Araştırma Makalesi
BibTex RIS Kaynak Göster
Yıl 2018, Cilt: 7 Sayı: 2, 48 - 53, 31.12.2018

Öz

Kaynakça

  • 1. Hanbay K, Alpaslan N, Talu MF, Hanbay D. Principal curvatures based rotation invariant algorithms for efficient texture classification. Neurocomputing [Internet]. 2016;199:77–89. Available from: http://www.sciencedirect.com/science/article/pii/S0925231216300522
  • 2. Beyer WH. Standard Mathematical Tables. Boca Raton: FL: CRC Press; 1987. 216 p.
  • 3. Gray A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton: FL: CRC Press; 1997. 50-52 p. 4. Lawrence JD. A Catalog of Special Plane Curves. New York: Dover Publications Inc.; 1972. 192-197 p.
  • 5. Lockwood EH. “The Cycloid.” Ch. 9. In: A Book of Curves. Cambridge, England: Cambridge University Press; 1967. p. 80–9.
  • 6. MacTutor History of Mathematics Archive [Internet]. Available from: http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html
  • 7. Smith DE. Special Topics of Elementary Mathematics. In: History of Mathematics, Vol 2. New York: Dover Publications Inc.; 1958. p. 327.
  • 8. Wells D. The Penguin Dictionary of Curious and Interesting Geometry. Londra: Penguin; 1991. 44-47 p.
  • 9. Yates RC. Cycloid. In: A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards; 1952. p. 65–70.
  • 10. E. Ethemoglu. E^n deki Kendine Benzer Yüzeylerin Bir Karekterizasyonu. Uludağ Üniversitesi; 2013.
  • 11. Etemoglu E, Arslan K, Bulca B. Self similar surfaces in Euclidean space. Selcuk J Appl Math,. 2013;14(1):71–81.
  • 12. Anciaux H. Construction of Lagrangian Self-similar Solutions to the Mean Curvature Flow in Cn. Geom Dedicata [Internet]. 2006;120(1):37–48. Available from: http://link.springer.com/10.1007/s10711-006-9082-z
  • 13. Uribe-Vargas R. On Vertices, focal curvatures and differential geometry of space curves. Bull Brazilian Math Soc. 2005;36(3):285–307.
  • 14. Hacısalihoğlu HH. Differensiyel Geometri. Ankara: Gazi Üniversitesi Basın Yayın Yüksekokulu Basımevi; 1983. 1-895 p.
  • 15. Encheva RP, Georgiev GH. Similar Frenet curves. Results Math. 2009;55(3):359–72.

Kendine Benzer Eğri Olmayan Bazı Özel Eğriler

Yıl 2018, Cilt: 7 Sayı: 2, 48 - 53, 31.12.2018

Öz

Görüntü işleme
ve örüntü tanıma uygulamalarında yer bulan kendine benzer eğriler bir çok
araştırmacı tarafından çalışılmıştır. Bu çalışmada Öklid uzayında Kardioid ,
Saykloid, Limaçon, Astroid, Eş açılı spiral eğrilerinin kendine benzer eğri
olup olmadıkları incelenmiştir. Ayrıca bu eğrilerin kendine benzer eğri
olmaması için gerekli şartlar elde edilmiştir.

Kaynakça

  • 1. Hanbay K, Alpaslan N, Talu MF, Hanbay D. Principal curvatures based rotation invariant algorithms for efficient texture classification. Neurocomputing [Internet]. 2016;199:77–89. Available from: http://www.sciencedirect.com/science/article/pii/S0925231216300522
  • 2. Beyer WH. Standard Mathematical Tables. Boca Raton: FL: CRC Press; 1987. 216 p.
  • 3. Gray A. Modern Differential Geometry of Curves and Surfaces with Mathematica, 2nd ed. Boca Raton: FL: CRC Press; 1997. 50-52 p. 4. Lawrence JD. A Catalog of Special Plane Curves. New York: Dover Publications Inc.; 1972. 192-197 p.
  • 5. Lockwood EH. “The Cycloid.” Ch. 9. In: A Book of Curves. Cambridge, England: Cambridge University Press; 1967. p. 80–9.
  • 6. MacTutor History of Mathematics Archive [Internet]. Available from: http://www-groups.dcs.st-and.ac.uk/~history/Curves/Cycloid.html
  • 7. Smith DE. Special Topics of Elementary Mathematics. In: History of Mathematics, Vol 2. New York: Dover Publications Inc.; 1958. p. 327.
  • 8. Wells D. The Penguin Dictionary of Curious and Interesting Geometry. Londra: Penguin; 1991. 44-47 p.
  • 9. Yates RC. Cycloid. In: A Handbook on Curves and Their Properties. Ann Arbor, MI: J. W. Edwards; 1952. p. 65–70.
  • 10. E. Ethemoglu. E^n deki Kendine Benzer Yüzeylerin Bir Karekterizasyonu. Uludağ Üniversitesi; 2013.
  • 11. Etemoglu E, Arslan K, Bulca B. Self similar surfaces in Euclidean space. Selcuk J Appl Math,. 2013;14(1):71–81.
  • 12. Anciaux H. Construction of Lagrangian Self-similar Solutions to the Mean Curvature Flow in Cn. Geom Dedicata [Internet]. 2006;120(1):37–48. Available from: http://link.springer.com/10.1007/s10711-006-9082-z
  • 13. Uribe-Vargas R. On Vertices, focal curvatures and differential geometry of space curves. Bull Brazilian Math Soc. 2005;36(3):285–307.
  • 14. Hacısalihoğlu HH. Differensiyel Geometri. Ankara: Gazi Üniversitesi Basın Yayın Yüksekokulu Basımevi; 1983. 1-895 p.
  • 15. Encheva RP, Georgiev GH. Similar Frenet curves. Results Math. 2009;55(3):359–72.
Toplam 14 adet kaynakça vardır.

Ayrıntılar

Birincil Dil Türkçe
Konular Mühendislik
Bölüm Makaleler
Yazarlar

Mustafa Altın 0000-0001-5544-5910

Müge Karadağ Bu kişi benim

Yayımlanma Tarihi 31 Aralık 2018
Yayımlandığı Sayı Yıl 2018 Cilt: 7 Sayı: 2

Kaynak Göster

APA Altın, M., & Karadağ, M. (2018). Kendine Benzer Eğri Olmayan Bazı Özel Eğriler. Türk Doğa Ve Fen Dergisi, 7(2), 48-53.
AMA Altın M, Karadağ M. Kendine Benzer Eğri Olmayan Bazı Özel Eğriler. TDFD. Aralık 2018;7(2):48-53.
Chicago Altın, Mustafa, ve Müge Karadağ. “Kendine Benzer Eğri Olmayan Bazı Özel Eğriler”. Türk Doğa Ve Fen Dergisi 7, sy. 2 (Aralık 2018): 48-53.
EndNote Altın M, Karadağ M (01 Aralık 2018) Kendine Benzer Eğri Olmayan Bazı Özel Eğriler. Türk Doğa ve Fen Dergisi 7 2 48–53.
IEEE M. Altın ve M. Karadağ, “Kendine Benzer Eğri Olmayan Bazı Özel Eğriler”, TDFD, c. 7, sy. 2, ss. 48–53, 2018.
ISNAD Altın, Mustafa - Karadağ, Müge. “Kendine Benzer Eğri Olmayan Bazı Özel Eğriler”. Türk Doğa ve Fen Dergisi 7/2 (Aralık 2018), 48-53.
JAMA Altın M, Karadağ M. Kendine Benzer Eğri Olmayan Bazı Özel Eğriler. TDFD. 2018;7:48–53.
MLA Altın, Mustafa ve Müge Karadağ. “Kendine Benzer Eğri Olmayan Bazı Özel Eğriler”. Türk Doğa Ve Fen Dergisi, c. 7, sy. 2, 2018, ss. 48-53.
Vancouver Altın M, Karadağ M. Kendine Benzer Eğri Olmayan Bazı Özel Eğriler. TDFD. 2018;7(2):48-53.