Araştırma Makalesi
BibTex RIS Kaynak Göster

Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit

Yıl 2024, , 104 - 110, 26.03.2024
https://doi.org/10.46810/tdfd.1386233

Öz

Upland cotton is the most widely cultivated among cotton species and is the best natural fiber source for the textile industry. However, abiotic stress, particularly drought stress, adversily affects important cotton planting regions. This study uses phenotypic drought markers to ascertain the tolerances of some advanced cotton lines under the limited irrigation conditions obtained from the drought-tolerant variety development breeding program. The study was conducted according to the randomized plot design with three replications. A total of 16 genotypes were used, with fourteen lines selected from the F2 segregation stage of the drought-tolerant variety breeding program, and two varieties used as control varieties. Variance analysis (ANOVA) was conducted, the differences between the means were found to be significant (P<0.01). The highest root length (RL) was recorded in Aras 24 genotype, while the lowest was in Aras28. Aras 40 showed the highest root weight (RW) value, followed by Aras 24 and TEX (control). The lowest RW values were seen in Aras 28 and Aras 29. Regarding lateral fresh weight (LFW), Aras 28 recorded the lowest, while Aras 24 recorded the highest value. Lastly, Aras 41 showed the highest relative water content (RWC) value of 92, followed by Aras 38 and TEX. In conclusion, if the breeding program is continued with Aras 41, Aras 40, and Aras 24 varieties, it will significantly contribute to the goal.

Kaynakça

  • Li, F., Fan, G., Lu, C. et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530 (2015). https://doi.org/10.1038/nbt.3208.
  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature genetics. 2019, Apr;51(4):739-48.
  • Anonymous. Economic Survey, Pakistan Bureau of Statistics, Agriculture.2017. Chapter-2. Available online at: http://www.finance.gov.pk/survey/chapter_10/02_ agriculture.pdf.
  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP. Alterations in photosynthetic pigments, protein, and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports. 2017, Apr;1(1):37-48.
  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics.2014, Feb;127(2):283-95.
  • Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya HA. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017;7(3):279-86.
  • Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3: 347. 2012.
  • Saad M, Nazeer W, Naeem M, Sarwar M, Zia ZU, Tipu AL, Hussain K, Hossain MF, Ahmad F. Morpho-Physiological Indicators for Selection of High-Yielding Cotton (Gossypium Hirsutum L.) Cultivars. Bangladesh Journal of Botany. 2022. Mar 31;51(1):17-22.
  • Santos IG, Teodoro PE, Farias FC, Farias FJ, de CARVALHO LP, Rodrigues JI, Cruz CD. Genetic diversity among cotton cultivars in two environments in the State of Mato Grosso.
  • Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, Li L, Zhang D, Guo W. Genome-wide association studies reveal genetic variation and candidate genes of drought stress- related traits in cotton (Gossypium hirsutum L.). Frontiers in Plant Science. 2018, Sep 3;9:1276.
  • Veesar NF, Jatoi WA, Gandahi N, Aisha G, Solangi AH, Memon S. Evaluation of Cotton Genotypes for Drought Tolerance and Their Correlation Study at Seedling Stage. Biomedical Journal of Scientific & Technical Research. 2020. 29(1):22090-9.
  • Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy KR. Assessing Morphological characteristics of elite cotton lines from different breeding programs for low temperature and drought tolerance. J Agron Crop Sci.2018, 204:467–476.
  • Megha BR, Mummigatti UV, Chimmad VP, Aladakatti YR. Evaluation of hirsutum cotton genotypes for water stress using peg-6000 by slanting glass plate technique. Int J Pure Appl Biosci. 2017, 5:740–50.
  • Singh B, Raja Reddy K, Redoña ED, Walker T 2017. Developing a screening tool for osmotic stress tolerance classification of rice cultivars based on in vitro seed germination. Crop Sci.2017, 57:387–394. doi: 10.2135/cropsci2016.03.0196.
  • Sekmen AH, Ozgur R, Uzilday B, Turkan I. Reactive oxygen species scavenging Capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot. 2014, 99:141–149.
  • Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M. Down-regulation of CBP 80 gene expression as a strategy to engineer a drought-tolerant potato. Plant biotechnology journal. 2013, May;11(4):459-69.
  • JMP®, Version <17>. SAS Institute Inc., Cary, NC, 1989–2021.
  • Percy RG, Cantrell RG, Zhang J. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Science. 2006 May;46(3):1311-7.
  • Abdelraheem A, Hughs SE, Jones DC, Zhang J. Genetic analysis and quantitative trait locus mapping of PEG‐induced osmotic stress tolerance in cotton. Plant Breeding. 2015 Feb;134(1):111-20.
  • Levi A, Paterson AH, Barak V, Yakir D, Wang B, Chee PW, Saranga Y. Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Molecular Breeding. 2009 Feb; 23:179-95.
  • Wang R, Ji S, Zhang P, Meng Y, Wang Y, Chen B, Zhou Z. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science. 2016 May;56(3):1265-76.
  • Zhang D, Luo Z, Liu S, Li W, Dong H. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research. 2016 Oct 1; 197:1-9.
  • Nasimi RA, Khan IA, Iqbal MA, Khan AA. Genetic analysis of drought tolerance with respect to fiber traits in upland cotton. Genet Mol Res. 2016 Oct 5;15(4):1-6.
  • Pauli D, Andrade-Sanchez P, Carmo-Silva AE, Gazave E, French AN, Heun J, Hunsaker DJ, Lipka AE, Setter TL, Strand RJ, Thorp KR. Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton. G3: Genes, Genomes, Genetics. 2016 Apr 1;6(4):865-79.
  • Dabbert TA, Gore MA. Challenges and perspectives on improving heat and drought stress resilience in cotton. Journal of Cotton Science. 2014;18(3):393-409.
  • Abdelraheem A, Fang DD, Zhang J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of Upland cotton under the greenhouse and field conditions. Euphytica, 2017 214(1). https://doi.org/10.1007/s10681-017-2095-x.
  • Zahid Z, Khan MK, Hameed A, Akhtar M, Ditta A, Hassan HM, Farid G. Dissection of drought tolerance in upland cotton through morpho-physiological and biochemical traits at the seedling stage. Frontiers in Plant Science.2021. Mar 12;12: 627107.
  • Lynch JP. Harnessing root architecture to address global challenges. Plant J. 2022,109:415–431. doi: 10.1111/tpj.15560.
  • Abdelraheem A, Esmaeili N, O’Connell M, & Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products,2019 pp. 130, 118–129. doi:10.1016/j. indcrop.2018.12.070.
  • Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of plant physiology. 2014, Nov 1;171(17).
  • Riaz M, Farooq J, Sakhawat G, Mahmood A, Sadiq MA, Yaseen M. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genet. Mol. 2013, Res. Feb 27;12(1):552-61.
  • Brito GG, Sofiatti V, Lima MM, Carvalho LP, Silva Filho JL. Physiological traits for drought phenotyping in cotton. Acta Scientiarum. Agronomy. 2011, 33:117-25.
  • Akbar M, Hussain SB. Assessment of drought-tolerant cotton genotypes based on seedling & physiological attributes at different moisture levels. Pure and Applied Biology. 2019. (PAB). 2019 Feb 27;8(1):93-107.
  • Eid MA, El-hady MA, Abdelkader MA, Abd-Elkrem YM, El-Gabry YA, El-temsah ME, ElAreed SR, Rady MM, Alamer KH, Alqubaie AI, Ali EF. 2022.ResponseinPhysiological Traits and Antioxidant Capacity of Two Cotton Cultivars under Water Limitations. Agronomy.2022, Mar 26;12(4):803.
Yıl 2024, , 104 - 110, 26.03.2024
https://doi.org/10.46810/tdfd.1386233

Öz

Kaynakça

  • Li, F., Fan, G., Lu, C. et al. Genome sequence of cultivated Upland cotton (Gossypium hirsutum TM-1) provides insights into genome evolution. Nat Biotechnol 33, 524–530 (2015). https://doi.org/10.1038/nbt.3208.
  • Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K. Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nature genetics. 2019, Apr;51(4):739-48.
  • Anonymous. Economic Survey, Pakistan Bureau of Statistics, Agriculture.2017. Chapter-2. Available online at: http://www.finance.gov.pk/survey/chapter_10/02_ agriculture.pdf.
  • Parida AK, Dagaonkar VS, Phalak MS, Umalkar GV, Aurangabadkar LP. Alterations in photosynthetic pigments, protein, and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports. 2017, Apr;1(1):37-48.
  • Tyagi P, Gore MA, Bowman DT, Campbell BT, Udall JA, Kuraparthy V. Genetic diversity and population structure in the US Upland cotton (Gossypium hirsutum L.). Theoretical and Applied Genetics.2014, Feb;127(2):283-95.
  • Bhandari HR, Bhanu AN, Srivastava K, Singh MN, Shreya HA. Assessment of genetic diversity in crop plants-an overview. Adv. Plants Agric. Res. 2017;7(3):279-86.
  • Tuberosa R. Phenotyping for drought tolerance of crops in the genomics era. Front. Physiol. 3: 347. 2012.
  • Saad M, Nazeer W, Naeem M, Sarwar M, Zia ZU, Tipu AL, Hussain K, Hossain MF, Ahmad F. Morpho-Physiological Indicators for Selection of High-Yielding Cotton (Gossypium Hirsutum L.) Cultivars. Bangladesh Journal of Botany. 2022. Mar 31;51(1):17-22.
  • Santos IG, Teodoro PE, Farias FC, Farias FJ, de CARVALHO LP, Rodrigues JI, Cruz CD. Genetic diversity among cotton cultivars in two environments in the State of Mato Grosso.
  • Hou S, Zhu G, Li Y, Li W, Fu J, Niu E, Li L, Zhang D, Guo W. Genome-wide association studies reveal genetic variation and candidate genes of drought stress- related traits in cotton (Gossypium hirsutum L.). Frontiers in Plant Science. 2018, Sep 3;9:1276.
  • Veesar NF, Jatoi WA, Gandahi N, Aisha G, Solangi AH, Memon S. Evaluation of Cotton Genotypes for Drought Tolerance and Their Correlation Study at Seedling Stage. Biomedical Journal of Scientific & Technical Research. 2020. 29(1):22090-9.
  • Singh B, Norvell E, Wijewardana C, Wallace T, Chastain D, Reddy KR. Assessing Morphological characteristics of elite cotton lines from different breeding programs for low temperature and drought tolerance. J Agron Crop Sci.2018, 204:467–476.
  • Megha BR, Mummigatti UV, Chimmad VP, Aladakatti YR. Evaluation of hirsutum cotton genotypes for water stress using peg-6000 by slanting glass plate technique. Int J Pure Appl Biosci. 2017, 5:740–50.
  • Singh B, Raja Reddy K, Redoña ED, Walker T 2017. Developing a screening tool for osmotic stress tolerance classification of rice cultivars based on in vitro seed germination. Crop Sci.2017, 57:387–394. doi: 10.2135/cropsci2016.03.0196.
  • Sekmen AH, Ozgur R, Uzilday B, Turkan I. Reactive oxygen species scavenging Capacities of cotton (Gossypium hirsutum) cultivars under combined drought and heat induced oxidative stress. Environ Exp Bot. 2014, 99:141–149.
  • Pieczynski M, Marczewski W, Hennig J, Dolata J, Bielewicz D, Piontek P, Wyrzykowska A, Krusiewicz D, Strzelczyk-Zyta D, Konopka-Postupolska D, Krzeslowska M. Down-regulation of CBP 80 gene expression as a strategy to engineer a drought-tolerant potato. Plant biotechnology journal. 2013, May;11(4):459-69.
  • JMP®, Version <17>. SAS Institute Inc., Cary, NC, 1989–2021.
  • Percy RG, Cantrell RG, Zhang J. Genetic variation for agronomic and fiber properties in an introgressed recombinant inbred population of cotton. Crop Science. 2006 May;46(3):1311-7.
  • Abdelraheem A, Hughs SE, Jones DC, Zhang J. Genetic analysis and quantitative trait locus mapping of PEG‐induced osmotic stress tolerance in cotton. Plant Breeding. 2015 Feb;134(1):111-20.
  • Levi A, Paterson AH, Barak V, Yakir D, Wang B, Chee PW, Saranga Y. Field evaluation of cotton near-isogenic lines introgressed with QTLs for productivity and drought-related traits. Molecular Breeding. 2009 Feb; 23:179-95.
  • Wang R, Ji S, Zhang P, Meng Y, Wang Y, Chen B, Zhou Z. Drought effects on cotton yield and fiber quality on different fruiting branches. Crop Science. 2016 May;56(3):1265-76.
  • Zhang D, Luo Z, Liu S, Li W, Dong H. Effects of deficit irrigation and plant density on the growth, yield and fiber quality of irrigated cotton. Field Crops Research. 2016 Oct 1; 197:1-9.
  • Nasimi RA, Khan IA, Iqbal MA, Khan AA. Genetic analysis of drought tolerance with respect to fiber traits in upland cotton. Genet Mol Res. 2016 Oct 5;15(4):1-6.
  • Pauli D, Andrade-Sanchez P, Carmo-Silva AE, Gazave E, French AN, Heun J, Hunsaker DJ, Lipka AE, Setter TL, Strand RJ, Thorp KR. Field-based high-throughput plant phenotyping reveals the temporal patterns of quantitative trait loci associated with stress-responsive traits in cotton. G3: Genes, Genomes, Genetics. 2016 Apr 1;6(4):865-79.
  • Dabbert TA, Gore MA. Challenges and perspectives on improving heat and drought stress resilience in cotton. Journal of Cotton Science. 2014;18(3):393-409.
  • Abdelraheem A, Fang DD, Zhang J. Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of Upland cotton under the greenhouse and field conditions. Euphytica, 2017 214(1). https://doi.org/10.1007/s10681-017-2095-x.
  • Zahid Z, Khan MK, Hameed A, Akhtar M, Ditta A, Hassan HM, Farid G. Dissection of drought tolerance in upland cotton through morpho-physiological and biochemical traits at the seedling stage. Frontiers in Plant Science.2021. Mar 12;12: 627107.
  • Lynch JP. Harnessing root architecture to address global challenges. Plant J. 2022,109:415–431. doi: 10.1111/tpj.15560.
  • Abdelraheem A, Esmaeili N, O’Connell M, & Zhang J. Progress and perspective on drought and salt stress tolerance in cotton. Industrial Crops and Products,2019 pp. 130, 118–129. doi:10.1016/j. indcrop.2018.12.070.
  • Chastain DR, Snider JL, Collins GD, Perry CD, Whitaker J, Byrd SA. Water deficit in field-grown Gossypium hirsutum primarily limits net photosynthesis by decreasing stomatal conductance, increasing photorespiration, and increasing the ratio of dark respiration to gross photosynthesis. Journal of plant physiology. 2014, Nov 1;171(17).
  • Riaz M, Farooq J, Sakhawat G, Mahmood A, Sadiq MA, Yaseen M. Genotypic variability for root/shoot parameters under water stress in some advanced lines of cotton (Gossypium hirsutum L.). Genet. Mol. 2013, Res. Feb 27;12(1):552-61.
  • Brito GG, Sofiatti V, Lima MM, Carvalho LP, Silva Filho JL. Physiological traits for drought phenotyping in cotton. Acta Scientiarum. Agronomy. 2011, 33:117-25.
  • Akbar M, Hussain SB. Assessment of drought-tolerant cotton genotypes based on seedling & physiological attributes at different moisture levels. Pure and Applied Biology. 2019. (PAB). 2019 Feb 27;8(1):93-107.
  • Eid MA, El-hady MA, Abdelkader MA, Abd-Elkrem YM, El-Gabry YA, El-temsah ME, ElAreed SR, Rady MM, Alamer KH, Alqubaie AI, Ali EF. 2022.ResponseinPhysiological Traits and Antioxidant Capacity of Two Cotton Cultivars under Water Limitations. Agronomy.2022, Mar 26;12(4):803.
Toplam 34 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Sebze Yetiştirme ve Islahı
Bölüm Makaleler
Yazarlar

Sadettin Celik 0000-0002-8396-4627

Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 7 Kasım 2023
Kabul Tarihi 7 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Celik, S. (2024). Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. Türk Doğa Ve Fen Dergisi, 13(1), 104-110. https://doi.org/10.46810/tdfd.1386233
AMA Celik S. Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. TDFD. Mart 2024;13(1):104-110. doi:10.46810/tdfd.1386233
Chicago Celik, Sadettin. “Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit”. Türk Doğa Ve Fen Dergisi 13, sy. 1 (Mart 2024): 104-10. https://doi.org/10.46810/tdfd.1386233.
EndNote Celik S (01 Mart 2024) Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. Türk Doğa ve Fen Dergisi 13 1 104–110.
IEEE S. Celik, “Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit”, TDFD, c. 13, sy. 1, ss. 104–110, 2024, doi: 10.46810/tdfd.1386233.
ISNAD Celik, Sadettin. “Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit”. Türk Doğa ve Fen Dergisi 13/1 (Mart 2024), 104-110. https://doi.org/10.46810/tdfd.1386233.
JAMA Celik S. Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. TDFD. 2024;13:104–110.
MLA Celik, Sadettin. “Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 1, 2024, ss. 104-10, doi:10.46810/tdfd.1386233.
Vancouver Celik S. Screening Some Advanced Upland Cotton (Gossypium Hirsutum L.) Genotypes Tolerance Under Water Deficit. TDFD. 2024;13(1):104-10.