Araştırma Makalesi
BibTex RIS Kaynak Göster

Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri

Yıl 2021, Cilt: 3 Sayı: 2, 167 - 192, 20.12.2021
https://doi.org/10.46464/tdad.1014479

Öz

Bu çalışmada Ganos Fayı üzerinde kurulu MONGAN-1 ve MONGAN-2 sismik ağları ile kaydedilen mikro depremlerin moment tensör ve gerilme analizleri yapılmıştır. MONGAN-1 sismik ağı yaklaşık 10 km2’lik lokal bir alanda kurulu 40 adet kısa periyot deprem istasyonundan oluşur ve kullanılan depremlerin genel özelliği ağ dışı depremler olmalarıdır. Bu nedenle dar bir azimut aralığında adeta bir nokta alıcı gibi davranan sismik ağa ait kayıtlar kullanılarak azimutal dağılımın çözümler üzerindeki etkisi araştırılmıştır. Seçilen depremler Tekirdağ Baseni ile Ganos Fayı arasında kalan bölgede, Ekim 2017-Haziran 2020 tarihleri arasında meydana gelen, büyüklüğü 1.5≤Mw≤3.7 arasında değişen 61 adet mikro depremden oluşur. Depremlerden büyüklüğü 2.8≤ Mw≤3.7 arasında değişen 10 tanesinin geniş bant ulusal ağ kayıtları kullanılarak hem moment tensör hem de P dalgası ilk hareket yönlerinden odak mekanizmaları belirlenerek MONGAN ağı çözümleri ile karşılaştırılmıştır. Elde edilen odak mekanizmalarının doğrultu, eğim ve atım açılarında küçük farklar olsa da genellikle her deprem için elde edilen üç odak mekanizmasının da birbirleriyle uyumlu olduğu görülmüştür. Bölgedeki hız yapısını yüksek çözünürlüklü olarak temsil eden bir kabuk modeli ile azimutal dağılımın iyi olmadığı istasyon kayıtlarıyla mikro depremlerin moment tensör analizlerinin başarıyla uygulanabileceği görülmüştür. Gerilme analizi sonucunda σ1, σ2 ve σ3 asal gerilme eksenlerinin konumu sırasıyla 277.2/42.8, 87.7/46.7 ve 182.9/4.7 (azimut/dalım) olarak bulunmuştur. Bölgedeki gerilme oranı ise 0.60 olarak hesaplanmıştır.

Destekleyen Kurum

TÜBİTAK

Proje Numarası

118R019

Teşekkür

Bu çalışmada, TÜBİTAK tarafından desteklenen 118R019 numaralı “Ganos Fayı Üzerindeki 1912 Depremi Kırığının Güncel Etkinliğinin Görüntülenmesi” başlıklı proje kapsamında kurulan MONGAN sismik ağları tarafından kaydedilen deprem verileri kullanılmıştır. Yazarlar, verileri paylaştıkları için projede görev alan; Marco Bohnhoff, Hakan Alp, Stephan Bentz, Ali Pınar, Fatih Alver, Ömer Kılıçarslan ve Burçak Görgün’e teşekkür ederler. Şekillerdeki haritalar GMT programı (Wessel ve diğ. 2013) kullanılarak hazırlanmıştır.

Kaynakça

  • Abd el-aal A.K., Al-Enezi A., Saadalla H., Al-Jeri F., 2021. Tectonic and Anthropogenic Characteristics of the November 15, 2019 Micro Earthquakes Sequence, Kuwait, Geotectonics 55(1), 112-127.
  • Aksoy M.E., Meghraoui M., Vallee M., Cakir Z., 2010. Rupture characteristics of the A.D. 1912 Mürefte (Ganos) earthquake segment of the North Anatolian fault (western Turkey), Geology 38(11), 991-994.
  • Akyol N., Zhu L.P., Mitchell B.J., Sozbilir H., Kekovali K., 2006. Crustal structure and local seismicity in Western Anatolia, Geophysical Journal International 166,(3), 1259-1269.
  • Altunel E., Meghraou, M., Akyuz H.S., Dikbas A., 2004. Characteristics of the 1912 co-seismic rupture along the North Anatolian Fault Zone (Turkey): implications for the expected Marmara earthquake, Terra Nova (16), 198-204.
  • Ambraseys N.N., Jackson J.A., 1998, Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophysical Journal International 133(2), 390-406.
  • Ambraseys N.N., Jackson J.A., 2000. Seismicity of the Sea of Marmara (Turkey) since 1500, Erişim adresi: https://academic.oup.com/gji/article/141/3/F1/613019
  • Ardeleanu L., Radulian M., Sileny J., Panza G.F., 2005. Source parameters of weak crustal earthquakes of the Vrancea region from short-period waveform inversion, Pure and Applied Geophysics 162(3), 495-513.
  • Armijo R., Meyer B., Hubert A., Barka A., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematic, Geology 27(3), 267-270.
  • Armijo R., Pondard N., Meyer B., Ucarkus G., Lepinay B.M., Malavieille J., Dominguez S., Gustcher M., Schmidt S., Beck C., Cagatay N., Cakir Z., Imren C., Eris K., Natalin B., Ozalaybey S., Tolun L., Lefevre I., Seeber L., Gasperini L., Rangin C., Emre O. and Sarikavak K., 2005. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in İstanbul, Geochemistry Geophysics Geosystems 6 Q06009, doi:10.1029/2004GC000896.
  • Barros L.V., Carvalho J., Ferreira V.M., Albuquerque D.F., Von Huelsen M.G., Caixeta D.F., Fontenele D.P., 2014. Determination of source seismic parameters of micro-earthquakes with epicenter in the south of Minas Gerais State-Brazil, Sociedade Brasileira de Geofísica Este 1-3.
  • Başarır N., 2011. Reassessment of the Seismic Parameters from Historical Seismograms of 1912- Murefte-Sarkoy, 1935-Erdek-Marmara Island and 1963-Cinarcik Earthquakes, Master Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Geophysics, İstanbul, 226 p.
  • Bayrakci G., Laigle M., Becel A., Hirn A., Taymaz T., Yolsal-Cevikbilen S., SEISMARMARA team, 2013. 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian fault, Geophysical Journal International 194, 1335-1357.
  • Benetatos C., Malek J., Verga F., 2013. Moment tensor inversion for two micro-earthquakes occurring inside the Haje gas storage facilities, Czech Republic, Journal of Seismology 17(2), 557-577.
  • Bouchon M., 1981. A simple method to calculate Green’s functions for elastic layered media, Bulletin of the Seismological Society of America 71(4), 959-971.
  • Carvalho J., Barros L.V., Zahradnik J., 2016. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field, Journal of South American Earth Sciences 71, 333-343.
  • Chan A., Zoback M., 2007. The Role of Hydrocarbon Production on Land Subsidence and Fault Reactivation in the Louisiana Coastal Zone, Journal of Coastal Research 23, 771-786.
  • Christova C., Tsapanos T., 2000. Depth distribution of stresses in the Hokkaido Wadati-Benioff zone as deduced by inversion of earthquake focal mechanisms, Journal of Geodynamics 30(5), 557-573.
  • Coskun Z., 2021. Deformation Styles and Rates Along the North Anatolian Fault Zone in the Sea of Marmara Based on Onshore-Offshore Seismic, Geodetic and Geologic Data, PhD Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Earthquake Engineering, İstanbul,162 p.
  • Delvaux D., Barth A., 2010. African stress pattern from formal inversion of focal mechanism data, Tectonophysics 482 (1-4), 105-128.
  • Emre O., Duman T.Y., Ozalp S., Elmaci H., Olgun S., Saroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication. Erişim adresi: http://www.mta.gov.tr
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmac, H., Çan T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16 (8), 3229-3275.
  • Gurbuz C., Aktar M., Eyidogan H., Cisternas A., Haessler H., Barka A., Ergin M., Turkelli N., Polat O., Ucer B., Kuleli S., Baris¸ S., Kaypak B., Bekler T., Zor E., Bicmen F., Yoruk A., 2000. The seismotectonics of the Marmara Region (Turkey): Results from a microseismic experiment, Tectonophysics 316, 1-17.
  • Fojtikova L., Vavrycuk V., Cipciar A., Madaras J., 2010. Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia, Tectonophysics 492(1-4), 213-229.
  • Fojtikova L., Zahradnik J., 2014. A New Strategy for Weak Events in Sparse Networks: The First-Motion Polarity Solutions Constrained by Single-Station Waveform Inversion, Seismological Research Letters 85(6), 1265-1274.
  • Guilhem A., Hutchings L., Dreger D.S., Johnson L.R., 2014. Moment tensor inversions of M ∼ 3 earthquakes in the Geysers geothermal fields, California, Journal of Geophysical Research: Solid Earth 119(3), 2121-2137.
  • Irmak T. S., Doğan B., Yavuz E., Livaoğlu H., Sertçelik F., 2020. 22.01.2020 Akhisar-Manisa Depremi (Mw 5.5) ve Artçılarının Sismotektonik Analizi, Türk Deprem Araştırma Dergisi 2, 27-46.
  • Janssen C., Bohnhoff M., Vapnik Y., Gorgun E., Bulut F., Plessen B., Dresen G., 2009. Tectonic evolution of the Ganos segment of the North Anatolian Fault (NW Turkey), Journal of Structural Geology 31(1), 11-28.
  • Kalafat D., Gurbuz C., Ucer S.B., 1987. Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması, Deprem Araştırma Bülteni (59), 43-64.
  • Kalafat D., 1995. Anadolu’nun Tektonik Yapılarının Deprem Mekanizmaları Açısından İrdelenmesi. Doktora Tezi, İstanbul Üniversitesi, Deniz Bilimleri ve İşletmeciliği Enstitüsü, Deniz Jeolojisi ve Jeofiziği Ana Bilim Dalı, İstanbul, 412 s.
  • Karabulut H., Roumelioti Z., Benetatos C., Mutlu A. K., Ozalaybey S., Aktar M., Kiratzi A., 2006. A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (Northern Aegean Sea): Seismological evidence for the western continuation of the Ganos fault, Tectonophysics 412(3-4), 195-216.
  • Karabulut H., Schmittbuhl J., Ozalaybey S., Lengliné O., Komec-Mutlu A., Durand V., Bouchon M., Daniel G., Bouin M.P., 2011. Evolution of the seismicity in the eastern Marmara Sea a decade before and after the 17 August 1999 Izmit earthquake, Tectonophysics 510, 17-27.
  • Ketin İ., 1948. Ü ber die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeben des letzten Dezenniums, Geol. Rund. 36:77-83.
  • Kilic T., Utkucu M., 2012. Türkiye’deki M≥4.0 Depremler i̇çin 2007 ve 2008 Yıllarını Kapsayan Sismik Moment Tensör Katalogu, Yerbilimleri 33(3), 219-238.
  • Kilic T., 2009. Sismik Moment Tensör Analizi İle 2007-2008 Yıllarındaki M≥4,0 Türkiye Depremlerinin Kaynak Parametrelerinin Bulunması, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, 80 s.
  • Kikuchi M., Kanamori H., 1991. Inversion of complex body waves-III, Bulletin of the Seismological Society of America 81(6), 2335-2350.
  • Korkusuz Y., 2012. The Present-Day Stress States in The Marmara Region, Master Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Geophysics, İstanbul, 245 p.
  • Kumar R., Gupta S.C., Kumar A., 2015a. Determination and identification of focal mechanism solutions for Himalayan earthquakes from waveform inversion employing ISOLA software, Natural Hazards 76(2), 1163-1181.
  • Kumar R., Gupta S.C., Kumar A., 2015b. Effect of azimuthal coverage of an earthquake on moment tensor solutions estimated by waveform inversion, Arabian Journal of Geosciences 8(8), 5713-5726.
  • Langston C.A., Barker J.S., Pavlin G.B., 1982. Point-source inversion techniques, Physics of the Earth and Planetary Interiors 30(2-3), 228-241.
  • Li J., Kuleli H., Zhang H., Toksoz M., 2011. Focal Mechanism Determination of Induced Microearthquakes in an Oil Field Using Full Waveforms from Shallow and Deep Seismic Networks, Geophysics 76, 87.
  • Michael A.J., 1984. Determination of stress from slip data: Faults and folds, Journal of Geophysical Research: Solid Earth 89(B13), 11517-11526.
  • Michael A.J., 1987. Use of focal mechanisms to determine stress: A control study, Journal of Geophysical Research: Solid Earth 92(B1), 357-368.
  • Miyazawa M., Venkataraman A., Snieder R., Payne M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics 73(3), 15-21.
  • Mutlu A.K., 2020. Seismicity, focal mechanism, and stress tensor analysis of the Simav region, western Turkey, Open Geoscience 12(1), 479-490.
  • Okay A., Demirbag E., Kur H., Okay N., Kuscu İ., 1999. An active, deep marine strike-slip basin along the North Anatolian fault in Turkey, Tectonics 18(1), 129-147.
  • Okay A.I., Tuysuz O., Kaya S., 2004. From transpression to transtension: changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region, Tectonophysics 391(1-4), 259-282.
  • Orgulu G., 2011. Seismicity and source parameters for small-scale earthquakes along the splays of the North Anatolian Fault (NAF) in the Marmara Sea, Geophysical Journal International 184, 385-404.
  • Ozalaybey S., Ergin M., Aktar M., Tapirdamaz C., Bigmen F., and Yoruk A., 2002, The 1999 Izmit Earthquake Sequence in Turkey: Seismological and Tectonic Aspects, Bull. Seism. Soc. Am. 92, 316-386.
  • Pavoni N., 1961. Die Nordanatolische Horizontalverschiebung, Geol. Rund. 51,122-39.
  • Pinar A., Kuge K., Honkura Y., 2003. Moment tensor inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara, Geophysical Journal Internationa 153, 133-145.
  • Robertson E., 2008. Seismic Moment Tensor Solutions from GeoNet Data to Provide a Moment Magnitude Scale for New Zealand, Master Thesis, Victoria University of Wellington, School of Geography, Environment and Earth Sciences, Wellington,186 p.
  • Sarkar S., 2008. Reservoir Monitoring Using Induced Seismicity at a Petroleum Field in Oman, PhD Thesis, Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 261 p.
  • Seeber L., Emre O., Cormier M.H., Sorlien C.C., McHugh C.M.G., Polonia, A., Cagatay N., 2004. Uplift and subsidence from oblique slip: The Ganos-Marmara bend of the North Anatolian Transform, Western Turkey, Tectonophysics 391(1-4 SPEC.ISS.), 239-258.
  • Stein S., Wysession M., 2003. Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Geological Magazine 140(6), 733-734.
  • Sileny J., 2009. Resolution of non-double-couple mechanisms; simulation of hypocenter mislocation and velocity structure mismodeling, Bulletin of the Seismological Society of America 99, 2265-2272.
  • Sokos E., Zahradnik J., 2008. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences 34(8), 967-977.
  • Sokos E., Zahradnik J., 2013. Evaluating centroid‐moment‐tensor uncertainty in the new version of ISOLA software, Seismological Research Letters 84(4), 656-665.
  • Stanek F., Eisner L., Vesnaver A., 2017. Theoretical assessment of the full-moment-tensor resolvability for receiver arrays used in microseismic monitoring, Acta Geodynamica et Geomaterialia 14(2), 235-240.
  • Tuysuz O., Barka A., Yigitbas E. 1998. Geology of the Saros Graben: its implications on the evolution of the North Anatolian Fault in the Ganos-Saros region, NW Turkey, Tectonophysics 293, 105-126.
  • Udias A., Buforn E., 1996. Source mechanism of earthquakes from seismic waves. Third workshop on 3D modelling of seismic wave generation, propagation and their inversion, Trieste Italy.
  • Vavrycuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophysical Journal International 199(1), 69-77.
  • Villegas A.R.J., Zahradnik J., Nacif S., Spagnotto S., Winocur D., Leiva M.F., 2016. Waveform inversion and focal mechanisms of two weak earthquakes in Cordillera Principal (Argentina) between 35° and 35.5° S, Journal of South American Earth Sciences 71, 359-369.
  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013. Generic Mapping Tools: Improved version released, EOS Transactions American Geophysical Union 94, 409-410.
  • Yaltirak C., 1996. Ganos Fay Sistemi’nin tektonik tarihi, Türk. Petrol Jeol. Dern. Bül. 8,137-56.
  • Yaltirak C., Alpar, B., Yüce, H., 1998. Tectonic elements controlling the evolution of the Gulf of Saros (Northeastern Aegean Sea) Tectonophysics 300(1-4), 227-248.
  • Yamamoto Y., Takahashi N., Citak S., Kalafat D., Pinar A., Gurbuz C., Kaneda Y., 2015. Offshore seismicity in the western Marmara Sea, Turkey, revealed by ocean bottom observation, Earth Planets Space 67, 147.
  • Yilmazer M., 2003. Deprem Kaynak Parametrelerinin Online Belirlenmesi,Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Ana Bilim Dalı, İstanbul, 57 s.
  • Yu C., Vavrycuk V., Adamova P., Bohnhoff M., 2018. Moment Tensors of Induced Microearthquakes in The Geysers Geothermal Reservoir from Broadband Seismic Recordings: Implications for Faulting Regime, Stress Tensor, and Fluid Pressure, Journal of Geophysical Research: Solid Earth 123(10), 8748-8766.
  • Zahradnik J., Sokos E., 2018. ISOLA Code for Multiple-Point Source Modeling-Review (In: Moment Tensor Solutions-A Useful Tool for Seismotectonics, Editor: Sebastiano D'Amico, Springer, 763 p.), 1-28
  • URL-1; KRDAE-BDTİM, Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem ve Tsunami İnceleme Merkezi, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/2/deprem-verileri/sayisal-veriler
  • URL-2; AFAD, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı, Erişim adresi: http://tdvm.afad.gov.tr

Moment Tensor Analysis and Stress Analysis of Microearthquakes Occurred Between Ganos Fault and Tekirdag Basin

Yıl 2021, Cilt: 3 Sayı: 2, 167 - 192, 20.12.2021
https://doi.org/10.46464/tdad.1014479

Öz

In this study, moment tensor analyses of microearthquakes recorded with the MONGAN-1 and MONGAN-2 seismic networks deployed on the Ganos Fault are done. The MONGAN-1 seismic network consists of 40 short-period stations located in a local area of approximately 10 km2, and the general feature of the earthquakes used is that they are out of the network. The effect of the azimuthal coverage of the seismic network, behaving like a point receiver covering a narrow azimuthal range for moment tensor analysis of microearthquakes, is investigated. For this purpose, 61 microearthquakes with magnitudes varying between 1.5≤Mw≤3.7, occurred between October 2017 and June 2020 in the region between Tekirdağ Basin and Ganos Fault, are analyzed. Broadband national network records of 10 earthquakes with magnitudes ranging between 2.8≤Mw≤3.7 are used to determine the focal mechanisms using both moment tensor inversion and P wave first motion polarities techniques and then are compared with the MONGAN network’s solutions. Although there are minor differences in the strike, dip and rake angles of the focal mechanisms obtained, it is observed that the three focal mechanism analysis results are generally compatible with each other. Although the azimuthal coverage of the seismic network is not good, moment tensor inversions of the microearthquakes can be successfully applied with an accurate crustal model. As a result of the stress analysis, the principal stress axes orientations of σ1, σ2 and σ3 are obtained as 277.2/42.8, 87.7/46.7 and 182.9/4.7 (azimuth/dip), respectively. The stress ratio in the region is calculated as 0.60.

Proje Numarası

118R019

Kaynakça

  • Abd el-aal A.K., Al-Enezi A., Saadalla H., Al-Jeri F., 2021. Tectonic and Anthropogenic Characteristics of the November 15, 2019 Micro Earthquakes Sequence, Kuwait, Geotectonics 55(1), 112-127.
  • Aksoy M.E., Meghraoui M., Vallee M., Cakir Z., 2010. Rupture characteristics of the A.D. 1912 Mürefte (Ganos) earthquake segment of the North Anatolian fault (western Turkey), Geology 38(11), 991-994.
  • Akyol N., Zhu L.P., Mitchell B.J., Sozbilir H., Kekovali K., 2006. Crustal structure and local seismicity in Western Anatolia, Geophysical Journal International 166,(3), 1259-1269.
  • Altunel E., Meghraou, M., Akyuz H.S., Dikbas A., 2004. Characteristics of the 1912 co-seismic rupture along the North Anatolian Fault Zone (Turkey): implications for the expected Marmara earthquake, Terra Nova (16), 198-204.
  • Ambraseys N.N., Jackson J.A., 1998, Faulting associated with historical and recent earthquakes in the Eastern Mediterranean region, Geophysical Journal International 133(2), 390-406.
  • Ambraseys N.N., Jackson J.A., 2000. Seismicity of the Sea of Marmara (Turkey) since 1500, Erişim adresi: https://academic.oup.com/gji/article/141/3/F1/613019
  • Ardeleanu L., Radulian M., Sileny J., Panza G.F., 2005. Source parameters of weak crustal earthquakes of the Vrancea region from short-period waveform inversion, Pure and Applied Geophysics 162(3), 495-513.
  • Armijo R., Meyer B., Hubert A., Barka A., 1999. Westward propagation of the North Anatolian fault into the northern Aegean: Timing and kinematic, Geology 27(3), 267-270.
  • Armijo R., Pondard N., Meyer B., Ucarkus G., Lepinay B.M., Malavieille J., Dominguez S., Gustcher M., Schmidt S., Beck C., Cagatay N., Cakir Z., Imren C., Eris K., Natalin B., Ozalaybey S., Tolun L., Lefevre I., Seeber L., Gasperini L., Rangin C., Emre O. and Sarikavak K., 2005. Submarine fault scarps in the Sea of Marmara pull-apart (North Anatolian Fault): Implications for seismic hazard in İstanbul, Geochemistry Geophysics Geosystems 6 Q06009, doi:10.1029/2004GC000896.
  • Barros L.V., Carvalho J., Ferreira V.M., Albuquerque D.F., Von Huelsen M.G., Caixeta D.F., Fontenele D.P., 2014. Determination of source seismic parameters of micro-earthquakes with epicenter in the south of Minas Gerais State-Brazil, Sociedade Brasileira de Geofísica Este 1-3.
  • Başarır N., 2011. Reassessment of the Seismic Parameters from Historical Seismograms of 1912- Murefte-Sarkoy, 1935-Erdek-Marmara Island and 1963-Cinarcik Earthquakes, Master Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Geophysics, İstanbul, 226 p.
  • Bayrakci G., Laigle M., Becel A., Hirn A., Taymaz T., Yolsal-Cevikbilen S., SEISMARMARA team, 2013. 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian fault, Geophysical Journal International 194, 1335-1357.
  • Benetatos C., Malek J., Verga F., 2013. Moment tensor inversion for two micro-earthquakes occurring inside the Haje gas storage facilities, Czech Republic, Journal of Seismology 17(2), 557-577.
  • Bouchon M., 1981. A simple method to calculate Green’s functions for elastic layered media, Bulletin of the Seismological Society of America 71(4), 959-971.
  • Carvalho J., Barros L.V., Zahradnik J., 2016. Focal mechanisms and moment magnitudes of micro-earthquakes in central Brazil by waveform inversion with quality assessment and inference of the local stress field, Journal of South American Earth Sciences 71, 333-343.
  • Chan A., Zoback M., 2007. The Role of Hydrocarbon Production on Land Subsidence and Fault Reactivation in the Louisiana Coastal Zone, Journal of Coastal Research 23, 771-786.
  • Christova C., Tsapanos T., 2000. Depth distribution of stresses in the Hokkaido Wadati-Benioff zone as deduced by inversion of earthquake focal mechanisms, Journal of Geodynamics 30(5), 557-573.
  • Coskun Z., 2021. Deformation Styles and Rates Along the North Anatolian Fault Zone in the Sea of Marmara Based on Onshore-Offshore Seismic, Geodetic and Geologic Data, PhD Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Earthquake Engineering, İstanbul,162 p.
  • Delvaux D., Barth A., 2010. African stress pattern from formal inversion of focal mechanism data, Tectonophysics 482 (1-4), 105-128.
  • Emre O., Duman T.Y., Ozalp S., Elmaci H., Olgun S., Saroglu F., 2013. 1/1.250.000 scaled Turkey active fault map, General Directorate of Mineral Research and Exploration Special Publication. Erişim adresi: http://www.mta.gov.tr
  • Emre O., Duman T.Y., Ozalp S., Saroglu F., Olgun S., Elmac, H., Çan T., 2018. Active fault database of Turkey, Bulletin of Earthquake Engineering 16 (8), 3229-3275.
  • Gurbuz C., Aktar M., Eyidogan H., Cisternas A., Haessler H., Barka A., Ergin M., Turkelli N., Polat O., Ucer B., Kuleli S., Baris¸ S., Kaypak B., Bekler T., Zor E., Bicmen F., Yoruk A., 2000. The seismotectonics of the Marmara Region (Turkey): Results from a microseismic experiment, Tectonophysics 316, 1-17.
  • Fojtikova L., Vavrycuk V., Cipciar A., Madaras J., 2010. Focal mechanisms of micro-earthquakes in the Dobrá Voda seismoactive area in the Malé Karpaty Mts. (Little Carpathians), Slovakia, Tectonophysics 492(1-4), 213-229.
  • Fojtikova L., Zahradnik J., 2014. A New Strategy for Weak Events in Sparse Networks: The First-Motion Polarity Solutions Constrained by Single-Station Waveform Inversion, Seismological Research Letters 85(6), 1265-1274.
  • Guilhem A., Hutchings L., Dreger D.S., Johnson L.R., 2014. Moment tensor inversions of M ∼ 3 earthquakes in the Geysers geothermal fields, California, Journal of Geophysical Research: Solid Earth 119(3), 2121-2137.
  • Irmak T. S., Doğan B., Yavuz E., Livaoğlu H., Sertçelik F., 2020. 22.01.2020 Akhisar-Manisa Depremi (Mw 5.5) ve Artçılarının Sismotektonik Analizi, Türk Deprem Araştırma Dergisi 2, 27-46.
  • Janssen C., Bohnhoff M., Vapnik Y., Gorgun E., Bulut F., Plessen B., Dresen G., 2009. Tectonic evolution of the Ganos segment of the North Anatolian Fault (NW Turkey), Journal of Structural Geology 31(1), 11-28.
  • Kalafat D., Gurbuz C., Ucer S.B., 1987. Batı Türkiye’de Kabuk ve Üst Manto Yapısının Araştırılması, Deprem Araştırma Bülteni (59), 43-64.
  • Kalafat D., 1995. Anadolu’nun Tektonik Yapılarının Deprem Mekanizmaları Açısından İrdelenmesi. Doktora Tezi, İstanbul Üniversitesi, Deniz Bilimleri ve İşletmeciliği Enstitüsü, Deniz Jeolojisi ve Jeofiziği Ana Bilim Dalı, İstanbul, 412 s.
  • Karabulut H., Roumelioti Z., Benetatos C., Mutlu A. K., Ozalaybey S., Aktar M., Kiratzi A., 2006. A source study of the 6 July 2003 (Mw 5.7) earthquake sequence in the Gulf of Saros (Northern Aegean Sea): Seismological evidence for the western continuation of the Ganos fault, Tectonophysics 412(3-4), 195-216.
  • Karabulut H., Schmittbuhl J., Ozalaybey S., Lengliné O., Komec-Mutlu A., Durand V., Bouchon M., Daniel G., Bouin M.P., 2011. Evolution of the seismicity in the eastern Marmara Sea a decade before and after the 17 August 1999 Izmit earthquake, Tectonophysics 510, 17-27.
  • Ketin İ., 1948. Ü ber die tektonisch-mechanischen Folgerungen aus den grossen anatolischen Erdbeben des letzten Dezenniums, Geol. Rund. 36:77-83.
  • Kilic T., Utkucu M., 2012. Türkiye’deki M≥4.0 Depremler i̇çin 2007 ve 2008 Yıllarını Kapsayan Sismik Moment Tensör Katalogu, Yerbilimleri 33(3), 219-238.
  • Kilic T., 2009. Sismik Moment Tensör Analizi İle 2007-2008 Yıllarındaki M≥4,0 Türkiye Depremlerinin Kaynak Parametrelerinin Bulunması, Yüksek Lisans Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, 80 s.
  • Kikuchi M., Kanamori H., 1991. Inversion of complex body waves-III, Bulletin of the Seismological Society of America 81(6), 2335-2350.
  • Korkusuz Y., 2012. The Present-Day Stress States in The Marmara Region, Master Thesis, Boğaziçi University, Kandilli Observatory and Earthquake Research Institute, Graduate Program in Geophysics, İstanbul, 245 p.
  • Kumar R., Gupta S.C., Kumar A., 2015a. Determination and identification of focal mechanism solutions for Himalayan earthquakes from waveform inversion employing ISOLA software, Natural Hazards 76(2), 1163-1181.
  • Kumar R., Gupta S.C., Kumar A., 2015b. Effect of azimuthal coverage of an earthquake on moment tensor solutions estimated by waveform inversion, Arabian Journal of Geosciences 8(8), 5713-5726.
  • Langston C.A., Barker J.S., Pavlin G.B., 1982. Point-source inversion techniques, Physics of the Earth and Planetary Interiors 30(2-3), 228-241.
  • Li J., Kuleli H., Zhang H., Toksoz M., 2011. Focal Mechanism Determination of Induced Microearthquakes in an Oil Field Using Full Waveforms from Shallow and Deep Seismic Networks, Geophysics 76, 87.
  • Michael A.J., 1984. Determination of stress from slip data: Faults and folds, Journal of Geophysical Research: Solid Earth 89(B13), 11517-11526.
  • Michael A.J., 1987. Use of focal mechanisms to determine stress: A control study, Journal of Geophysical Research: Solid Earth 92(B1), 357-368.
  • Miyazawa M., Venkataraman A., Snieder R., Payne M.A., 2008. Analysis of microearthquake data at Cold Lake and its applications to reservoir monitoring, Geophysics 73(3), 15-21.
  • Mutlu A.K., 2020. Seismicity, focal mechanism, and stress tensor analysis of the Simav region, western Turkey, Open Geoscience 12(1), 479-490.
  • Okay A., Demirbag E., Kur H., Okay N., Kuscu İ., 1999. An active, deep marine strike-slip basin along the North Anatolian fault in Turkey, Tectonics 18(1), 129-147.
  • Okay A.I., Tuysuz O., Kaya S., 2004. From transpression to transtension: changes in morphology and structure around a bend on the North Anatolian Fault in the Marmara region, Tectonophysics 391(1-4), 259-282.
  • Orgulu G., 2011. Seismicity and source parameters for small-scale earthquakes along the splays of the North Anatolian Fault (NAF) in the Marmara Sea, Geophysical Journal International 184, 385-404.
  • Ozalaybey S., Ergin M., Aktar M., Tapirdamaz C., Bigmen F., and Yoruk A., 2002, The 1999 Izmit Earthquake Sequence in Turkey: Seismological and Tectonic Aspects, Bull. Seism. Soc. Am. 92, 316-386.
  • Pavoni N., 1961. Die Nordanatolische Horizontalverschiebung, Geol. Rund. 51,122-39.
  • Pinar A., Kuge K., Honkura Y., 2003. Moment tensor inversion of recent small to moderate sized earthquakes: implications for seismic hazard and active tectonics beneath the Sea of Marmara, Geophysical Journal Internationa 153, 133-145.
  • Robertson E., 2008. Seismic Moment Tensor Solutions from GeoNet Data to Provide a Moment Magnitude Scale for New Zealand, Master Thesis, Victoria University of Wellington, School of Geography, Environment and Earth Sciences, Wellington,186 p.
  • Sarkar S., 2008. Reservoir Monitoring Using Induced Seismicity at a Petroleum Field in Oman, PhD Thesis, Massachusetts Institute of Technology, Dept. of Earth, Atmospheric, and Planetary Sciences, 261 p.
  • Seeber L., Emre O., Cormier M.H., Sorlien C.C., McHugh C.M.G., Polonia, A., Cagatay N., 2004. Uplift and subsidence from oblique slip: The Ganos-Marmara bend of the North Anatolian Transform, Western Turkey, Tectonophysics 391(1-4 SPEC.ISS.), 239-258.
  • Stein S., Wysession M., 2003. Introduction to Seismology, Earthquakes, and Earth Structure, Blackwell Publishing, Geological Magazine 140(6), 733-734.
  • Sileny J., 2009. Resolution of non-double-couple mechanisms; simulation of hypocenter mislocation and velocity structure mismodeling, Bulletin of the Seismological Society of America 99, 2265-2272.
  • Sokos E., Zahradnik J., 2008. ISOLA a Fortran code and a Matlab GUI to perform multiple-point source inversion of seismic data, Computers & Geosciences 34(8), 967-977.
  • Sokos E., Zahradnik J., 2013. Evaluating centroid‐moment‐tensor uncertainty in the new version of ISOLA software, Seismological Research Letters 84(4), 656-665.
  • Stanek F., Eisner L., Vesnaver A., 2017. Theoretical assessment of the full-moment-tensor resolvability for receiver arrays used in microseismic monitoring, Acta Geodynamica et Geomaterialia 14(2), 235-240.
  • Tuysuz O., Barka A., Yigitbas E. 1998. Geology of the Saros Graben: its implications on the evolution of the North Anatolian Fault in the Ganos-Saros region, NW Turkey, Tectonophysics 293, 105-126.
  • Udias A., Buforn E., 1996. Source mechanism of earthquakes from seismic waves. Third workshop on 3D modelling of seismic wave generation, propagation and their inversion, Trieste Italy.
  • Vavrycuk V., 2014. Iterative joint inversion for stress and fault orientations from focal mechanisms, Geophysical Journal International 199(1), 69-77.
  • Villegas A.R.J., Zahradnik J., Nacif S., Spagnotto S., Winocur D., Leiva M.F., 2016. Waveform inversion and focal mechanisms of two weak earthquakes in Cordillera Principal (Argentina) between 35° and 35.5° S, Journal of South American Earth Sciences 71, 359-369.
  • Wessel P., Smith W.H.F., Scharroo R., Luis J.F., Wobbe F., 2013. Generic Mapping Tools: Improved version released, EOS Transactions American Geophysical Union 94, 409-410.
  • Yaltirak C., 1996. Ganos Fay Sistemi’nin tektonik tarihi, Türk. Petrol Jeol. Dern. Bül. 8,137-56.
  • Yaltirak C., Alpar, B., Yüce, H., 1998. Tectonic elements controlling the evolution of the Gulf of Saros (Northeastern Aegean Sea) Tectonophysics 300(1-4), 227-248.
  • Yamamoto Y., Takahashi N., Citak S., Kalafat D., Pinar A., Gurbuz C., Kaneda Y., 2015. Offshore seismicity in the western Marmara Sea, Turkey, revealed by ocean bottom observation, Earth Planets Space 67, 147.
  • Yilmazer M., 2003. Deprem Kaynak Parametrelerinin Online Belirlenmesi,Yüksek Lisans Tezi, İstanbul Üniversitesi, Fen Bilimleri Enstitüsü, Jeofizik Mühendisliği Ana Bilim Dalı, İstanbul, 57 s.
  • Yu C., Vavrycuk V., Adamova P., Bohnhoff M., 2018. Moment Tensors of Induced Microearthquakes in The Geysers Geothermal Reservoir from Broadband Seismic Recordings: Implications for Faulting Regime, Stress Tensor, and Fluid Pressure, Journal of Geophysical Research: Solid Earth 123(10), 8748-8766.
  • Zahradnik J., Sokos E., 2018. ISOLA Code for Multiple-Point Source Modeling-Review (In: Moment Tensor Solutions-A Useful Tool for Seismotectonics, Editor: Sebastiano D'Amico, Springer, 763 p.), 1-28
  • URL-1; KRDAE-BDTİM, Boğaziçi Üniversitesi Kandilli Rasathanesi ve Deprem Araştırma Enstitüsü Bölgesel Deprem ve Tsunami İnceleme Merkezi, Erişim adresi: http://www.koeri.boun.edu.tr/sismo/2/deprem-verileri/sayisal-veriler
  • URL-2; AFAD, T.C. İçişleri Bakanlığı Afet ve Acil Durum Yönetimi Başkanlığı Deprem Dairesi Başkanlığı, Erişim adresi: http://tdvm.afad.gov.tr
Toplam 71 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Yer Bilimleri ve Jeoloji Mühendisliği (Diğer), Jeoloji (Diğer)
Bölüm Araştırma Makalesi
Yazarlar

Burçin Didem Tamtaş 0000-0001-7713-5067

Esref Yalcınkaya 0000-0003-0593-0656

Ethem Görgün Bu kişi benim 0000-0002-4563-3296

Proje Numarası 118R019
Yayımlanma Tarihi 20 Aralık 2021
Gönderilme Tarihi 25 Ekim 2021
Yayımlandığı Sayı Yıl 2021 Cilt: 3 Sayı: 2

Kaynak Göster

APA Tamtaş, B. D., Yalcınkaya, E., & Görgün, E. (2021). Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri. Türk Deprem Araştırma Dergisi, 3(2), 167-192. https://doi.org/10.46464/tdad.1014479
AMA Tamtaş BD, Yalcınkaya E, Görgün E. Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri. TDAD. Aralık 2021;3(2):167-192. doi:10.46464/tdad.1014479
Chicago Tamtaş, Burçin Didem, Esref Yalcınkaya, ve Ethem Görgün. “Ganos Fayı Ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör Ve Gerilme Analizleri”. Türk Deprem Araştırma Dergisi 3, sy. 2 (Aralık 2021): 167-92. https://doi.org/10.46464/tdad.1014479.
EndNote Tamtaş BD, Yalcınkaya E, Görgün E (01 Aralık 2021) Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri. Türk Deprem Araştırma Dergisi 3 2 167–192.
IEEE B. D. Tamtaş, E. Yalcınkaya, ve E. Görgün, “Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri”, TDAD, c. 3, sy. 2, ss. 167–192, 2021, doi: 10.46464/tdad.1014479.
ISNAD Tamtaş, Burçin Didem vd. “Ganos Fayı Ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör Ve Gerilme Analizleri”. Türk Deprem Araştırma Dergisi 3/2 (Aralık 2021), 167-192. https://doi.org/10.46464/tdad.1014479.
JAMA Tamtaş BD, Yalcınkaya E, Görgün E. Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri. TDAD. 2021;3:167–192.
MLA Tamtaş, Burçin Didem vd. “Ganos Fayı Ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör Ve Gerilme Analizleri”. Türk Deprem Araştırma Dergisi, c. 3, sy. 2, 2021, ss. 167-92, doi:10.46464/tdad.1014479.
Vancouver Tamtaş BD, Yalcınkaya E, Görgün E. Ganos Fayı ile Tekirdağ Baseni Arasında Meydana Gelen Mikro Depremlerin Moment Tensör ve Gerilme Analizleri. TDAD. 2021;3(2):167-92.

AÇIK ERİŞİM ve LİSANS


Bu derginin içeriği Creative Commons Attribution 4.0 International Non-Commercial License'a tabidir.




Flag Counter