Araştırma Makalesi
BibTex RIS Kaynak Göster

Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites

Yıl 2024, , 128 - 132, 26.03.2024
https://doi.org/10.46810/tdfd.1401246

Öz

Plate composite structures are used in many sectors today. Therefore, the demand for these structures is increasing. Especially in the field of aerospace, layered composite structures attract more attention. These wide range of applications affect composite materials in various aspects such as dynamic and mechanical in terms of working environments. Time-dependent variable stresses, vibrations and fatigue that occur in structures subjected to dynamic loads adversely affect both the internal and external structure of composite materials. This situation reduces the safe service life of composite materials. It is an important problem to eliminate or minimize the parameters that negatively affect the economic service life of fiber reinforced layered composite structures. In order to overcome these problems, it is aimed to create new composite structures by adding two different thermoplastic veil layers between fiber fabrics, which are widely used on an industrial basis. In this study, carbon fiber was used as the fiber fabric and Polyamide (PA) and Polyether ether ketone (PEEK) veils were used as the thermoplastic veil layers. The productions were made by Vacuum Assisted Resin Transfer Molding (VARTM) method and dynamic (natural frequency and damping ratio) tests were performed according to the relevant ASTM standards. With the experimental results obtained, the dynamic properties of thermoplastic veil-layered carbon fiber/epoxy composites were comparatively investigated to determine the effect of both veil layers and different fiber contents.

Proje Numarası

This study was supported by Atatürk University Scientific Research Project Coordination Unit (Turkey/Erzurum) (Project No: FBA-2021-9447) and Bingöl University Scientific Research Project Coordination Unit (Turkey/Bingöl) (Project No: BAP-MMF.2021.002).

Kaynakça

  • Acar V, Sarıkanat M, Seki Y, Akbulut H, Seydibeyoğlu MÖ. Graphene oxide modified carbon fiber prepregs: A mechanical comparison of the effects of oxidation methods. eXPRESS Polymer Letters. 2020;14(12):1106-1115.
  • De Morais AB, De Moura MF, Marques AT, De Castro PT. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology. 2002;62:679-686.
  • Choi NS, Kinloch AJ, Williams JG. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II ande mixed-mode I/II loading. Journal of Composite Materials. 1999;33(1):73-100.
  • Wicks SS, De Villoria RG, Wardle BL. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology. 2010;70:20-28.
  • Ou Y, Gonzalez C, Vilatela JJ. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A. 2019;124:105477.
  • Cheng C, Chen Z, Huang Z, Zhang C, Tusiime R, Zhou J, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Composites Part A. 2020;129:105696.
  • Yuan B, Ye M, Hu Y, Cheng F, Hu X. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils. Composites Part A. 2020;131:105813.
  • Uppin VS, Gouda PSS, Sridhar I, Umarfarooq MA. Effects of carbon/glass nonwoven interleaving veils and their areal density on opening and shearing mode interlaminar fracture toughness of glass epoxy composites. Theoretical and Applied Fracture Mechanics. 2024;130:104292.
  • Quan D, Alderliesten R, Dransfeld C, Murphy N, Ivankovic A, Benedictus R. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils. Composite Structures. 2020;252:112699.
  • Quan D, Murphy N, Ivankovic A, Zhao G, Alderliesten R. Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veils. Composite Structures. 2022;281:114903.
  • Quan D, Deegan B, Alderliesten R, Dransfeld C, Murphy N, Ivankovic A, et al. The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils. Materials and Design. 2020;192:108781.
  • Liu H, Qu P, Guo Y, Zhou Y, Wan G, Jia Y. Experimental and numerical studies on low-velocity impact damage of composite laminates toughened by nickel-coated carbon fiber veil. Polymer Composites. 2022;43:2460-2476.
  • Quan D, Mischo C, Binsfeld L, Ivankovic A, Murphy N. Fracture behaviour of carbon fibre/epoxy composites interleaved by MWCNT- and graphene nanoplatelet-doped thermoplastic veils. Composite Structures. 2020;235:111767.
  • Du X, Zhou H, Sun W, Liu HY, Zhou G, Zhou H, et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Composites Science and Technology. 2017;140:123-133.
  • Kishi H, Kuwata M, Matsuda S, Asami T, Murakami A. Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology. 2004;64:2517-2523.
  • Liao FS, Su AC, Hsu TCJ. Vibration Damping of Interleaved Carbon Fiber-Epoxy Composite Beams. Journal of Composite Materials. 1994;28:1840.
  • Bozkurt ÖY, Gökdemir ME. Effect of Basalt Fiber Hybridization on the Vibration-Damping Behavior of Carbon Fiber/Epoxy Composites. Polymer Composites. 2018;39:2274-2282.
  • Tarih YS, Coskun T, Yar A, Gündoğdu Ö, Sahin ÖS. The influences of low-velocity impact loading on the vibration responses of the carbon/glass fiber-reinforced epoxy composites interleaved with various non-woven thermoplastic veils. Applied Polymer Science. 2023;140:53728.
  • ASTM E756–05 Standard Test Method for Measuring Vibration-damping Properties of Materials, American Society for Testing and Materials (ASTM) Standard, West Conshohocken, PA, 2017.
  • Tarih, YS. Termoplastik Keçe Katmanın Karbon Kumaş-Cam Kumaş/ Epoksi Kompozitlerde Mekanik Özelliklerine ve Dinamik Davranışlarına Etkilerinin İncelenmesi. Doktora Tezi, 2022, Fen Bilimleri Enstitüsü, Atatürk Üniversitesi, Erzurum/Türkiye.
  • Duratek 1200 Product Data Sheet, Rev. 04- 27.04.2016, Duratek Protective Materials Co. Ltd. (2016).
  • Aydın MR, Acar V, Cakir F, Gündoğdu Ö, Akbulut H. Experimental investigation of mechanical and modal properties of Al2O3 nanoparticle reinforced polyurethane core sandwich structures. Materials Today Communications. 2020;24:101233.
  • Khan T, Aydın OA, Acar V, Aydın MR, Hülagü B, Bayrakçeken H, et al. Experimental investigation of mechanical and modal properties of Al2O3 nanoparticle reinforced polyurethane core sandwich structures. Materials Today Communications. 2020;24:1001233.
  • Hülagü B, Acar V, Aydın MR, Aydın OA, Gök S, Ünal HY, et al. Experimental modal analysis of graphene nanoparticle-reinforced adhesively bonded double strap joints. The Journal of Adhesion. 2020;97(12):1107-1135.

Termoplastik Keçe İlaveli Karbon Fiber Takviyeli Epoksi Kompozitlerinin Titreşim Cevabı

Yıl 2024, , 128 - 132, 26.03.2024
https://doi.org/10.46810/tdfd.1401246

Öz

Proje Numarası

This study was supported by Atatürk University Scientific Research Project Coordination Unit (Turkey/Erzurum) (Project No: FBA-2021-9447) and Bingöl University Scientific Research Project Coordination Unit (Turkey/Bingöl) (Project No: BAP-MMF.2021.002).

Kaynakça

  • Acar V, Sarıkanat M, Seki Y, Akbulut H, Seydibeyoğlu MÖ. Graphene oxide modified carbon fiber prepregs: A mechanical comparison of the effects of oxidation methods. eXPRESS Polymer Letters. 2020;14(12):1106-1115.
  • De Morais AB, De Moura MF, Marques AT, De Castro PT. Mode-I interlaminar fracture of carbon/epoxy cross-ply composites. Composites Science and Technology. 2002;62:679-686.
  • Choi NS, Kinloch AJ, Williams JG. Delamination fracture of multidirectional carbon-fiber/epoxy composites under mode I, mode II ande mixed-mode I/II loading. Journal of Composite Materials. 1999;33(1):73-100.
  • Wicks SS, De Villoria RG, Wardle BL. Interlaminar and intralaminar reinforcement of composite laminates with aligned carbon nanotubes. Composites Science and Technology. 2010;70:20-28.
  • Ou Y, Gonzalez C, Vilatela JJ. Interlaminar toughening in structural carbon fiber/epoxy composites interleaved with carbon nanotube veils. Composites Part A. 2019;124:105477.
  • Cheng C, Chen Z, Huang Z, Zhang C, Tusiime R, Zhou J, et al. Simultaneously improving mode I and mode II fracture toughness of the carbon fiber/epoxy composite laminates via interleaved with uniformly aligned PES fiber webs. Composites Part A. 2020;129:105696.
  • Yuan B, Ye M, Hu Y, Cheng F, Hu X. Flexure and flexure-after-impact properties of carbon fibre composites interleaved with ultra-thin non-woven aramid fibre veils. Composites Part A. 2020;131:105813.
  • Uppin VS, Gouda PSS, Sridhar I, Umarfarooq MA. Effects of carbon/glass nonwoven interleaving veils and their areal density on opening and shearing mode interlaminar fracture toughness of glass epoxy composites. Theoretical and Applied Fracture Mechanics. 2024;130:104292.
  • Quan D, Alderliesten R, Dransfeld C, Murphy N, Ivankovic A, Benedictus R. Enhancing the fracture toughness of carbon fibre/epoxy composites by interleaving hybrid meltable/non-meltable thermoplastic veils. Composite Structures. 2020;252:112699.
  • Quan D, Murphy N, Ivankovic A, Zhao G, Alderliesten R. Fatigue delamination behaviour of carbon fibre/epoxy composites interleaved with thermoplastic veils. Composite Structures. 2022;281:114903.
  • Quan D, Deegan B, Alderliesten R, Dransfeld C, Murphy N, Ivankovic A, et al. The influence of interlayer/epoxy adhesion on the mode-I and mode-II fracture response of carbon fibre/epoxy composites interleaved with thermoplastic veils. Materials and Design. 2020;192:108781.
  • Liu H, Qu P, Guo Y, Zhou Y, Wan G, Jia Y. Experimental and numerical studies on low-velocity impact damage of composite laminates toughened by nickel-coated carbon fiber veil. Polymer Composites. 2022;43:2460-2476.
  • Quan D, Mischo C, Binsfeld L, Ivankovic A, Murphy N. Fracture behaviour of carbon fibre/epoxy composites interleaved by MWCNT- and graphene nanoplatelet-doped thermoplastic veils. Composite Structures. 2020;235:111767.
  • Du X, Zhou H, Sun W, Liu HY, Zhou G, Zhou H, et al. Graphene/epoxy interleaves for delamination toughening and monitoring of crack damage in carbon fibre/epoxy composite laminates. Composites Science and Technology. 2017;140:123-133.
  • Kishi H, Kuwata M, Matsuda S, Asami T, Murakami A. Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology. 2004;64:2517-2523.
  • Liao FS, Su AC, Hsu TCJ. Vibration Damping of Interleaved Carbon Fiber-Epoxy Composite Beams. Journal of Composite Materials. 1994;28:1840.
  • Bozkurt ÖY, Gökdemir ME. Effect of Basalt Fiber Hybridization on the Vibration-Damping Behavior of Carbon Fiber/Epoxy Composites. Polymer Composites. 2018;39:2274-2282.
  • Tarih YS, Coskun T, Yar A, Gündoğdu Ö, Sahin ÖS. The influences of low-velocity impact loading on the vibration responses of the carbon/glass fiber-reinforced epoxy composites interleaved with various non-woven thermoplastic veils. Applied Polymer Science. 2023;140:53728.
  • ASTM E756–05 Standard Test Method for Measuring Vibration-damping Properties of Materials, American Society for Testing and Materials (ASTM) Standard, West Conshohocken, PA, 2017.
  • Tarih, YS. Termoplastik Keçe Katmanın Karbon Kumaş-Cam Kumaş/ Epoksi Kompozitlerde Mekanik Özelliklerine ve Dinamik Davranışlarına Etkilerinin İncelenmesi. Doktora Tezi, 2022, Fen Bilimleri Enstitüsü, Atatürk Üniversitesi, Erzurum/Türkiye.
  • Duratek 1200 Product Data Sheet, Rev. 04- 27.04.2016, Duratek Protective Materials Co. Ltd. (2016).
  • Aydın MR, Acar V, Cakir F, Gündoğdu Ö, Akbulut H. Experimental investigation of mechanical and modal properties of Al2O3 nanoparticle reinforced polyurethane core sandwich structures. Materials Today Communications. 2020;24:101233.
  • Khan T, Aydın OA, Acar V, Aydın MR, Hülagü B, Bayrakçeken H, et al. Experimental investigation of mechanical and modal properties of Al2O3 nanoparticle reinforced polyurethane core sandwich structures. Materials Today Communications. 2020;24:1001233.
  • Hülagü B, Acar V, Aydın MR, Aydın OA, Gök S, Ünal HY, et al. Experimental modal analysis of graphene nanoparticle-reinforced adhesively bonded double strap joints. The Journal of Adhesion. 2020;97(12):1107-1135.
Toplam 24 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel ve Teorik Akışkanlar Dinamiği
Bölüm Makaleler
Yazarlar

Yavuz Selim Tarih 0000-0002-8267-7706

Volkan Acar 0000-0001-7412-301X

Ömer Gündoğdu 0000-0003-2656-4181

Adem Yar 0000-0002-1432-9590

Proje Numarası This study was supported by Atatürk University Scientific Research Project Coordination Unit (Turkey/Erzurum) (Project No: FBA-2021-9447) and Bingöl University Scientific Research Project Coordination Unit (Turkey/Bingöl) (Project No: BAP-MMF.2021.002).
Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 8 Aralık 2023
Kabul Tarihi 17 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Tarih, Y. S., Acar, V., Gündoğdu, Ö., Yar, A. (2024). Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites. Türk Doğa Ve Fen Dergisi, 13(1), 128-132. https://doi.org/10.46810/tdfd.1401246
AMA Tarih YS, Acar V, Gündoğdu Ö, Yar A. Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites. TDFD. Mart 2024;13(1):128-132. doi:10.46810/tdfd.1401246
Chicago Tarih, Yavuz Selim, Volkan Acar, Ömer Gündoğdu, ve Adem Yar. “Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites”. Türk Doğa Ve Fen Dergisi 13, sy. 1 (Mart 2024): 128-32. https://doi.org/10.46810/tdfd.1401246.
EndNote Tarih YS, Acar V, Gündoğdu Ö, Yar A (01 Mart 2024) Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites. Türk Doğa ve Fen Dergisi 13 1 128–132.
IEEE Y. S. Tarih, V. Acar, Ö. Gündoğdu, ve A. Yar, “Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites”, TDFD, c. 13, sy. 1, ss. 128–132, 2024, doi: 10.46810/tdfd.1401246.
ISNAD Tarih, Yavuz Selim vd. “Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites”. Türk Doğa ve Fen Dergisi 13/1 (Mart 2024), 128-132. https://doi.org/10.46810/tdfd.1401246.
JAMA Tarih YS, Acar V, Gündoğdu Ö, Yar A. Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites. TDFD. 2024;13:128–132.
MLA Tarih, Yavuz Selim vd. “Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 1, 2024, ss. 128-32, doi:10.46810/tdfd.1401246.
Vancouver Tarih YS, Acar V, Gündoğdu Ö, Yar A. Vibration Response of Thermoplastic Veil Interleaved Carbon Fiber Reinforced Epoxy Composites. TDFD. 2024;13(1):128-32.