Araştırma Makalesi
BibTex RIS Kaynak Göster

Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions

Yıl 2025, Cilt: 14 Sayı: 3, 73 - 89, 26.09.2025
https://doi.org/10.46810/tdfd.1610740

Öz

Various metaheuristic algorithms inspired by nature are used to solve optimization problems. With the increasing number of metaheuristics, their performance on problems is gradually improving. In this paper, the performance analysis of the newly proposed metaheuristics Artificial Rabbit Optimization Algorithm (ARO), African Vulture Optimization Algorithm (AVOA), Prairie Dog Optimization Algorithm (PDO) and the well-known Genetic Algorithm (GA) were performed for the first time. ARO is modeled after rabbits’ behavioral patterns, such as detour foraging and random hiding. AVOA is developed based on the navigation and competitive behaviors of African vultures. The newly proposed final metaheuristic PDO is inspired by the survival struggle of prairie dogs. As for the popular GA, it is based on survival of the fittest. Unimodal and multimodal test functions were used during the analysis. According to the simulation results, AVOA performed better and generated more successful results compared to the others 22 times in the mean and best values. AVOA was followed by PDO and ARO, proving that the newly proposed metaheuristics will be successful on different problems.

Kaynakça

  • Yang XS. Nature-inspired metaheuristic algorithms. 2nd ed. Frome (UK): Luniver Press; 2008.
  • Jia H, Rao H, Wen C, Mirjalili S. Crayfish optimization algorithm. Artif Intell Rev. 2023;1–61.
  • Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. Vol. 4. IEEE; 1995. p. 1942–8.
  • Mirjalili S. Genetic algorithm. In: Mirjalili S, editor. Evolutionary algorithms and neural networks: theory and applications. Cham: Springer; 2019. p. 43–55.
  • Karaboga D. Artificial bee colony algorithm. Scholarpedia. 2010;5(3):6915.
  • Dorigo M, Birattari M, Stützle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.
  • Dehghani M, Montazeri Z, Trojovská E, Trojovský P. Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl Based Syst. 2023;259:110011.
  • Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell. 2022;114:105082.
  • Tynes VV, editor. Behavior of exotic pets. Hoboken: John Wiley & Sons; 2010.
  • Camp MJ, Rachlow JL, Shipley LA, Johnson TR, Bockting KD. Grazing in sagebrush rangelands in western North America: implications for habitat quality for a sagebrush specialist, the pygmy rabbit. Rangel J. 2014;36(2):151–9.
  • Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng. 2021;158:107408.
  • Xue Y, Jia W, Zhao X, Pang W. An evolutionary computation based feature selection method for intrusion detection. Secur Commun Netw. 2018;2018:1–15.
  • Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE; 2009. p. 210–4.
  • Yang XS. A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature inspired cooperative strategies for optimization (NICSO 2010). Berlin: Springer; 2010. p. 65–74.
  • Gwiazda TD. Crossover for single-objective numerical optimization problems. Vol. 1. Wroclaw: Wroclaw University of Technology Press; 2006.
  • Vasconcelos JA, Ramirez JA, Takahashi RHC, Saldanha RR. Improvements in genetic algorithms. IEEE Trans Magn. 2001;37(5):3414–7.
  • Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH. Prairie dog optimization algorithm. Neural Comput Appl. 2022;34(22):20017–65.
  • Hoogland JL. The black-tailed prairie dog: social life of a burrowing mammal. Chicago: University of Chicago Press; 1995.
  • Yiğit H, Ürgün S, Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI. Neural Comput Appl. 2023;35(10):7369–88.
  • Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68(6):540–6.
  • Mishra P, Singh U, Pandey CM, Mishra P, Pandey G. Application of student’s t-test, analysis of variance, and covariance. Ann Card Anaesth. 2019;22(4):407–11.

Dört Metasezgisel Algoritmanın Kıyaslama Fonksiyonları Üzerindeki Performans Analizi

Yıl 2025, Cilt: 14 Sayı: 3, 73 - 89, 26.09.2025
https://doi.org/10.46810/tdfd.1610740

Öz

Doğadan ilham alan çeşitli metasezgisel algoritmalar, optimizasyon problemlerini çözmek için kullanılmaktadır. Metasezgisel algoritmaların sayısındaki artışla birlikte, bu algoritmaların problemlerdeki performansları da giderek iyileşmektedir. Bu makalede, yeni önerilen metasezgisel algoritmalar olan Yapay Tavşan Optimizasyon Algoritması (ARO), Afrika Akbaba Optimizasyon Algoritması (AVOA), Çayır Köpeği Optimizasyon Algoritması (PDO) ve iyi bilinen Genetik Algoritma'nın (GA) performans analizleri ilk kez gerçekleştirilmiştir. ARO, tavşanların dolambaçlı beslenme ve rastgele saklanma gibi davranış kalıplarını model alarak geliştirilmiştir. AVOA, Afrika akbabalarının navigasyon ve rekabetçi davranışlarına dayanmaktadır. Yeni önerilen son metasezgisel algoritma PDO ise çayır köpeklerinin hayatta kalma mücadelesinden esinlenilerek geliştirilmiştir. Popüler GA ise en uygun olanın hayatta kalması prensibine dayanır. Analiz sırasında tek modlu (unimodal) ve çok modlu (multimodal) test fonksiyonları kullanılmıştır. Simülasyon sonuçlarına göre, AVOA diğerlerine kıyasla 22 kez ortalama ve en iyi değerlerde daha iyi performans göstermiş ve daha başarılı sonuçlar üretmiştir. AVOA'yı PDO ve ARO takip ederek, yeni önerilen metasezgisel algoritmaların farklı problemlerde başarılı olacağını kanıtlamıştır.

Kaynakça

  • Yang XS. Nature-inspired metaheuristic algorithms. 2nd ed. Frome (UK): Luniver Press; 2008.
  • Jia H, Rao H, Wen C, Mirjalili S. Crayfish optimization algorithm. Artif Intell Rev. 2023;1–61.
  • Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of ICNN’95 - International Conference on Neural Networks. Vol. 4. IEEE; 1995. p. 1942–8.
  • Mirjalili S. Genetic algorithm. In: Mirjalili S, editor. Evolutionary algorithms and neural networks: theory and applications. Cham: Springer; 2019. p. 43–55.
  • Karaboga D. Artificial bee colony algorithm. Scholarpedia. 2010;5(3):6915.
  • Dorigo M, Birattari M, Stützle T. Ant colony optimization. IEEE Comput Intell Mag. 2006;1(4):28–39.
  • Dehghani M, Montazeri Z, Trojovská E, Trojovský P. Coati optimization algorithm: A new bio-inspired metaheuristic algorithm for solving optimization problems. Knowl Based Syst. 2023;259:110011.
  • Wang L, Cao Q, Zhang Z, Mirjalili S, Zhao W. Artificial rabbits optimization: A new bio-inspired meta-heuristic algorithm for solving engineering optimization problems. Eng Appl Artif Intell. 2022;114:105082.
  • Tynes VV, editor. Behavior of exotic pets. Hoboken: John Wiley & Sons; 2010.
  • Camp MJ, Rachlow JL, Shipley LA, Johnson TR, Bockting KD. Grazing in sagebrush rangelands in western North America: implications for habitat quality for a sagebrush specialist, the pygmy rabbit. Rangel J. 2014;36(2):151–9.
  • Abdollahzadeh B, Gharehchopogh FS, Mirjalili S. African vultures optimization algorithm: A new nature-inspired metaheuristic algorithm for global optimization problems. Comput Ind Eng. 2021;158:107408.
  • Xue Y, Jia W, Zhao X, Pang W. An evolutionary computation based feature selection method for intrusion detection. Secur Commun Netw. 2018;2018:1–15.
  • Yang XS, Deb S. Cuckoo search via Lévy flights. In: Proceedings of the 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). IEEE; 2009. p. 210–4.
  • Yang XS. A new metaheuristic bat-inspired algorithm. In: González JR, Pelta DA, Cruz C, Terrazas G, Krasnogor N, editors. Nature inspired cooperative strategies for optimization (NICSO 2010). Berlin: Springer; 2010. p. 65–74.
  • Gwiazda TD. Crossover for single-objective numerical optimization problems. Vol. 1. Wroclaw: Wroclaw University of Technology Press; 2006.
  • Vasconcelos JA, Ramirez JA, Takahashi RHC, Saldanha RR. Improvements in genetic algorithms. IEEE Trans Magn. 2001;37(5):3414–7.
  • Ezugwu AE, Agushaka JO, Abualigah L, Mirjalili S, Gandomi AH. Prairie dog optimization algorithm. Neural Comput Appl. 2022;34(22):20017–65.
  • Hoogland JL. The black-tailed prairie dog: social life of a burrowing mammal. Chicago: University of Chicago Press; 1995.
  • Yiğit H, Ürgün S, Mirjalili S. Comparison of recent metaheuristic optimization algorithms to solve the SHE optimization problem in MLI. Neural Comput Appl. 2023;35(10):7369–88.
  • Kim TK. T test as a parametric statistic. Korean J Anesthesiol. 2015;68(6):540–6.
  • Mishra P, Singh U, Pandey CM, Mishra P, Pandey G. Application of student’s t-test, analysis of variance, and covariance. Ann Card Anaesth. 2019;22(4):407–11.
Toplam 21 adet kaynakça vardır.

Ayrıntılar

Birincil Dil İngilizce
Konular Bilgi Sistemleri (Diğer)
Bölüm Makaleler
Yazarlar

Sibel Arslan 0000-0003-3626-553X

Muhammed Furkan Gul 0009-0007-0486-0525

Yayımlanma Tarihi 26 Eylül 2025
Gönderilme Tarihi 31 Aralık 2024
Kabul Tarihi 15 Temmuz 2025
Yayımlandığı Sayı Yıl 2025 Cilt: 14 Sayı: 3

Kaynak Göster

APA Arslan, S., & Gul, M. F. (2025). Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions. Türk Doğa ve Fen Dergisi, 14(3), 73-89. https://doi.org/10.46810/tdfd.1610740
AMA Arslan S, Gul MF. Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions. TDFD. Eylül 2025;14(3):73-89. doi:10.46810/tdfd.1610740
Chicago Arslan, Sibel, ve Muhammed Furkan Gul. “Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions”. Türk Doğa ve Fen Dergisi 14, sy. 3 (Eylül 2025): 73-89. https://doi.org/10.46810/tdfd.1610740.
EndNote Arslan S, Gul MF (01 Eylül 2025) Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions. Türk Doğa ve Fen Dergisi 14 3 73–89.
IEEE S. Arslan ve M. F. Gul, “Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions”, TDFD, c. 14, sy. 3, ss. 73–89, 2025, doi: 10.46810/tdfd.1610740.
ISNAD Arslan, Sibel - Gul, Muhammed Furkan. “Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions”. Türk Doğa ve Fen Dergisi 14/3 (Eylül2025), 73-89. https://doi.org/10.46810/tdfd.1610740.
JAMA Arslan S, Gul MF. Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions. TDFD. 2025;14:73–89.
MLA Arslan, Sibel ve Muhammed Furkan Gul. “Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions”. Türk Doğa ve Fen Dergisi, c. 14, sy. 3, 2025, ss. 73-89, doi:10.46810/tdfd.1610740.
Vancouver Arslan S, Gul MF. Performance Analysis of Four Metaheuristic Algorithms on Benchmark Functions. TDFD. 2025;14(3):73-89.