yurteri, C., & Kurttaş, T. (2021). Uzaktan algılama ve CBS teknikleri kullanılarak Seyfe Gölü (Kırşehir) yüzey alanının zamansal değişiminin analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1115-1128. https://doi.org/10.17714/gumusfenbil.848873
  • Zhao, G., Li, Y., Zhou, L. Gao, H., (2022). Evaporative water loss of 1.42 million global lakes. Natural Commun 13, 3686. https://doi.org/10.1038/s41467-022-31125-6
  • Zuzek, P. J., Nairn, R. B., Thieme, S. J. (2003). Spatial and Temporal Considerations for Calculating Shoreline Change Rates in the Great Lakes Basin. Journal of Coastal Research, 125–146. http://www.jstor.org/stable/25736603

Uluabat Gölü yüzey alanının zamansal değişim analizi üzerinden DSAS ve yapay sinir ağları modellerine göre gelecek tahminleri

Yıl 2024, Sayı: 86, 25 - 43, 30.12.2024
https://doi.org/10.17211/tcd.1481187

Öz

Göller jeomorfolojik, hidrografik, klimatolojik ve antropojenik etkenlerle birçok özellik açısından değişimlere uğramaktadır. Bu çalışmanın amacı Uluabat Gölü’nün yüzey alanı ve kıyı çizgisi değişimini zamansal, mekânsal açıdan saptamak ve çeşitli tekniklerle farklı senaryolar kapsamında geleceğe dair öngörüler üretmektir. Çalışmada 1975-2020 arasında 5’er yıllık ile 2023 yılı ve 2022 yılındaki her aya ait birer Landsat uydu görüntüsü kullanılmıştır. Multispektral görüntüler üzerinden su indis analizleri ve eşik yöntemi ile göl yüzey alanı ve kıyı çizgisi çıkarımı yapılmıştır. Daha sonra gölde farklı değişimleri ve geleceğe dönük senaryoları üretmek için 1975-2023, 1985-2023 ve 2005-2023 dönemlerine Sayısal Kıyı Çizgisi Analiz Sisteminde (DSAS) yer alan NSM, SCE, EPR ve LLR istatistik analizleri uygulanmıştır. Dönem verileri temel alınarak Kalman Filter yöntemi ile 10 ve 20 yıllık göl yüzey alanı tahminleri 3 farklı senaryo kapsamında yapılmıştır. Uzun dönem ve aylık kıyı değişimi, DSAS analizleri, batimetri verisi ve geçiş olasılıklarıyla toplamda 8 farklı kriter, Yapay Sinir Ağları (YSA) yönteminde analiz edilmiş ve göl yüzey alanı tahminleri tekrar üretilmiştir. Bulgular, gölün yüzey alanının 1975’den 2023’e % 20 azaldığı ve güney kesimdeki deltada 3000 m’lik kıyı ilerlemesinin olduğunu göstermektedir. YSA modelinde 2023’e göre göl yüzey alanının 2033 yılında % 8, 2043 yılında ise % 13,6 küçüleceği tahmin edilmiştir.

Kaynakça

  • Akdeniz, H. B. & İnam, Ş. (2023). Spatio-temporal analysis of shoreline changes and future forecasting: the case of Küçük Menderes Delta, Türkiye. Jorunal Coast Conserv 27, 34. https://doi.org/10.1007/s11852-023-00966-8 Aksoy, E., Özsoy, G., Ulaş Karaata, E., Karaer, F., Kâtip, A., İleri, S., Onur, S., (2016). Ekosounder ve Gıs Teknikleri Kullanılarak Uluabat Gölü’nde Batimetrik Haritalama, 6. UZAKTAN ALGILAMA-CBS SEMPOZYUMU (UZAL-CBS 2016), 5-7 Ekim 2016, Adana (ss.348-356).
  • Aksoy, T. Sarı, S., Çabuk, A. (2019). Sulak Alanların Yönetimi Kapsamında Su İndeksinin Uzaktan Algılama İle Tespiti, Göller Yöresi. GSI Journals Serie B: Advancements in Business and Economics, 2 (1), https://dergipark.org.tr/tr/pub/abe/issue/44024/528568
  • Albarqouni, M. M., Yagmur, N., Bektas Balcik, F., Sekertekin, A. (2022). Assessment of Spatio-Temporal Changes in Water Surface Extents and Lake Surface Temperatures Using Google Earth Engine for Lakes Region, Türkiye. ISPRS International Journal of Geo-Information, 11(7), 407. https://doi.org/10.3390/ijgi11070407
  • Alevkayalı, Ç., Atayeter, Y., Yayla, O, Bilgin, T., Akpınar, H. (2023). Burdur Gölü’nde uzun dönemli kıyı çizgisi değişimleri ve iklim ilişkisi: Zamansal-mekânsal eğilimler ve tahminler. Türk Coğrafya Dergisi, (82), 37-50. https://doi.org/10.17211/tcd.1287976
  • Alfa, N. I., Adeofun, C. O., & Ologunorisa, E. T. (2008). Assessment of changes in aerial extent of Lake Chad using satellite remote sensing data. Journal of Applied Sciences and Environmental Management, 12, 101-107. https://doi.org/10.4314/jasem.v12i1.55580
  • Altan Aydın, F., & Doğu, A. F., (2018). Göl Seviye Değişimleri ve Nedenleri: Van Gölü Örneği, Sosyal Bilimler Enstitüsü Dergisi, The Journal of Social Sciences Institute, 41, 183-208.
  • Ataol, M., Kale, M.M. & Tekkanat, İ.S. (2019). Assessment of the changes in shoreline using digital shoreline analysis system: a case study of Kızılırmak Delta in northern Turkey from 1951 to 2017. Environmental Earth Science, 78, 579. https://doi.org/10.1007/s12665-019-8591-7
  • Ataol, M. & Onmuş, O. (2021). Wetland loss in Turkey over a hundred years: implications for conservation and management, Ecosystem Health And Sustainability, 7 (1), 1-13. https://dx.doi.org/10.1080/20964129.2021.1930587
  • Aydın, F., Erlat, E., Türkeş, M. (2020). Impact of climate variability on the surface of Lake Tuz (Turkey), 1985–2016. Reg Environ Change 20, 68. https://doi.org/10.1007/s10113-020-01656-z
  • Bahadır, M. (2013). Akşehir Gölü’nde Alansal Değişimlerin Uzaktan Algilama Teknikleri İle Belirlenmesi. Marmara Coğrafya Dergisi, (28), 246-275. https://dergipark.org.tr/tr/pub/marucog/issue/475/3933
  • Bombino, G., Barbaro, G., D’Agostino, D., Denisi, P., Foti, G., Labate, A., Zimbone, S. M. (2022). Shoreline change and coastal erosion: the role of check dams. first ındications from a case study in Calabria, Southern Italy, CATENA, 217. https://doi.org/10.1016/j.catena.2022.106494
  • Darwish, K., Smith, S.E., Torab, M., Monsef, H., Hussein, O. (2017). Geomorphological Changes along the Nile Delta Coastline between 1945 and 2015 Detected Using Satellite Remote Sensing and GIS. J. Coast. Res, 33(4), 786-794. http://dx.doi.org/10.2112/JCOASTRES-D-16-00056.1
  • Davidson, N. C., & Finlayson, C. M. (2018). Extent, Regional Distribution and Changes in Area of Different Classes of Wetlands. Marine and Freshwater Research 69, 1525-1533. http://dx.doi.org/10.1071/MF17377
  • Dereli, M. A., & Tercan, E. (2020). Assessment of Shoreline Changes using Historical Satellite Images and Geospatial Analysis along the Lake Salda in Turkey. Earth Sci Inform 13, 709-718. https://doi.org/10.1007/s12145-020-00460-x
  • Dinç, G., (2023). Unveiling shoreline dynamics and remarkable accretion rates in Lake Eğirdir (Turkey) using DSAS. The implications of climate change on lakes. Tema. Journal of Land Use, Mobility and Environment, 95, 95-108. http://dx.doi.org/10.6092/1970-9870/10111
  • Duru, U. (2017). Shoreline change assessment using multi-temporal satellite images: a case study of Lake Sapanca, NW Turkey. Environ Monit Assess 189, 385. https://doi.org/10.1007/s10661-017-6112-2
  • Elmacı, A., Topaç, F. O., Teksoy, A., Özengin, N., Başkaya, H. S., (2008). Uluabat Gölü Fizikokimyasal Özelliklerinin Yönetmelikler Çerçevesinde Değerlendirilmesi, Uludağ Üniversitesi Mühendislik-Mimarlık Fakültesi Dergisi, 15(1), 149-157. https://doi.org/10.17482/uujfe.34872
  • Gao, Bo-Cai (1996). NDWI-A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sensing of Environment. 58 (3), 257–266. http://dx.doi.org/10.1016/S00344257(96)00067-3
  • Göncü, S., Albek, E. A., & Albek, M. (2017). Burdur, Eğirdir, Sapanca ve Tuz Gölleri Su Seviyelerinin Nonparametrik İstatistik Yöntemler ile Eğilim Analizi. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 17(2), 555-570.
  • Grottolli, H. Biausque, M. Jackson, D. Cooper, J. A. (2023). Long-term drivers of shoreline change over two centuries on a headland-embayment beach. Earth Surface Processes and Landforms published by John Wiley & Sons, 1-21. https://doi.org/10.1002/esp.5641
  • Hakkou, M., Maanan, M., Belrhaba, T., El khalidi, K., El Ouai, D., Benmohammadi, A. (2018). Multi-decadal assessment of shoreline changes using geospatial tools and automatic computation in Kenitra coast, Morocco. Ocean & Coastal Management, 163, 232–239. https://doi.org/10.1016/j.ocecoaman.2018.07.003 Himmelstoss, E. A., Henderson, R. E., Kratzmann, M. G., Farris, A. S. (2018). Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide (No. 2018-1179). US Geological Survey.
  • Himmelstoss, E.A., Henderson, R.E., Kratzmann, M.G., and Farris, A.S., (2021). Digital Shoreline Analysis System (DSAS) version 5.1 user guide: U.S. Geological Survey Open-File Report 2021–1091. https://doi.org/10.3133/ofr20211091
  • Hossain, S. Yasir, M. Wang, P. Ullah, S. Jahan, M., Hui, S., Zhao, Z., (2021). Automatic shoreline extraction and change detection: A study on the southeast coast of Bangladesh. Marine Geology 441, 1-15. https://doi.org/10.1016/j.margeo.2021.106628
  • Hoşgören, M. Y. (2011). Hidrograyanın Ana Çizgileri, Çantay Kitabevi, İstanbul.
  • Hoşgören, M. Y. (1994). Türkiye’nin Gölleri, Türk Coğrafya Dergisi, 29, 19-51 https://doi.org/10.17211/tcd.70549
  • Hu, X. & Wang, Y. (2020). Coastline Fractal Dimension of Mainland, Island, and Estuaries Using Multi-temporal Landsat Remote Sensing Data from 1978 to 2018: A Case Study of the Pearl River Estuary Area. Remote Sensing, 12, 2482. https://doi.org/10.3390/rs12152482
  • İzbırak, R. (1990). Sular Coğrafyası. İstanbul: Milli Eğitim Basımevi.
  • Kale, M. M., (2018). Historical Shoreline Change Assessment Using DSAS: A Case Study of Lake Akşehir, SW Turkey, Current Debates in Sustaınable Archıtecture, Urban Design Environmental Studies (Edt. Doğan, A. Gönüllü, G.), (ss. 187-196) JOPEC Publication, ISBN:978-1-912503-33-9
  • Kale, M.M., Ataol, M., Tekkanat, İ.S. (2019). Assessment of shoreline alterations using a Digital Shoreline Analysis System: a case study of changes in the Yeşilırmak Delta in northern Turkey from 1953 to 2017. Environ Monit Assess 191, 398. https://doi.org/10.1007/s10661-019-7535-8
  • Kaya, Ö. A., & Kaplan, G. (2021). Uzaktan Algılama Yöntemleri İle Burdur Gölü’ndeki Alansal Değişiminin Belirlenmesi. Doğal Afetler ve Çevre Dergisi, 7(1), 1-12. https://doi.org/10.21324/dacd.760805
  • Kaya, Y., Sanli, F.B. & Abdikan, S. (2023). Determination of long-term volume change in lakes by integration of UAV and satellite data: the case of Lake Burdur in Türkiye. Environ Sci Pollut Res 30, 117729–117747. https://doi.org/10.1007/s11356-023-30369-z
  • Kazancı, N., & Görür, N., (1997). Güney Marmara Bölgesinin Neojen ve Kuvaterner Evrimi, TÜBİTAK Projesi, No: YDABÇAG-426/G, Ankara, 251 s.
  • Kazancı, N., Emre, Ö., İleri, Ö., Erkal, T., Şahbaz, A., Varol, B., Bayhan, E., (1998). Marmara Denizi güneyi kıyı ve kıyı ardı istiflerinin stratigrafisi, sedimantolojisi ve morfotektoniği, TÜBİTAK YDABÇAG Proje No. 598 / G, 1-117
  • Kazı, H., & Karabulut, M. (2023). Monitoring the shoreline changes of the Göksu Delta (Türkiye) using geographical information technologıes and predictions for the near future. International Journal of Geography and Geography Education (50), 329-352. https://doi.org/10.32003/igge.1304403
  • Khandelwal, A., Karpatne, A., Ravirathinam, P., Ghosh, R., Wei, Z., Dugan, H. A., Hanson, P. C., Kumar, V., (2022). ReaLSAT, a global dataset of reservoir and lake surface area variations. Sci Data 9, 356. https://doi.org/10.1038/s41597-022-01449-5
  • Khorshiddoust, A. M., Patel, N., Khalilzadeh, E., Bostanaba, A. S., Tajbar, S., (2022). A comparative study of the surface level changes of Urmia Lake and Aral Lake during the period of 1988 to 2018 using satellite images. Front. Earth Science. https://doi.org/10.1007/s11707-022-1010-5
  • Kılar, H. & Çiçek, İ. (2018). Göksu Deltası Kıyı Çizgisi Değişiminin DSAS Aracı ile Belirlenmesi. Coğrafi Bilimler Dergisi, 16 (1), 89-104. https://doi.org/10.1501/Cogbil_0000000192
  • Klein, I., Dietz, A. J., Gessner, U., Galayeva, A., Myrzakhmetov, A., Kuenzer, C. (2014). Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. International Journal of Applied Earth Observation and Geoinformation, 26, 335–349. https://doi.org/10.1016/j.jag.2013.08.004
  • Kohonen T. (1988). An Introduction to Neural Computing, Neural Networks, 1, 3-6.
  • Kuleli, T., Guneroglu, A., Karsli, F., Dihkan, M. (2011). Automaticdetection of shoreline change on coastal Ramsar wetlands of Turkey. Ocean Engineering, 38(10), 1141-1149. https://doi.org/10.1016/j.oceaneng.2011.05.006 Küçük, C., & Sarp, G. (2021). Evaluation of formation mechanism of lakes in terms of morphometric aspect; lakes region and their vicinity, SW of Turkey. Episodes, Journal of International Geoscience, 44(3), 285-297. https://doi.org/10.18814/epiiugs/2020/020089
  • Lazuardi, Z., Karim, A., Sugianto, S. (2022). Analisis Perubahan Garis Pantai Menggunakan Digital Shoreline Analysis System (DSAS) di Pesisir Timur Kota Sabang. Jurnal Ilmiah Mahasiswa Pertanian, 7(1). http://dx.doi.org/10.17969/jimfp.v7i1.18872
  • Lippman, R. (1987). An Introduction to Computing with Neural Nets.. IEEE ASSP. 4: 4-22. Livingstone, D. J., (2009). Artificial Neural Networks Methods and Applications, Humana Totowa, NJ https://doi.org/10.1007/978-1-60327-101-1
  • Liu, H., Chen, Y., Ye, Z., Li, Y., Zhang, O. (2019). Recent Lake Area Changes in Central Asia. Scientific Reposrt-Nature Research 9, 16277. https://doi.org/10.1038/s41598-019-52396-y
  • Long, J.W. & Plant, N.G., (2012). Extended Kalman Filter framework for forecasting shoreline evolution: Geophysical Research Letters, 39(13), 1-6.
  • Luo, S., Song, C., Ke, L., Zhan, P., Fan, C., Liu, K., (2022). Satellite laser altimetry reveals a net water mass gain in global lakes with spatial heterogeneity in the early 21st century. Geophysical Research Letters, 49, e2021GL096676. https://doi.org/10.1029/2021GL096676
  • Maltby, E., & T. Barker, (2009). The Wetlands Handbook, 2 Volume Set. John Wiley & Sons.
  • Mater, B., Turoğlu, H., Uludağ, M., Cürebal, İ., Yıldırım C., (2003). Uluabat-Manyas Gölleri ve Yakın Çevresinin Jeomorfolojik Gelişim Modellemesi, İTÜ Avrasya Yerbilimleri Enstitüsü, Kuvaterner Çalıştayı.
  • McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features, International Journal of Remote Sensing, 17:7, 1425-1432, http://doi.org/10.1080/01431169608948714
  • Messager, M. L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. (2016). Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature communications, 7(1), 13603. https://doi.org/10.1038/ncomms13603
  • Murray, J., Adam, E., Woodborne, S., Miller, D., Xulu, S., Evans, M. (2023). Monitoring shoreline changes along the southwestern coast of South Africa from 1937 to 2020 using varied remote sensing data and approaches. Remote Sensing, 15 (2), 317. https://doi.org/10.3390/rs15020317
  • Nassar, K., Mahmod, W. E., Fath, H., Masria, A., Nadaoka, K., Negm, A. (2019). Shoreline change detection using DSAS technique: Case of North Sinai coast, Egypt. Marine Georesources & Geotechnology, 37(1), 81–95. https://doi.org/10.1080/1064119X.2018.1448912.
  • Öztürk D., & Uzun, S. (2023). Kızılırmak Deltası Kıyı Çizgisinin EPR ve LRR Yöntemleriyle 1984–2022 Periyodunda Değişim Analizi ve 2030 Yılı Tahmini. Coğrafi Bilimler Dergisi, 21(2),306-339. https://doi.org/10.33688/aucbd.1310132
  • Palanisamy, P., Sivakumar, V., Velusamy, P., Natarajan, L. (2024). Spatio-temporal analysis of shoreline changes and future forecast using remote sensing, GIS and kalman filter model: A case study of Rio de Janeiro, Brazil. Journal of South American Earth Sciences, 133, 104701. https://doi.org/10.1016/j.jsames.2023.104701
  • Pardo-Pascual, J.E., Almonacid-Caballer, J., Ruiz, L.A., Palomar-Vázquez, J. (2012). Automatic extraction of shorelines from Landsat TM and ETM+ multi-temporal images with subpixel precision. Remote Sensing of Environment, 123, 1-11. https://doi.org/10.1016/j.rse.2012.02.024
  • Riggs, R. M., Allen, G. H., Brinkerhoff, C. B., Sikder, M. S., Wang, J. (2023). Turning lakes into river gauges using the LakeFlow algorithm. Geophysical Research Letters, 50, e2023GL103924. https://doi.org/10.1029/2023GL103924 Sakaoğlu, E., & Çepni, O., (2022). Türkiye’deki Tektonik Kökenli Ramsar Göllerinin Uzaktan Algılama Teknikleri ile Analizi, İksad Pulished House, Ankara.
  • Salihoglu, G. & Karaer, F. (2004). Ecological risk assessment and problem formulation for Lake Uluabat, a Ramsar State in Turkey, Environmental Management, 33(6), 899-910.
  • Shen, L & Li, C, (2010). Water body extraction from Landsat ETM+ imagery using adaboost algorithm 18th International Conference on Geoinformatics, IEEE (2010), 1-4. https://doi.org/10.1109/GEOINFORMATICS.010.5567762
  • Sikder, M. S., Wang, J., Allen, G. H., Sheng, Y., Yamazaki, D., Song, C., Ding, M., Crétaux, J.-F., Pavelsky, T. M. (2023). Lake-TopoCat: a global lake drainage topology and catchment database, Earth System. Science. Data, 15, 3483–3511, https://doi.org/10.5194/essd-15-3483-2023
  • Singh, K. V., Setia, R., Sahoo, S., Prasad, A., Pateriya, B. (2015). Evaluation of NDWI and MNDWI for assessment of waterlogging by integrating digital elevation model and groundwater level. Geocarto International, 1-12. https://doi.org/10.1080/10106049.2014.965757
  • Song, Y., Shen, Y., Xie, R., Li, J. (2021). A DSAS-based study of central shoreline change in Jiangsu over 45 years. Anthropocene Coasts, 4(1), 115-128. http://dx.doi.org/10.1139/anc-2020-0001
  • Şenol, H. İ., Kaya, Y., Yiğit, A. Y., Yakar, M. (2023). Extraction and geospatial analysis of the Hersek Lagoon shoreline with Sentinel-2 satellite data. Survey Review, 1–16. https://doi.org/10.1080/00396265.2023.2257969 Tağıl, Ş. (2007). Quantifying the change detection of the Uluabat wetland, Turkey, by use of landsat images. Ekoloji, 16(64), 9-20.
  • Tağıl, Ş., Alevkayalı, Ç., Aytan, B. (2023). Gediz Deltası Sulak Alanı Boyunca Kıyı Şeridi Evrimi ve Erozyon Hassasiyetinin Değerlendirilmesi. Ege Coğrafya Dergisi, 32 (Cumhuriyet’in 100. Yılı Özel Sayısı), 127-142. https://doi.org/10.51800/ecd.1322803
  • Tang, T. C., & Chi, L. C. (2005). Neural networks analysis in business failure prediction of chinese importers: a between-countries approach. Expert Systems with Applications, 29, 244–255.
  • Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment 8(2): 127-150.
  • Turoğlu, H., Uludağ, M., Mater, B., (2002). Geomorphic environmental changes at Uluabat and Manyas lakes (Souther Marmara region, Turkey) from neotectonics to present time, Forth International Conferance on Environmental Problems in Coastal Regions, COASTAL ENVİRONMENT IV, WIT Press, ISBN:1-85312-921-6, ISBN:1462-6098, UK.
  • Turoğlu, H. (2017). Deniz ve Göllerde Kıyı. İçinde Turoğlu H. & Yiğitbaşoğlu, H. (Ed), Yasal ve Bilimsel Boyutlarıyla Kıyı (ss. 1-30). Jeomorfoloji Derneği Yayınları
  • Xu, H. (2006). Modification of Normalised difference water index NDWI to enhance open water features in remotely sensed imagery. International Journal of Remote Sensing, 27(14), 3025-3033.
  • Woolway, R. I., Kraemer, B. M., Lenters, J. D., Merchant, C. J., O’Reilly, C. M., Sharma, S. (2020). Global lake responses to climate change, Nature Reviews Earth & Environment, 1, 388–403, https://doi.org/10.1038/s43017-020-0067-5
  • Yang, Y., Wu, J., Miao, Y., Wang, X., Lan, X., Zhang, Z. (2022). Lake Changes during the Past Five Decades in Central East Asia: Links with Climate Change and Climate Future Forecasting. Water, 14, 3661. https://doi.org/10.3390/w14223661
  • Yılmaz, O. S. (2023). Uzaktan Algılama Teknikleri ile Su Yüzeylerinin Tespit Edilmesinde Kullanılan Su Çıkarma İndekslerinin Performans Analizi. Türk Uzaktan Algılama ve CBS Dergisi, 4(2), 242-261. https://doi.org/10.48123/rsgis.1256092
  • Yurteri, C., & Kurttaş, T. (2021). Uzaktan algılama ve CBS teknikleri kullanılarak Seyfe Gölü (Kırşehir) yüzey alanının zamansal değişiminin analizi. Gümüşhane Üniversitesi Fen Bilimleri Dergisi, 11(4), 1115-1128. https://doi.org/10.17714/gumusfenbil.848873
  • Zhao, G., Li, Y., Zhou, L. Gao, H., (2022). Evaporative water loss of 1.42 million global lakes. Natural Commun 13, 3686. https://doi.org/10.1038/s41467-022-31125-6
  • Zuzek, P. J., Nairn, R. B., Thieme, S. J. (2003). Spatial and Temporal Considerations for Calculating Shoreline Change Rates in the Great Lakes Basin. Journal of Coastal Research, 125–146. http://www.jstor.org/stable/25736603
Toplam 73 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Coğrafi Bilgi Sistemleri, Limnoloji, Fiziki Coğrafya, Uzaktan Algılama
Bölüm Araştırma Makalesi
Yazarlar

Murat Uzun 0000-0003-2191-3936

Yayımlanma Tarihi 30 Aralık 2024
Gönderilme Tarihi 9 Mayıs 2024
Kabul Tarihi 14 Temmuz 2024
Yayımlandığı Sayı Yıl 2024 Sayı: 86

Kaynak Göster

APA Uzun, M. (2024). Uluabat Gölü yüzey alanının zamansal değişim analizi üzerinden DSAS ve yapay sinir ağları modellerine göre gelecek tahminleri. Türk Coğrafya Dergisi(86), 25-43. https://doi.org/10.17211/tcd.1481187

Yayıncı: Türk Coğrafya Kurumu