Araştırma Makalesi
BibTex RIS Kaynak Göster

Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi

Yıl 2020, , 127 - 133, 30.12.2020
https://doi.org/10.46810/tdfd.819741

Öz

Bu çalışmada, sıçanlarda civa II klorür'ün meydana getireceği beyin hasarının engellenmesinde borik asit (BA)'in koruyucu etkileri araştırıldı. Deneyde 200-300 gr ağırlığında, 24 adet yetişkin, Wistar albino cinsi erkek rat kullanıldı. Ratlar, Grup I (Kontrol,n:8):İzotonik serum uygulandı (i.p), Grup II (civa II klorür (HgCl2),n:8):Oral yol ile (0.01 g/kg), Grup III (HgCl2+BA,n:8): Oral yol ile HgCl2 (0.01 g/kg/gün) + BA (3.25mg/kg/gün) (i.p) konsantrasyonda uygulaması yapıldı. Tüm gruplardaki ratlar 10. günün sonunda sakrifiye edilerek beyin dokuları alındı. Biyokimyasal parametrelerden SOD, CAT ve GSH-Px antioksidan enzim aktiviteleri ölçüldü. Ayrıca histopatolojik olarak değerlendirildi. SOD enzim aktivitesi değerlendirildiğinde; Hg uygulanan grupta kontrole oranla azaldığı (p˂0.001) görüldü. BA, uygulanan grupta ise aktivitenin HgCl2 grubu ile kıyaslandığında arttığı (p˂0.001) tespit edildi. CAT enzim aktivitesi değerlendirildiğinde; kontrole oranla HgCl2 ve HgCl2+BA uygulanan gruplarda aktivitede azalma (p˂0.001) olduğu görüldü. HgCl2 uygulanan grupla karşılaştırıldığında BA uygulanan grupta enzim aktivitesinde artış belirlendi. GSH-Px enzim aktivitesi değerlendirildiğinde ise; kontrol grubu ile kıyaslandığında HgCl2 (p˂0.001) ve HgCl2+BA (p˂0.05) uygulanan gruplarda aktivitenin azaldığı görüldü. Ayrıca HgCl2 uygulanan grup ile karşılaştırıldığında BA uygulanan grupta artış olduğu görüldü (p˂0.001). SOD, CAT ve GSH-Px gibi antioksidan enzim aktivitelerinin anlamlı olarak değiştiği ve beyin dokusu histopatolojik incelemede BA'nın koruyucu etkisi olabileceği düşünülmektedir.

Kaynakça

  • [1]. Temel Y, Kocyigit U.M.Purification of glucose‐6‐phosphate dehydrogenase from rat (Rattus norvegicus) erythrocytes and inhibition effects of some metal ions on enzyme activity. Journal of biochemical and molecular toxicology, 2017;31(9), e21927.
  • [2]. Bülent S. “Metal sanayi atık çamurlarından ağır metal gideriminde biyoliç yönteminin kullanılması,” Çukurova Üniversitesi,Fen Bilimleri Enstitüsü, Adana, 2005.
  • [3]. Stummann TC, Hareng L, Bremer S. “Embryotoxicity hazard assessment of cadmium and arsenic compounds using embryonic stem cells.,” Toxicology.2008; 252:118–122.
  • [4]. García-Niño WR, Pedraza-Chaverrí J.“Protective effect of curcumin against heavy metals-induced liver damage.,” Food Chem Toxicol.2014; 69: 182–201.
  • [5]. Mahboob M, Shireen KF, Atkinson A, Khan AT. “Lipid peroxidation and antioxidant enzyme activity in different organs of mice exposed to low level of mercury,” Journal of Environmental Science and Health, Part . 2001; 36(5): 687–697.
  • [6]. Sharma MK, Sharma A, Kumar A, Kumar M. “Spirulina fusiformis provides protection against mercuric chloride induced oxidative stress in Swiss albino mice,” Food and chemical toxicology. 2007; 45(12): 2412-2419.
  • [7]. Xu F, Farkas S, Kortbeek S, Zhang FX, Chen L, Zamponi GW, Syed NI. “Mercury-induced toxicity of rat cortical neurons is mediated through N-methyl-D-Aspartate receptors,” Molecular. Brain.2012; 146: 213–223, 2012.
  • [8]. Nordberg GF, Fowler BA, Nordberg M, Friberg LT. Handbook on the Toxicology of Metals, 3rd editio. New York, NY, USA: Elsevier., 2007.
  • [9]. Zhang FS, Nriagu JO, Itoh H. “Mercury removal from water using activated carbons derived from organic sewage sludge,” Water Res., no. 39, pp. 389–395, 2005.
  • [10]. Yavuz H, Denizli A, Güngüneş H, Safarikova M, Safarik I. “Biosorption of mercury on magnetically modified yeast cells,” Sep. Purif. Technol., no. 52, pp. 253–260, 2006.
  • [11]. Inbaraj BS, Wang JS, Lu JF, Siao FY, and Chen BH. “Adsorption of toxic mercury(II) by an extracellular biopolymer poly(γ-glutamic acid),” Bioresour. Technol., no. 100, pp. 200–207, 2009.
  • [12]. Perottoni J, Lobato LP, Silveira A, Rocha JBT, Emanuelli T. “Effects of mercury and selenite on δ-aminolevulinate dehydratase activity and on selected oxidative stress parameters in rats,” Environ. Res., no. 95, pp. 166–173, 2004.
  • [13]. Méndez-Armenta M, Nava-Ruiz C, Fernández-Valverde F, Sánchez-García A, Rios C. “Histochemical changes in muscle of rats exposed subchronically to low doses of heavy metals,” Environ. Toxicol. Pharmacol., no. 32, pp. 107–112, 2011.
  • [14]. Eraslan G, Saygi S, Essiz D, Aksoy A, Gul H, Macit E. “Evaluation of aspect of some oxidative stress parameters using vitamin E, proanthocyanidin and N-acetylcysteine against exposure to cyfluthrin in mice,” Pestic. Biochem. Physiol., no. 88, pp. 43–49, 2007.
  • [15]. Altieri S. et al., “Neutron autoradiography imaging of selective boron uptake in human metastatic tumours,” Appl. Radiat. Isot., no. 66, pp. 1850–1855, 2008.
  • [16]. Gallardo-Williams MT, Maronpot RR, Wine RN, Brunssen SH, Chapin RE. “Inhibition of the enzymatic activity of prostate-specific antigen by boric acid and 3-nitrophenyl boronic acid,” Prostate, no. 54, pp. 44–49, 2003.
  • [17]. Pawa S. and Ali S. “Boron ameliorates fulminant hepatic failure by counteracting the changes associated with the oxidative stress,” Chem. Biol. Interact., no. 160, pp. 89–98, 2006.
  • [18]. Moore JA. “An assessment of boric acid and borax using the IEHR evaluative process for assessing human developmental and reproductive toxicity of agents,” Reprod. Toxicol., no. 11, pp. 123–60, 1997.
  • [19]. Devirian TA and Volpe SL. “The Physiological Effects of Dietary Boron,” Crit. Rev. Food Sci. Nutr., pp. 219–31, 2003.
  • [20]. Barranco WT, Hudak PF, and Eckhert CD. “Evaluation of ecological and in vitro effects of boron on prostate cancer risk (United States),” Cancer Causes Control, no. 18, pp. 71–77, 2007.
  • [21]. Wang Q, Yang X, Zhang B, Yang X, and Wang K. “Cinnabar is Different from Mercuric Chloride in Mercury Absorption and Influence on the Brain Serotonin Level,” Basic Clin. Pharmacol. Toxicol., no. 112, pp. 412–417, 2013.
  • [22]. Çolak S, Geyikoğlu F, Keles ON, Türkez H, Topal A, and Unal B. “The neuroprotective role of boric acid on aluminum chloride-induced neurotoxicity,” Toxicol. Ind. Health, no. 27, pp. 700–10, 2011.
  • [23]. Xia E, Rao G, Van Remmen H, Heydari AR., and A. Richardson, “Activities of antioxidant enzymes in various tissues of male Fischer 344 rats are altered by food restriction,” J. Nutr., no. 125, pp. 195–201, 1995.
  • [24]. Sun Y, Oberley LW, and Li Y. “A simple method for clinical assay of superoxide dismutase,” Clin. Chem., vol. 3, no. 34, pp. 497–500, 1988.
  • [25]. Aebi H. “Catalase in Vitro,” Methods Enzymol., no. 105, pp. 121–126, 1984.
  • [26]. Paglia DE and Valentine WN. “Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase,” J. Lab. Clin. Med., no. 70, pp. 158–169, 1967.
  • [27]. Tranquilli WJ, Thurmon JC, Grimm KA. Lumb and Jones Veterinary Anesthesia and Analgesia. Blackwell Publishing, 2007.
  • [28]. Kar A, Kar T, Kanungo S, Guru L, Rath J, and Dehuri P. “Risk factors, organ weight deviation and associated anomalies in neural tube defects: A prospective fetal and perinatal autopsy series,” Indian J. Pathol. Microbiol., no. 58, p. 285, 2015.
  • [29]. Bancroft M. and Gamble JD. Theory and Practice of Histological Techniques., 6th Editio. Churchill Livingstone, China.: Elsevier, 2008.
  • [30]. Fischer AH, Jacobson KA, Rose J, and Zeller R. “Hematoxylin and eosin staining of tissueand cell sections,” Cold Spring Harb. Protoc., no. 5, p. 4986, 2008.
  • [31]. Adnaik S, Gavarkar RS, Mohite PS.“Evaluation of Antioxidant Effect of Citrullus Vulgaris Against Cadmium-Induced Neurotoxicity In Mice Brain,” Int. J. Pharm. Sci. Res., no. 6, p. 4316, 2015.
  • [32]. Muthukumran KPP, Hazeena Begum V. “Antioxidant status of ginger against mercury induced toxicity in the brain of rat,” Biochem. An Indian J., no. 5, pp. 29–34, 2011.
  • [33]. Atkinson A. et al., “Assessment of a two-generation reproductive and fertility study of mercuric chloride in rats,” Food Chem. Toxicol., no. 39, pp. 73–84, 2001.
  • [34]. Magos L and Clarkson TW. “Overview of the clinical toxicity of mercury,” Annals of Clinical Biochemistry. pp. 257–268, 2006.
  • [35]. Grotto D. et al., “Low levels of methylmercury induce DNA damage in rats: Protective effects of selenium,” Arch. Toxicol., no. 83, pp. 249–254, 2009.
  • [36]. Grover P, Banu BS, Devi KD, and Begum S. “In vivo genotoxic effects of mercuric chloride in rat peripheral blood leucocytes using comet assay,” Toxicology, no. 167, pp. 191–197, 2001.
  • [37]. Schmid K. et al., “Mercuric dichloride induces DNA damage in human salivary gland tissue cells and lymphocytes,” Arch. Toxicol., no. 81, pp. 759–767, 2007.
  • [38]. Gochfeld M. “Cases of mercury exposure, bioavailability, and absorption,” Ecotoxicol. Environ. Saf., no. 56, pp. 174–179, 2003.
  • [39]. Beyersmann D and Hartwig A. “Carcinogenic metal compounds: Recent insight into molecular and cellular mechanisms,” Archives of Toxicology. pp. 493–512, 2008.
  • [40]. Chuu JJ, Huang ZN, Yu HH, Chang LH and Lin-Shiau SY. “Attenuation by methyl mercury and mercuric sulfide of pentobarbital induced hypnotic tolerance in mice through inhibition of ATPase activities and nitric oxide production in cerebral cortex,” Arch. Toxicol., no. 82, pp. 343–353, 2008.
  • [41]. Mori K, Yasutake N, Hirayama A. “Comparative study of activities in reactive oxygen species production/defense system in mitochondria of rat brain and liver, and their susceptibility to methylmercury toxicity.,” Arch Toxicol., no. 81, pp. 769–776, 2007.
  • [42]. Soni M, Prakash C, Dabur R, and Kumar V. “Protective Effect of Hydroxytyrosol Against Oxidative Stress Mediated by Arsenic-Induced Neurotoxicity in Rats,” Appl. Biochem. Biotechnol., pp. 1–13, 2018.
  • [43]. Salihoglu M. et al., “Ototoxicity of boric acid powder in a rat animal model,” Braz. J. Otorhinolaryngol., no. 84, pp. 332–337, 2018.
  • [44]. Demirer S, Kara MI, Erciyas K, Ozdemir H, Ozer H, and Ay S. “Effects of boric acid on experimental periodontitis and alveolar bone loss in rats,” Arch. Oral Biol., no. 57, pp. 60–65, 2012.
  • [45]. Sogut I, Paltun SO, Tuncdemir M, Ersoz M and Hurdag C. “The antioxidant and antiapoptotic effect of boric acid on hepatoxicity in chronic alcohol-fed rats,” Can. J. Physiol. Pharmacol., no. 96, pp. 404–411, 2018.
  • [46]. Sogut I. et al., “Effect of boric acid on oxidative stress in rats with fetal alcohol syndrome,” Exp. Ther. Med., no. 9, pp. 1023–1027, 2015.
  • [47]. Çetin E, Kanbur M, Çetin N, Eraslan G and Atasever A. “Hepatoprotective effect of ghrelin on carbon tetrachloride-induced acute liver injury in rats,” Regul. Pept., no. 171, pp. 1–5, 2011.
  • [48]. Oto G. et al., “Cytoprotective effects of boric acid and coenzyme Q10 therapy on induced pulmonary fibrosis in response to intratracheal administration of bleomycin in rats,” Fresenius Environ. Bull., no. 22, pp. 2428–2434, 2013.
  • [49]. Scorei R, Ciubar R, Ciofrangeanu CM, Mitran V, Cimpean A and Iordachescu D.“Comparative effects of boric acid and calcium fructoborate on breast cancer cells,” Biol. Trace Elem. Res., no. 122, pp. 197–205, 2008.
  • [50]. Uzzell BP and Oler J. “Chronic low-level mercury exposure and neuropsychological functioning,” J. Clin. Exp. Neuropsychol., no. 8, pp. 581–93, 1986.
  • [51]. Pamphlett P and Waley R. “Uptake of inorganic mercury by the human brain,” Acta Neuropathol., no. 92, pp. 525–7, 1996.
  • [52]. Newland MC and Reile P A. “Blood and brain mercury levels after chronic gestational exposure to methylmercury in rats,” Toxicol. Sci., no. 50, pp. 106–16, 1999.
  • [53]. Warfvinge K. “Mercury distribution in the mouse brain after mercury vapour exposure.,” Int J Exp Pathol., no. 76, p. 29, 1995.
  • [54]. Issa Y, Watts DC, Duxbury AJ, Brunton PA, Watson MB, and Waters CM. “Mercuric chloride: Toxicity and apoptosis in a human oligodendroglial cell line MO3.13,” Biomaterials, no. 24, pp. 981–987, 2003.
  • [55]. Temel Y, Taysi MŞ. The Effect of Mercury Chloride and Boric Acid on Rat Erythrocyte Enzymes. Biological trace element research, 191(1), 177-182,2019.
  • [56]. Temel Y, KÜFREVİOĞLU Öİ, Ciftci M. Investigation of the effects of purification and characterization of turkey (Meleagris gallopavo) liver mitochondrial thioredoxin reductase enzyme and some metal ions on enzyme activity. Turkish Journal of Chemistry, 41(1), 48-60,2017.
Toplam 56 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Sağlık Kurumları Yönetimi
Bölüm Makaleler
Yazarlar

H. Turan Akkoyun 0000-0002-4547-8003

A. Şükrü Bengü

Mahire Bayramoğlu Akkoyun 0000-0001-5150-5402

Aykut Ulucan 0000-0001-8844-8237

Mehmet Sait İzgi 0000-0003-3685-3219

Ömer Şahin 0000-0003-4575-3762

Suat Ekin 0000-0002-6502-5028

Şule Melek 0000-0002-0677-722X

Yayımlanma Tarihi 30 Aralık 2020
Yayımlandığı Sayı Yıl 2020

Kaynak Göster

APA Akkoyun, H. T., Bengü, A. Ş., Bayramoğlu Akkoyun, M., Ulucan, A., vd. (2020). Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi. Türk Doğa Ve Fen Dergisi, 9(2), 127-133. https://doi.org/10.46810/tdfd.819741
AMA Akkoyun HT, Bengü AŞ, Bayramoğlu Akkoyun M, Ulucan A, İzgi MS, Şahin Ö, Ekin S, Melek Ş. Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi. TDFD. Aralık 2020;9(2):127-133. doi:10.46810/tdfd.819741
Chicago Akkoyun, H. Turan, A. Şükrü Bengü, Mahire Bayramoğlu Akkoyun, Aykut Ulucan, Mehmet Sait İzgi, Ömer Şahin, Suat Ekin, ve Şule Melek. “Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi”. Türk Doğa Ve Fen Dergisi 9, sy. 2 (Aralık 2020): 127-33. https://doi.org/10.46810/tdfd.819741.
EndNote Akkoyun HT, Bengü AŞ, Bayramoğlu Akkoyun M, Ulucan A, İzgi MS, Şahin Ö, Ekin S, Melek Ş (01 Aralık 2020) Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi. Türk Doğa ve Fen Dergisi 9 2 127–133.
IEEE H. T. Akkoyun, A. Ş. Bengü, M. Bayramoğlu Akkoyun, A. Ulucan, M. S. İzgi, Ö. Şahin, S. Ekin, ve Ş. Melek, “Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi”, TDFD, c. 9, sy. 2, ss. 127–133, 2020, doi: 10.46810/tdfd.819741.
ISNAD Akkoyun, H. Turan vd. “Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi”. Türk Doğa ve Fen Dergisi 9/2 (Aralık 2020), 127-133. https://doi.org/10.46810/tdfd.819741.
JAMA Akkoyun HT, Bengü AŞ, Bayramoğlu Akkoyun M, Ulucan A, İzgi MS, Şahin Ö, Ekin S, Melek Ş. Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi. TDFD. 2020;9:127–133.
MLA Akkoyun, H. Turan vd. “Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi”. Türk Doğa Ve Fen Dergisi, c. 9, sy. 2, 2020, ss. 127-33, doi:10.46810/tdfd.819741.
Vancouver Akkoyun HT, Bengü AŞ, Bayramoğlu Akkoyun M, Ulucan A, İzgi MS, Şahin Ö, Ekin S, Melek Ş. Civa II Klorürün Sıçan Beyin Dokusunda Oluşturduğu Toksisiteye Karşı Borik Asidin Koruyucu Etkisinin İncelenmesi. TDFD. 2020;9(2):127-33.