Araştırma Makalesi
BibTex RIS Kaynak Göster

Grafen-KNT takviyeli nikel metal matrisli nano kompozit yapının mekanik özeliklerinin araştırılması

Yıl 2024, , 133 - 141, 26.03.2024
https://doi.org/10.46810/tdfd.1438617

Öz

Nikel, birçok endüstriyel uygulamada yaygın olarak kullanılan bir metaldir, ancak üstün özelliklerinin yanı sıra bazı eksik yanları da mevcuttur. Metallerin özelliklerini iyileştirmede karbon temelli yapılar önemli takviye elemanı özelliği göstere bilmektedir. Nikel malzemesinin yüksek korozyon direnci, yüksek elektrik iletkenliği ve iyi manyetik özelliği ile karbon bazlı yapıların hafiflik ve yüksek mukavemeti arasında bir denge sağlayarak gelişmiş özelliklere sahip bir malzeme elde edilebilir. Bu nedenle, bu çalışmada, kovalent olarak bağlı grafen- karbon nanotüp (KNT) iskelet yapısı ile desteklenmiş yeni bir nikel-Karbon nanoyapısı sunulmaktadır. Ayrıca, farklı geometrik boyutlara sahip üç malzeme tasarımı (Ni-G-CNT(5,5), Ni-G-CNT(10,10) ve Ni-G-CNT(15,15)) yapılarak yapıların tüm doğrultulardaki mekanik özellikleri ve altta yatan deformasyon mekanizmalarını araştırmaktır. Sonuçlara göre, G-CNT yapılarının Ni yapısının çekme ve basma davranışını KNT doğrultusunda artırdığı görülmüştür. KNT doğrultusunda çekme yüklemeleri için KNT çapı azaldıkça hibrit yapıların elastik modülü artarken maksimum gerilme değerleri KNT çapından bağımsızdır. KNT çapı arttıkça ise yapıların süneklikleri artmaktadır. Basma dayanımı açısından ise lineer bölgede genel olarak KNT çapı arttıkça dayanımın arttığı yoğunlaşma bölgesinde ise daha iyi basma dayanımı sergilediği görülmüştür. Bu çalışma ile Ni yapısına kıyasla daha hafif ve daha yüksek çekme dayanımına sergileyebilen anizotropik bir nanoyapı sunulmuştur.

Etik Beyan

Çalışmamız için Etik Kurul Belgesine İhtiyaç Yoktur.

Kaynakça

  • U. Degirmenci, Y.O. Yildiz, Examination of mechanical behaviour of fullerene doped aluminium matrix composite produced by sintering process, Materials Today Communications 38 (2024) 107916.
  • J. Xu, J. Tao, S. Jiang, Z. Xu, Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer, Applied Surface Science 254(13) (2008) 4036-4043.
  • L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors, Materials Today 25 (2019) 35-65.
  • Y. Li, J. Zhang, Z. Chen, M. Chen, Nickel-based materials: Toward practical application of the aqueous hybrid supercapacitors, Sustainable Materials and Technologies 33 (2022) e00479.
  • B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorganic Chemistry Frontiers 3(2) (2016) 175-202.
  • Y. Zhou, W.-G. Jiang, D.-S. Li, Q.-H. Qin, Study on Lightweight and Strengthening Effect of Carbon Nanotube in Highly Ordered Nanoporous Nickel: A Molecular Dynamics Study, Applied Sciences, 2019.
  • M. Dadkhah, A. Saboori, P. Fino, An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene, Materials, 2019.
  • M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B: Engineering 183 (2020) 107664.
  • C. Qiu, Y. Su, J. Yang, B. Chen, Q. Ouyang, D. Zhang, Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review, Composites Part C: Open Access 4 (2021) 100120.
  • B. Guo, B. Chen, X. Zhang, X. Cen, X. Wang, M. Song, S. Ni, J. Yi, T. Shen, Y. Du, Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes, Carbon 135 (2018) 224-235.
  • D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Graphene–nickel composites, Applied Surface Science 273 (2013) 484-490.
  • N. Wang, S. Pandit, L. Ye, M. Edwards, V.R.S.S. Mokkapati, M. Murugesan, V. Kuzmenko, C. Zhao, F. Westerlund, I. Mijakovic, J. Liu, Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures, Carbon 111 (2017) 402-410.
  • S. Inoue, Y. Matsumura, Influence of metal coating on single-walled carbon nanotube: Molecular dynamics approach to determine tensile strength, Chemical Physics Letters 469(1) (2009) 125-129.
  • S. Inoue, Y. Matsumura, Molecular dynamics simulation of metal coating on single-walled carbon nanotube, Chemical Physics Letters 464(4) (2008) 160-165.
  • J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang, T. Yu, CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors, Energy & Environmental Science 4(12) (2011) 5000-5007.
  • D. Wang, X. Wang, L. Qiu, H. Ye, N. Maimaitituersun, B. Han, Effect of nickel-coated carbon nanotubes on the tensile behaviors of ultra-high performance concrete (UHPC): insights from experiments and molecular dynamic simulations, Journal of Materials Science 58(45) (2023) 17225-17240.
  • K. Duan, L. Li, Y. Hu, X. Wang, Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights, Physica E Low Dimens. Syst. Nanostruct. 88 (2017) 259-264.
  • P.K. Singh, K. Sharma, A. Kumar, M. Shukla, Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: A molecular dynamics approach, Journal of Composite Materials 51(5) (2016) 671-680.
  • H. Y. Song, X.-W. Zha, Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites, Physics Letters A 374(8) (2010) 1068-1072.
  • Y. Yan, A. Zou, Y. Lei, P. Xu, S. Zhou, Atomic insights into the tensile behavior of carbon nanotube with different geometrical characteristics embedded in nickel matrix, Diamond and Related Materials 141 (2024) 110576.
  • W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics 14(1) (1996) 33-38.
  • F.Y. Meng, S.Q. Shi, D.S. Xu, R. Yang, Size effect of X-shaped carbon nanotube junctions, Carbon 44(7) (2006) 1263-1266.
  • U. Degirmenci, M. Kirca, Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study, Comput. Mater. Sci. 154 (2018) 122-131.
  • S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics 117(1) (1995) 1-19.
  • U. Degirmenci, M. Kirca, Carbon-based nano lattice hybrid structures: Mechanical and thermal properties, Physica E Low Dimens. Syst. Nanostruct. 144 (2022) 115392.
  • S.K. Deb Nath, S.-G. Kim, Study of the Nanomechanics of CNTs under Tension by Molecular Dynamics Simulation Using Different Potentials, ISRN Condensed Matter Physics 2014 (2014) 606017.
  • M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B 29(12) (1984) 6443-6453.
  • X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission, Science 327(5973) (2010) 1631-1634.
  • Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, Y.-S. Lai, Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon, Applied Surface Science 254(5) (2007) 1415-1422.
  • S.-P. Huang, D.S. Mainardi, P.B. Balbuena, Structure and dynamics of graphite-supported bimetallic nanoclusters, Surface Science 545(3) (2003) 163-179.
  • Y. Shibuta, S. Maruyama, Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube, Comput. Mater. Sci. 39(4) (2007) 842-848.
  • M. Kirca, X. Yang, A.C. To, A stochastic algorithm for modeling heat welded random carbon nanotube network, Computer Methods in Applied Mechanics and Engineering 259 (2013) 1-9.
  • A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, The Journal of Chemical Physics 131(15) (2009) 154107.

Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure

Yıl 2024, , 133 - 141, 26.03.2024
https://doi.org/10.46810/tdfd.1438617

Öz

Nickel is a metal widely used in many industrial applications, but despite its superior properties, it also has some shortcomings. Carbon-based structures can be important reinforcement elements in improving the properties of metals. By providing a balance between the high corrosion resistance, high electrical conductivity and good magnetic properties of the nickel material and the lightness and high strength of carbon-based structures, a material with advanced properties can be obtained. Therefore, in this study, a new Nickel-Carbon nanostructure supported by a covalently bonded graphene-carbon nanotube (CNT) skeleton structure is presented. Additionally, three material designs with different geometric dimensions (Ni-G-CNT(5,5), Ni-G-CNT(10,10) and Ni-G-CNT(15,15)) were designed to determine the mechanical properties and properties of the structures in all directions. is to investigate the underlying deformation mechanisms. According to the results, it was observed that G-CNT structures increased the tensile and compressive behavior of the Ni structure in the CNT direction. For tensile loading in the CNT direction, as the CNT diameter decreases, the elastic modulus of the hybrid structures increases, while the maximum stress values are independent of the CNT diameter. As the CNT diameter increases, the ductility of the structures increases. In terms of compressive strength, it has been observed that in the linear region, as the CNT diameter increases, the strength generally increases and in the condensation region, it exhibits better compressive strength. With this study, an anisotropic nanostructure that is lighter and can exhibit higher tensile strength compared to the Ni structure is presented.

Etik Beyan

There is no need for an Ethics Committee Certificate for our study.

Kaynakça

  • U. Degirmenci, Y.O. Yildiz, Examination of mechanical behaviour of fullerene doped aluminium matrix composite produced by sintering process, Materials Today Communications 38 (2024) 107916.
  • J. Xu, J. Tao, S. Jiang, Z. Xu, Investigation on corrosion and wear behaviors of nanoparticles reinforced Ni-based composite alloying layer, Applied Surface Science 254(13) (2008) 4036-4043.
  • L. Zhang, D. Shi, T. Liu, M. Jaroniec, J. Yu, Nickel-based materials for supercapacitors, Materials Today 25 (2019) 35-65.
  • Y. Li, J. Zhang, Z. Chen, M. Chen, Nickel-based materials: Toward practical application of the aqueous hybrid supercapacitors, Sustainable Materials and Technologies 33 (2022) e00479.
  • B. Li, M. Zheng, H. Xue, H. Pang, High performance electrochemical capacitor materials focusing on nickel based materials, Inorganic Chemistry Frontiers 3(2) (2016) 175-202.
  • Y. Zhou, W.-G. Jiang, D.-S. Li, Q.-H. Qin, Study on Lightweight and Strengthening Effect of Carbon Nanotube in Highly Ordered Nanoporous Nickel: A Molecular Dynamics Study, Applied Sciences, 2019.
  • M. Dadkhah, A. Saboori, P. Fino, An Overview of the Recent Developments in Metal Matrix Nanocomposites Reinforced by Graphene, Materials, 2019.
  • M. Tabandeh-Khorshid, K. Ajay, E. Omrani, C. Kim, P. Rohatgi, Synthesis, characterization, and properties of graphene reinforced metal-matrix nanocomposites, Composites Part B: Engineering 183 (2020) 107664.
  • C. Qiu, Y. Su, J. Yang, B. Chen, Q. Ouyang, D. Zhang, Structural modelling and mechanical behaviors of graphene/carbon nanotubes reinforced metal matrix composites via atomic-scale simulations: A review, Composites Part C: Open Access 4 (2021) 100120.
  • B. Guo, B. Chen, X. Zhang, X. Cen, X. Wang, M. Song, S. Ni, J. Yi, T. Shen, Y. Du, Exploring the size effects of Al4C3 on the mechanical properties and thermal behaviors of Al-based composites reinforced by SiC and carbon nanotubes, Carbon 135 (2018) 224-235.
  • D. Kuang, L. Xu, L. Liu, W. Hu, Y. Wu, Graphene–nickel composites, Applied Surface Science 273 (2013) 484-490.
  • N. Wang, S. Pandit, L. Ye, M. Edwards, V.R.S.S. Mokkapati, M. Murugesan, V. Kuzmenko, C. Zhao, F. Westerlund, I. Mijakovic, J. Liu, Efficient surface modification of carbon nanotubes for fabricating high performance CNT based hybrid nanostructures, Carbon 111 (2017) 402-410.
  • S. Inoue, Y. Matsumura, Influence of metal coating on single-walled carbon nanotube: Molecular dynamics approach to determine tensile strength, Chemical Physics Letters 469(1) (2009) 125-129.
  • S. Inoue, Y. Matsumura, Molecular dynamics simulation of metal coating on single-walled carbon nanotube, Chemical Physics Letters 464(4) (2008) 160-165.
  • J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang, T. Yu, CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors, Energy & Environmental Science 4(12) (2011) 5000-5007.
  • D. Wang, X. Wang, L. Qiu, H. Ye, N. Maimaitituersun, B. Han, Effect of nickel-coated carbon nanotubes on the tensile behaviors of ultra-high performance concrete (UHPC): insights from experiments and molecular dynamic simulations, Journal of Materials Science 58(45) (2023) 17225-17240.
  • K. Duan, L. Li, Y. Hu, X. Wang, Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights, Physica E Low Dimens. Syst. Nanostruct. 88 (2017) 259-264.
  • P.K. Singh, K. Sharma, A. Kumar, M. Shukla, Effects of functionalization on the mechanical properties of multiwalled carbon nanotubes: A molecular dynamics approach, Journal of Composite Materials 51(5) (2016) 671-680.
  • H. Y. Song, X.-W. Zha, Mechanical properties of nickel-coated single-walled carbon nanotubes and their embedded gold matrix composites, Physics Letters A 374(8) (2010) 1068-1072.
  • Y. Yan, A. Zou, Y. Lei, P. Xu, S. Zhou, Atomic insights into the tensile behavior of carbon nanotube with different geometrical characteristics embedded in nickel matrix, Diamond and Related Materials 141 (2024) 110576.
  • W. Humphrey, A. Dalke, K. Schulten, VMD: Visual molecular dynamics, Journal of Molecular Graphics 14(1) (1996) 33-38.
  • F.Y. Meng, S.Q. Shi, D.S. Xu, R. Yang, Size effect of X-shaped carbon nanotube junctions, Carbon 44(7) (2006) 1263-1266.
  • U. Degirmenci, M. Kirca, Design and mechanical characterization of a novel carbon-based hybrid foam: A molecular dynamics study, Comput. Mater. Sci. 154 (2018) 122-131.
  • S. Plimpton, Fast Parallel Algorithms for Short-Range Molecular Dynamics, Journal of Computational Physics 117(1) (1995) 1-19.
  • U. Degirmenci, M. Kirca, Carbon-based nano lattice hybrid structures: Mechanical and thermal properties, Physica E Low Dimens. Syst. Nanostruct. 144 (2022) 115392.
  • S.K. Deb Nath, S.-G. Kim, Study of the Nanomechanics of CNTs under Tension by Molecular Dynamics Simulation Using Different Potentials, ISRN Condensed Matter Physics 2014 (2014) 606017.
  • M.S. Daw, M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Physical Review B 29(12) (1984) 6443-6453.
  • X.-M. Bai, A.F. Voter, R.G. Hoagland, M. Nastasi, B.P. Uberuaga, Efficient Annealing of Radiation Damage Near Grain Boundaries via Interstitial Emission, Science 327(5973) (2010) 1631-1634.
  • Y.-H. Lin, T.-C. Chen, P.-F. Yang, S.-R. Jian, Y.-S. Lai, Atomic-level simulations of nanoindentation-induced phase transformation in mono-crystalline silicon, Applied Surface Science 254(5) (2007) 1415-1422.
  • S.-P. Huang, D.S. Mainardi, P.B. Balbuena, Structure and dynamics of graphite-supported bimetallic nanoclusters, Surface Science 545(3) (2003) 163-179.
  • Y. Shibuta, S. Maruyama, Bond-order potential for transition metal carbide cluster for the growth simulation of a single-walled carbon nanotube, Comput. Mater. Sci. 39(4) (2007) 842-848.
  • M. Kirca, X. Yang, A.C. To, A stochastic algorithm for modeling heat welded random carbon nanotube network, Computer Methods in Applied Mechanics and Engineering 259 (2013) 1-9.
  • A.P. Thompson, S.J. Plimpton, W. Mattson, General formulation of pressure and stress tensor for arbitrary many-body interaction potentials under periodic boundary conditions, The Journal of Chemical Physics 131(15) (2009) 154107.
Toplam 33 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Malzeme Fiziği
Bölüm Makaleler
Yazarlar

Ünal Değirmenci 0000-0003-1480-2488

Erken Görünüm Tarihi 26 Mart 2024
Yayımlanma Tarihi 26 Mart 2024
Gönderilme Tarihi 16 Şubat 2024
Kabul Tarihi 17 Mart 2024
Yayımlandığı Sayı Yıl 2024

Kaynak Göster

APA Değirmenci, Ü. (2024). Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure. Türk Doğa Ve Fen Dergisi, 13(1), 133-141. https://doi.org/10.46810/tdfd.1438617
AMA Değirmenci Ü. Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure. TDFD. Mart 2024;13(1):133-141. doi:10.46810/tdfd.1438617
Chicago Değirmenci, Ünal. “Investigation of Mechanical Properties of Graphene-CNT Reinforced Nickel Metal Matrix Nanocomposite Structure”. Türk Doğa Ve Fen Dergisi 13, sy. 1 (Mart 2024): 133-41. https://doi.org/10.46810/tdfd.1438617.
EndNote Değirmenci Ü (01 Mart 2024) Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure. Türk Doğa ve Fen Dergisi 13 1 133–141.
IEEE Ü. Değirmenci, “Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure”, TDFD, c. 13, sy. 1, ss. 133–141, 2024, doi: 10.46810/tdfd.1438617.
ISNAD Değirmenci, Ünal. “Investigation of Mechanical Properties of Graphene-CNT Reinforced Nickel Metal Matrix Nanocomposite Structure”. Türk Doğa ve Fen Dergisi 13/1 (Mart 2024), 133-141. https://doi.org/10.46810/tdfd.1438617.
JAMA Değirmenci Ü. Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure. TDFD. 2024;13:133–141.
MLA Değirmenci, Ünal. “Investigation of Mechanical Properties of Graphene-CNT Reinforced Nickel Metal Matrix Nanocomposite Structure”. Türk Doğa Ve Fen Dergisi, c. 13, sy. 1, 2024, ss. 133-41, doi:10.46810/tdfd.1438617.
Vancouver Değirmenci Ü. Investigation of mechanical properties of graphene-CNT reinforced nickel metal matrix nanocomposite structure. TDFD. 2024;13(1):133-41.