Araştırma Makalesi
BibTex RIS Kaynak Göster

Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax

Yıl 2025, Cilt: 14 Sayı: 4, 149 - 157, 30.12.2025
https://doi.org/10.46810/tdfd.1740537

Öz

Waste beeswax (WB) obtained from various industrial processes has significant potential in terms of recycling and value-added material production. The utilization of such waste not only reduces environmental impact but also enhances economic feasibility by converting waste into valuable products. In this study, the usability of waste beeswax generated from beekeeping activities as an alternative filler in polymer matrix composite systems was investigated. Within a base composite matrix composed of unsaturated polyester resin (UPR) and crushed stone aggregate (SC), the aggregate was partially replaced by WB at weight ratios of 5%, 7.5%, 10%, and 12.5%. The produced biocomposite samples were subjected to physical and mechanical tests including density, water absorption, porosity, compressive strength, and ultrasonic pulse velocity (UPV). The results were further evaluated using regression and correlation analyses. The findings revealed that the addition of beeswax reduced the overall density of the composites, thereby contributing to lightweight structures. However, higher beeswax contents led to increased porosity and water absorption, accompanied by a decrease in mechanical performance. Notably, compressive strength and UPV values showed significant reductions at beeswax contents above 10%. In conclusion, the limited use of WB as a filler material appears to be a viable approach for developing environmentally sustainable, cost-effective, and functionally acceptable biocomposite materials.

Kaynakça

  • O.M.L. Asumani, R.G. Reid, R. Paskaramoorthy, The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites, Compos. Part A Appl. Sci. Manuf. 43 (2012) 1431–1440.
  • M. Jawaid, H.P.S.A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydr. Polym. 86 (2011) 1–18.
  • L.T. Drzal, Natural fibers, biopolymers, and biocomposites, CRC press, 2005.
  • H. Polat, Muz Kabuğu Atıklarının Polimer Kompozitlerin Performansına Etkisinin Değerlendirilmesi, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilim. Derg. 25 (2025) 613–620.
  • M.N. Kolak, H. Polat, Polimer Kompozitlerde Ahşap Atığı Tozu İkamesinin Etkileri: Mekanik ve Fiziksel Özellikler, Recep Tayyip Erdogan Univ. J. Sci. Eng. 5 (2024) 123–134.
  • M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B Eng. 43 (2012) 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053.
  • T.P. Sathishkumar, J. and Naveen, S. Satheeshkumar, Hybrid fiber reinforced polymer composites–a review, J. Reinf. Plast. Compos. 33 (2014) 454–471.
  • A. Bourmaud, J. Beaugrand, D.U. Shah, V. Placet, C. Baley, Towards the design of high-performance plant fibre composites, Prog. Mater. Sci. 97 (2018) 347–408.
  • Q. Chen, X. Chen, Z. Zhai, Z. Yang, A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases, Compos. Part B Eng. 85 (2016) 216–232.
  • J. Merotte, P. Simacek, S.G. Advani, Resin flow analysis with fiber preform deformation in through thickness direction during Compression Resin Transfer Molding, Compos. Part A Appl. Sci. Manuf. 41 (2010) 881–887.   M.B. Kulkarni, V. Gavande, P.A. Mahanwar, A.R. Shah, R.K. Shuib, A.M. Khare, S. Radhakrishnan, Review on biomass sheep wool–based polymer composites, Biomass Convers. Biorefinery 14 (2024) 30961–30982.
  • T. Tesfaye, B. Sithole, D. Ramjugernath, Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects, Clean Technol. Environ. Policy 19 (2017) 2363–2378.
  • S.R. Dakarapu, S.R. Karri, L.S.P. Ampolu, Mechanical and water absorption properties of polymer composites reinforced with animal bone powder, in: J. Phys. Conf. Ser., IOP Publishing, 2023: p. 12004.
  • K.R. Babu, V. Jayakumar, G. Bharathiraja, S. Madhu, Experimental investigation of fish scale reinforced polymer composite, Mater. Today Proc. 22 (2020) 416–418.
  • R. Siddique, Performance characteristics of high-volume Class F fly ash concrete, Cem. Concr. Res. 34 (2004) 487–493.
  • A.C. Patsidis, M. Souliotis, End-of-use fly ash as an effective reinforcing filler in green polymer composites, Polymers (Basel). 15 (2023) 3418.
  • M. Frigione, Recycling of PET bottles as fine aggregate in concrete, Waste Manag. 30 (2010) 1101–1106.
  • TS EN 196-1, Çimento Deney Metotları- Bölüm 1: Dayanım, Türk Standartları Enstitüsü, ANKARA, 2021.
  • TS EN 12390-3, Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayin, Türk Standartları Enstitüsü, ANKARA, 2019.
  • ASTM C 597-02, Pulse Velocity Through Concrete, 2016. https://doi.org/10.1520/C0597-16.2.
  • H.-S. Kim, B.-H. Lee, S.-W. Choi, S. Kim, H.-J. Kim, The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Compos. Part A Appl. Sci. Manuf. 38 (2007) 1473–1482.
  • I.H. Imon, Sustainable Natural Fiber Based Composites Materials: A Review, (2024).
  • A.K. Bledzki, A.A. Mamun, M. Lucka-Gabor, V.S. Gutowski, The effects of acetylation on properties of flax fibre and its polypropylene composites, Express Polym. Lett. 2 (2008) 413–422.
  • D.N. Saheb, J.P. Jog, Natural fiber polymer composites: a review, Adv. Polym. Technol. J. Polym. Process. Inst. 18 (1999) 351–363.
  • M.J. John, S. Thomas, Biofibres and biocomposites, Carbohydr. Polym. 71 (2008) 343–364.
  • V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, A. Valenza, A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites, Compos. Part B Eng. 85 (2016) 150–160.
  • A.K. Mohanty, M. Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J. Polym. Environ. 10 (2002) 19–26.
  • S. Widodo, F. Ma’arif, M.S. Nugroho, H. Mahardika, Correlation of ultrasonic pulse velocity with porosity and compressive strength of mortar with limestone for building quality assessment, Work 7 (2022).
  • A. Belmouhoub, A. Abdelouahed, Relationship between Porosity-Ultrasonic Pulse Velocity and Water Absorption of Concrete Containing Plastic and Rubber Waste by Full Factor Design, Sel. Sci. Pap. Civ. Eng. 19 (2024) 20240008.

Atık Bal Mumu Takviyeli Biyokompozitlerin Fiziksel ve Mekanik Özelliklerinin Değerlendirilmesi

Yıl 2025, Cilt: 14 Sayı: 4, 149 - 157, 30.12.2025
https://doi.org/10.46810/tdfd.1740537

Öz

Çeşitli endüstriyel proseslerden elde edilen atık balmumu, geri dönüşüm ve katma değer yaratımı açısından önemli bir potansiyele sahiptir. Bu tür atıkların değerlendirilmesi, çevresel etkilerin azaltılmasının yanı sıra, atıkların ekonomik olarak uygulanabilir ürünlere dönüştürülmesini mümkün kılar. Bu çalışma kapsamında, arıcılık faaliyetleri sonucu oluşan atık bal mumunun polimer matrisli kompozit sistemlerde alternatif dolgu maddesi olarak kullanılabilirliği araştırılmıştır. Doymamış polyester reçine (UPR) ve kırmataş agregasından oluşan bir temel kompozit matris sisteminde, SC ağırlıkça %5, %7.5, %10 ve %12.5 oranlarında bal mumu atığı ile ikame edilmiştir. Üretilen biyokompozit numuneler üzerinde yoğunluk, su emme, porozite, basınç dayanımı ve ultrases geçiş hızı (UPV) gibi fiziksel ve mekanik özellikler incelenmiş; sonuçlar regresyon ve korelasyon analizleri ile desteklenmiştir. Bulgular, bal mumu katkısının kompozit yoğunluğunu düşürerek hafiflik sağladığını, ancak yüksek katkı oranlarında gözeneklilik ve su emme eğilimlerinin arttığını ve mekanik performansın azaldığını ortaya koymuştur. Özellikle %10’un üzerindeki katkı oranlarında basınç dayanımı ve UPV değerlerinde belirgin düşüşler tespit edilmiştir. Sonuç olarak, atık bal mumunun sınırlı oranlarda kullanımı ile çevresel sürdürülebilirliği destekleyen, ekonomik ve fonksiyonel özellikler bakımından kabul edilebilir biyokompozit malzemelerin geliştirilmesi mümkün olduğu belirlenmiştir.

Kaynakça

  • O.M.L. Asumani, R.G. Reid, R. Paskaramoorthy, The effects of alkali–silane treatment on the tensile and flexural properties of short fibre non-woven kenaf reinforced polypropylene composites, Compos. Part A Appl. Sci. Manuf. 43 (2012) 1431–1440.
  • M. Jawaid, H.P.S.A. Khalil, Cellulosic/synthetic fibre reinforced polymer hybrid composites: A review, Carbohydr. Polym. 86 (2011) 1–18.
  • L.T. Drzal, Natural fibers, biopolymers, and biocomposites, CRC press, 2005.
  • H. Polat, Muz Kabuğu Atıklarının Polimer Kompozitlerin Performansına Etkisinin Değerlendirilmesi, Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilim. Derg. 25 (2025) 613–620.
  • M.N. Kolak, H. Polat, Polimer Kompozitlerde Ahşap Atığı Tozu İkamesinin Etkileri: Mekanik ve Fiziksel Özellikler, Recep Tayyip Erdogan Univ. J. Sci. Eng. 5 (2024) 123–134.
  • M.M. Kabir, H. Wang, K.T. Lau, F. Cardona, Chemical treatments on plant-based natural fibre reinforced polymer composites: An overview, Compos. Part B Eng. 43 (2012) 2883–2892. https://doi.org/10.1016/j.compositesb.2012.04.053.
  • T.P. Sathishkumar, J. and Naveen, S. Satheeshkumar, Hybrid fiber reinforced polymer composites–a review, J. Reinf. Plast. Compos. 33 (2014) 454–471.
  • A. Bourmaud, J. Beaugrand, D.U. Shah, V. Placet, C. Baley, Towards the design of high-performance plant fibre composites, Prog. Mater. Sci. 97 (2018) 347–408.
  • Q. Chen, X. Chen, Z. Zhai, Z. Yang, A new and general formulation of three-dimensional finite-volume micromechanics for particulate reinforced composites with viscoplastic phases, Compos. Part B Eng. 85 (2016) 216–232.
  • J. Merotte, P. Simacek, S.G. Advani, Resin flow analysis with fiber preform deformation in through thickness direction during Compression Resin Transfer Molding, Compos. Part A Appl. Sci. Manuf. 41 (2010) 881–887.   M.B. Kulkarni, V. Gavande, P.A. Mahanwar, A.R. Shah, R.K. Shuib, A.M. Khare, S. Radhakrishnan, Review on biomass sheep wool–based polymer composites, Biomass Convers. Biorefinery 14 (2024) 30961–30982.
  • T. Tesfaye, B. Sithole, D. Ramjugernath, Valorisation of chicken feathers: a review on recycling and recovery route—current status and future prospects, Clean Technol. Environ. Policy 19 (2017) 2363–2378.
  • S.R. Dakarapu, S.R. Karri, L.S.P. Ampolu, Mechanical and water absorption properties of polymer composites reinforced with animal bone powder, in: J. Phys. Conf. Ser., IOP Publishing, 2023: p. 12004.
  • K.R. Babu, V. Jayakumar, G. Bharathiraja, S. Madhu, Experimental investigation of fish scale reinforced polymer composite, Mater. Today Proc. 22 (2020) 416–418.
  • R. Siddique, Performance characteristics of high-volume Class F fly ash concrete, Cem. Concr. Res. 34 (2004) 487–493.
  • A.C. Patsidis, M. Souliotis, End-of-use fly ash as an effective reinforcing filler in green polymer composites, Polymers (Basel). 15 (2023) 3418.
  • M. Frigione, Recycling of PET bottles as fine aggregate in concrete, Waste Manag. 30 (2010) 1101–1106.
  • TS EN 196-1, Çimento Deney Metotları- Bölüm 1: Dayanım, Türk Standartları Enstitüsü, ANKARA, 2021.
  • TS EN 12390-3, Beton - Sertleşmiş beton deneyleri - Bölüm 3: Deney numunelerinin basınç dayanımının tayin, Türk Standartları Enstitüsü, ANKARA, 2019.
  • ASTM C 597-02, Pulse Velocity Through Concrete, 2016. https://doi.org/10.1520/C0597-16.2.
  • H.-S. Kim, B.-H. Lee, S.-W. Choi, S. Kim, H.-J. Kim, The effect of types of maleic anhydride-grafted polypropylene (MAPP) on the interfacial adhesion properties of bio-flour-filled polypropylene composites, Compos. Part A Appl. Sci. Manuf. 38 (2007) 1473–1482.
  • I.H. Imon, Sustainable Natural Fiber Based Composites Materials: A Review, (2024).
  • A.K. Bledzki, A.A. Mamun, M. Lucka-Gabor, V.S. Gutowski, The effects of acetylation on properties of flax fibre and its polypropylene composites, Express Polym. Lett. 2 (2008) 413–422.
  • D.N. Saheb, J.P. Jog, Natural fiber polymer composites: a review, Adv. Polym. Technol. J. Polym. Process. Inst. 18 (1999) 351–363.
  • M.J. John, S. Thomas, Biofibres and biocomposites, Carbohydr. Polym. 71 (2008) 343–364.
  • V. Fiore, T. Scalici, F. Nicoletti, G. Vitale, M. Prestipino, A. Valenza, A new eco-friendly chemical treatment of natural fibres: Effect of sodium bicarbonate on properties of sisal fibre and its epoxy composites, Compos. Part B Eng. 85 (2016) 150–160.
  • A.K. Mohanty, M. Misra, L.T. Drzal, Sustainable bio-composites from renewable resources: opportunities and challenges in the green materials world, J. Polym. Environ. 10 (2002) 19–26.
  • S. Widodo, F. Ma’arif, M.S. Nugroho, H. Mahardika, Correlation of ultrasonic pulse velocity with porosity and compressive strength of mortar with limestone for building quality assessment, Work 7 (2022).
  • A. Belmouhoub, A. Abdelouahed, Relationship between Porosity-Ultrasonic Pulse Velocity and Water Absorption of Concrete Containing Plastic and Rubber Waste by Full Factor Design, Sel. Sci. Pap. Civ. Eng. 19 (2024) 20240008.
Toplam 28 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Temel ve Teorik Akışkanlar Dinamiği
Bölüm Araştırma Makalesi
Yazarlar

Hasan Polat 0000-0003-1521-0695

Mehmet Nuri Kolak 0000-0003-3533-3422

İnan Dursun 0000-0003-1717-8166

Yavuz Selim Tarih 0000-0002-8267-7706

Muhammed Zekeriya Gündüz 0000-0003-4278-7123

Gönderilme Tarihi 11 Temmuz 2025
Kabul Tarihi 4 Kasım 2025
Yayımlanma Tarihi 30 Aralık 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 4

Kaynak Göster

APA Polat, H., Kolak, M. N., Dursun, İ., … Tarih, Y. S. (2025). Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax. Türk Doğa ve Fen Dergisi, 14(4), 149-157. https://doi.org/10.46810/tdfd.1740537
AMA Polat H, Kolak MN, Dursun İ, Tarih YS, Gündüz MZ. Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax. TDFD. Aralık 2025;14(4):149-157. doi:10.46810/tdfd.1740537
Chicago Polat, Hasan, Mehmet Nuri Kolak, İnan Dursun, Yavuz Selim Tarih, ve Muhammed Zekeriya Gündüz. “Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax”. Türk Doğa ve Fen Dergisi 14, sy. 4 (Aralık 2025): 149-57. https://doi.org/10.46810/tdfd.1740537.
EndNote Polat H, Kolak MN, Dursun İ, Tarih YS, Gündüz MZ (01 Aralık 2025) Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax. Türk Doğa ve Fen Dergisi 14 4 149–157.
IEEE H. Polat, M. N. Kolak, İ. Dursun, Y. S. Tarih, ve M. Z. Gündüz, “Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax”, TDFD, c. 14, sy. 4, ss. 149–157, 2025, doi: 10.46810/tdfd.1740537.
ISNAD Polat, Hasan vd. “Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax”. Türk Doğa ve Fen Dergisi 14/4 (Aralık2025), 149-157. https://doi.org/10.46810/tdfd.1740537.
JAMA Polat H, Kolak MN, Dursun İ, Tarih YS, Gündüz MZ. Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax. TDFD. 2025;14:149–157.
MLA Polat, Hasan vd. “Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax”. Türk Doğa ve Fen Dergisi, c. 14, sy. 4, 2025, ss. 149-57, doi:10.46810/tdfd.1740537.
Vancouver Polat H, Kolak MN, Dursun İ, Tarih YS, Gündüz MZ. Investigation of the Physical and Mechanical Properties of Biocomposites Reinforced with Waste Beeswax. TDFD. 2025;14(4):149-57.